ardupilot/Tools/AP_Periph/AP_Periph.cpp
Andrew Tridgell a4a52c3e8c AP_Periph: cope with peripherals with i2c only rangefinders
if no uart then still check for non-uart sensors
2023-03-06 19:48:07 +11:00

555 lines
16 KiB
C++

/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/*
AP_Periph main firmware
To flash this firmware on Linux use:
st-flash write build/f103-periph/bin/AP_Periph.bin 0x8006000
*/
#include <AP_HAL/AP_HAL.h>
#include <AP_HAL/AP_HAL_Boards.h>
#include "AP_Periph.h"
#include <stdio.h>
#if CONFIG_HAL_BOARD == HAL_BOARD_CHIBIOS
#include <AP_HAL_ChibiOS/hwdef/common/stm32_util.h>
#include <AP_HAL_ChibiOS/hwdef/common/watchdog.h>
#include <AP_HAL_ChibiOS/I2CDevice.h>
#endif
#ifndef HAL_PERIPH_HWESC_SERIAL_PORT
#define HAL_PERIPH_HWESC_SERIAL_PORT 3
#endif
extern const AP_HAL::HAL &hal;
AP_Periph_FW periph;
void setup();
void loop();
const AP_HAL::HAL& hal = AP_HAL::get_HAL();
#if CONFIG_HAL_BOARD == HAL_BOARD_SITL
void stm32_watchdog_init() {}
void stm32_watchdog_pat() {}
#endif
void setup(void)
{
periph.init();
}
void loop(void)
{
periph.update();
}
static uint32_t start_ms;
AP_Periph_FW::AP_Periph_FW()
#if HAL_LOGGING_ENABLED
: logger(g.log_bitmask)
#endif
{
if (_singleton != nullptr) {
AP_HAL::panic("AP_Periph_FW must be singleton");
}
_singleton = this;
}
#if HAL_LOGGING_ENABLED
const struct LogStructure AP_Periph_FW::log_structure[] = {
LOG_COMMON_STRUCTURES,
};
#endif
void AP_Periph_FW::init()
{
// always run with watchdog enabled. This should have already been
// setup by the bootloader, but if not then enable now
#ifndef DISABLE_WATCHDOG
stm32_watchdog_init();
#endif
stm32_watchdog_pat();
#if !HAL_GCS_ENABLED
hal.serial(0)->begin(AP_SERIALMANAGER_CONSOLE_BAUD, 32, 32);
#endif
hal.serial(3)->begin(115200, 128, 256);
load_parameters();
stm32_watchdog_pat();
can_start();
#if HAL_GCS_ENABLED
stm32_watchdog_pat();
gcs().init();
#endif
serial_manager.init();
#if HAL_GCS_ENABLED
gcs().setup_console();
gcs().setup_uarts();
gcs().send_text(MAV_SEVERITY_INFO, "AP_Periph GCS Initialised!");
#endif
stm32_watchdog_pat();
#ifdef HAL_BOARD_AP_PERIPH_ZUBAXGNSS
// setup remapping register for ZubaxGNSS
uint32_t mapr = AFIO->MAPR;
mapr &= ~AFIO_MAPR_SWJ_CFG;
mapr |= AFIO_MAPR_SWJ_CFG_JTAGDISABLE;
AFIO->MAPR = mapr | AFIO_MAPR_CAN_REMAP_REMAP2 | AFIO_MAPR_SPI3_REMAP;
#endif
#if HAL_LOGGING_ENABLED
logger.Init(log_structure, ARRAY_SIZE(log_structure));
#endif
check_firmware_print();
if (hal.util->was_watchdog_reset()) {
printf("Reboot after watchdog reset\n");
}
#if AP_STATS_ENABLED
node_stats.init();
#endif
#ifdef HAL_PERIPH_ENABLE_GPS
if (gps.get_type(0) != AP_GPS::GPS_Type::GPS_TYPE_NONE && g.gps_port >= 0) {
serial_manager.set_protocol_and_baud(g.gps_port, AP_SerialManager::SerialProtocol_GPS, AP_SERIALMANAGER_GPS_BAUD);
#if HAL_LOGGING_ENABLED
#define MASK_LOG_GPS (1<<2)
gps.set_log_gps_bit(MASK_LOG_GPS);
#endif
gps.init(serial_manager);
}
#endif
#ifdef HAL_PERIPH_ENABLE_MAG
compass.init();
#endif
#ifdef HAL_PERIPH_ENABLE_BARO
baro.init();
#endif
#ifdef HAL_PERIPH_ENABLE_BATTERY
battery.lib.init();
#endif
#if defined(HAL_PERIPH_NEOPIXEL_COUNT_WITHOUT_NOTIFY) || defined(HAL_PERIPH_ENABLE_RC_OUT)
hal.rcout->init();
#endif
#ifdef HAL_PERIPH_NEOPIXEL_CHAN_WITHOUT_NOTIFY
hal.rcout->set_serial_led_num_LEDs(HAL_PERIPH_NEOPIXEL_CHAN_WITHOUT_NOTIFY, HAL_PERIPH_NEOPIXEL_COUNT_WITHOUT_NOTIFY, AP_HAL::RCOutput::MODE_NEOPIXEL);
#endif
#ifdef HAL_PERIPH_ENABLE_RC_OUT
rcout_init();
#endif
#ifdef HAL_PERIPH_ENABLE_ADSB
adsb_init();
#endif
#ifdef HAL_PERIPH_ENABLE_EFI
if (efi.enabled() && g.efi_port >= 0) {
auto *uart = hal.serial(g.efi_port);
if (uart != nullptr) {
uart->begin(g.efi_baudrate);
serial_manager.set_protocol_and_baud(g.efi_port, AP_SerialManager::SerialProtocol_EFI, g.efi_baudrate);
efi.init();
}
}
#endif
#ifdef HAL_PERIPH_ENABLE_AIRSPEED
#if CONFIG_HAL_BOARD == HAL_BOARD_CHIBIOS
const bool pins_enabled = ChibiOS::I2CBus::check_select_pins(0x01);
if (pins_enabled) {
ChibiOS::I2CBus::set_bus_to_floating(0);
#ifdef HAL_GPIO_PIN_LED_CAN_I2C
palWriteLine(HAL_GPIO_PIN_LED_CAN_I2C, 1);
#endif
} else {
// Note: logging of ARSPD is not enabled currently. To enable, call airspeed.set_log_bit(); here
airspeed.init();
}
#else
// Note: logging of ARSPD is not enabled currently. To enable, call airspeed.set_log_bit(); here
airspeed.init();
#endif
#endif
#ifdef HAL_PERIPH_ENABLE_RANGEFINDER
if (rangefinder.get_type(0) != RangeFinder::Type::NONE) {
if (g.rangefinder_port >= 0) {
// init uart for serial rangefinders
auto *uart = hal.serial(g.rangefinder_port);
if (uart != nullptr) {
uart->begin(g.rangefinder_baud);
serial_manager.set_protocol_and_baud(g.rangefinder_port, AP_SerialManager::SerialProtocol_Rangefinder, g.rangefinder_baud);
}
}
rangefinder.init(ROTATION_NONE);
}
#endif
#ifdef HAL_PERIPH_ENABLE_PRX
if (proximity.get_type(0) != AP_Proximity::Type::None && g.proximity_port >= 0) {
auto *uart = hal.serial(g.proximity_port);
if (uart != nullptr) {
uart->begin(g.proximity_baud);
serial_manager.set_protocol_and_baud(g.proximity_port, AP_SerialManager::SerialProtocol_Lidar360, g.proximity_baud);
proximity.init();
}
}
#endif
#ifdef HAL_PERIPH_ENABLE_PWM_HARDPOINT
pwm_hardpoint_init();
#endif
#ifdef HAL_PERIPH_ENABLE_HWESC
hwesc_telem.init(hal.serial(HAL_PERIPH_HWESC_SERIAL_PORT));
#endif
#ifdef HAL_PERIPH_ENABLE_MSP
if (g.msp_port >= 0) {
msp_init(hal.serial(g.msp_port));
}
#endif
#if AP_TEMPERATURE_SENSOR_ENABLED
temperature_sensor.init();
#endif
#if HAL_NMEA_OUTPUT_ENABLED
nmea.init();
#endif
#ifdef HAL_PERIPH_ENABLE_NOTIFY
notify.init();
#endif
#if AP_SCRIPTING_ENABLED
scripting.init();
#endif
start_ms = AP_HAL::native_millis();
}
#if (defined(HAL_PERIPH_NEOPIXEL_COUNT_WITHOUT_NOTIFY) && HAL_PERIPH_NEOPIXEL_COUNT_WITHOUT_NOTIFY == 8) || defined(HAL_PERIPH_ENABLE_NOTIFY)
/*
rotating rainbow pattern on startup
*/
void AP_Periph_FW::update_rainbow()
{
#ifdef HAL_PERIPH_ENABLE_NOTIFY
if (notify.get_led_len() != 8) {
return;
}
#endif
static bool rainbow_done;
if (rainbow_done) {
return;
}
uint32_t now = AP_HAL::native_millis();
if (now - start_ms > 1500) {
rainbow_done = true;
#if defined (HAL_PERIPH_ENABLE_NOTIFY)
periph.notify.handle_rgb(0, 0, 0);
#elif defined(HAL_PERIPH_NEOPIXEL_CHAN_WITHOUT_NOTIFY)
hal.rcout->set_serial_led_rgb_data(HAL_PERIPH_NEOPIXEL_CHAN_WITHOUT_NOTIFY, -1, 0, 0, 0);
hal.rcout->serial_led_send(HAL_PERIPH_NEOPIXEL_CHAN_WITHOUT_NOTIFY);
#endif
return;
}
static uint32_t last_update_ms;
const uint8_t step_ms = 30;
if (now - last_update_ms < step_ms) {
return;
}
const struct {
uint8_t red;
uint8_t green;
uint8_t blue;
} rgb_rainbow[] = {
{ 255, 0, 0 },
{ 255, 127, 0 },
{ 255, 255, 0 },
{ 0, 255, 0 },
{ 0, 0, 255 },
{ 75, 0, 130 },
{ 143, 0, 255 },
{ 0, 0, 0 },
};
last_update_ms = now;
static uint8_t step;
const uint8_t nsteps = ARRAY_SIZE(rgb_rainbow);
float brightness = 0.3;
for (uint8_t n=0; n<8; n++) {
uint8_t i = (step + n) % nsteps;
#if defined (HAL_PERIPH_ENABLE_NOTIFY)
periph.notify.handle_rgb(
#elif defined(HAL_PERIPH_NEOPIXEL_CHAN_WITHOUT_NOTIFY)
hal.rcout->set_serial_led_rgb_data(HAL_PERIPH_NEOPIXEL_CHAN_WITHOUT_NOTIFY, n,
#endif
rgb_rainbow[i].red*brightness,
rgb_rainbow[i].green*brightness,
rgb_rainbow[i].blue*brightness);
}
step++;
#if defined(HAL_PERIPH_NEOPIXEL_CHAN_WITHOUT_NOTIFY)
hal.rcout->serial_led_send(HAL_PERIPH_NEOPIXEL_CHAN_WITHOUT_NOTIFY);
#endif
}
#endif // HAL_PERIPH_ENABLE_NOTIFY
#if CONFIG_HAL_BOARD == HAL_BOARD_CHIBIOS && CH_DBG_ENABLE_STACK_CHECK == TRUE
void AP_Periph_FW::show_stack_free()
{
const uint32_t isr_stack_size = uint32_t((const uint8_t *)&__main_stack_end__ - (const uint8_t *)&__main_stack_base__);
can_printf("ISR %u/%u", unsigned(stack_free(&__main_stack_base__)), unsigned(isr_stack_size));
for (thread_t *tp = chRegFirstThread(); tp; tp = chRegNextThread(tp)) {
uint32_t total_stack;
if (tp->wabase == (void*)&__main_thread_stack_base__) {
// main thread has its stack separated from the thread context
total_stack = uint32_t((const uint8_t *)&__main_thread_stack_end__ - (const uint8_t *)&__main_thread_stack_base__);
} else {
// all other threads have their thread context pointer
// above the stack top
total_stack = uint32_t(tp) - uint32_t(tp->wabase);
}
can_printf("%s STACK=%u/%u\n", tp->name, unsigned(stack_free(tp->wabase)), unsigned(total_stack));
}
}
#endif
void AP_Periph_FW::update()
{
#if AP_STATS_ENABLED
node_stats.update();
#endif
static uint32_t last_led_ms;
uint32_t now = AP_HAL::native_millis();
if (now - last_led_ms > 1000) {
last_led_ms = now;
#ifdef HAL_GPIO_PIN_LED
if (!no_iface_finished_dna) {
palToggleLine(HAL_GPIO_PIN_LED);
}
#endif
#if 0
#ifdef HAL_PERIPH_ENABLE_GPS
hal.serial(0)->printf("GPS status: %u\n", (unsigned)gps.status());
#endif
#ifdef HAL_PERIPH_ENABLE_MAG
const Vector3f &field = compass.get_field();
hal.serial(0)->printf("MAG (%d,%d,%d)\n", int(field.x), int(field.y), int(field.z));
#endif
#ifdef HAL_PERIPH_ENABLE_BARO
hal.serial(0)->printf("BARO H=%u P=%.2f T=%.2f\n", baro.healthy(), baro.get_pressure(), baro.get_temperature());
#endif
#ifdef HAL_PERIPH_ENABLE_RANGEFINDER
hal.serial(0)->printf("RNG %u %ucm\n", rangefinder.num_sensors(), rangefinder.distance_cm_orient(ROTATION_NONE));
#endif
hal.scheduler->delay(1);
#endif
#ifdef HAL_PERIPH_NEOPIXEL_COUNT_WITHOUT_NOTIFY
hal.rcout->set_serial_led_num_LEDs(HAL_PERIPH_NEOPIXEL_CHAN_WITHOUT_NOTIFY, HAL_PERIPH_NEOPIXEL_COUNT_WITHOUT_NOTIFY, AP_HAL::RCOutput::MODE_NEOPIXEL);
#endif
#ifdef HAL_PERIPH_LISTEN_FOR_SERIAL_UART_REBOOT_CMD_PORT
check_for_serial_reboot_cmd(HAL_PERIPH_LISTEN_FOR_SERIAL_UART_REBOOT_CMD_PORT);
#endif
#ifdef HAL_PERIPH_ENABLE_RC_OUT
rcout_init_1Hz();
#endif
#if HAL_GCS_ENABLED
gcs().send_message(MSG_HEARTBEAT);
gcs().send_message(MSG_SYS_STATUS);
#endif
}
static uint32_t last_error_ms;
const auto &ierr = AP::internalerror();
if (now - last_error_ms > 5000 && ierr.errors()) {
// display internal errors as DEBUG every 5s
last_error_ms = now;
can_printf("IERR 0x%x %u", unsigned(ierr.errors()), unsigned(ierr.last_error_line()));
}
#if CONFIG_HAL_BOARD == HAL_BOARD_CHIBIOS && CH_DBG_ENABLE_STACK_CHECK == TRUE
static uint32_t last_debug_ms;
if ((g.debug&(1<<DEBUG_SHOW_STACK)) && now - last_debug_ms > 5000) {
last_debug_ms = now;
show_stack_free();
}
#endif
if ((g.debug&(1<<DEBUG_AUTOREBOOT)) && AP_HAL::millis() > 15000) {
// attempt reboot with HOLD after 15s
periph.prepare_reboot();
#if CONFIG_HAL_BOARD == HAL_BOARD_CHIBIOS
set_fast_reboot((rtc_boot_magic)(RTC_BOOT_HOLD));
NVIC_SystemReset();
#endif
}
#ifdef HAL_PERIPH_ENABLE_BATTERY
if (now - battery.last_read_ms >= 100) {
// update battery at 10Hz
battery.last_read_ms = now;
battery.lib.read();
}
#endif
static uint32_t fiftyhz_last_update_ms;
if (now - fiftyhz_last_update_ms >= 20) {
// update at 50Hz
fiftyhz_last_update_ms = now;
#ifdef HAL_PERIPH_ENABLE_NOTIFY
notify.update();
#endif
#if HAL_GCS_ENABLED
gcs().update_receive();
gcs().update_send();
#endif
}
#if HAL_NMEA_OUTPUT_ENABLED
nmea.update();
#endif
#if AP_TEMPERATURE_SENSOR_ENABLED
temperature_sensor.update();
#endif
#if HAL_LOGGING_ENABLED
logger.periodic_tasks();
#endif
can_update();
#if (defined(HAL_PERIPH_NEOPIXEL_COUNT_WITHOUT_NOTIFY) && HAL_PERIPH_NEOPIXEL_COUNT_WITHOUT_NOTIFY == 8) || defined(HAL_PERIPH_ENABLE_NOTIFY)
update_rainbow();
#endif
#ifdef HAL_PERIPH_ENABLE_ADSB
adsb_update();
#endif
}
#ifdef HAL_PERIPH_LISTEN_FOR_SERIAL_UART_REBOOT_CMD_PORT
// check for uploader.py reboot command
void AP_Periph_FW::check_for_serial_reboot_cmd(const int8_t serial_index)
{
// These are the string definitions in uploader.py
// NSH_INIT = bytearray(b'\x0d\x0d\x0d')
// NSH_REBOOT_BL = b"reboot -b\n"
// NSH_REBOOT = b"reboot\n"
// This is the command sequence that is sent from uploader.py
// self.__send(uploader.NSH_INIT)
// self.__send(uploader.NSH_REBOOT_BL)
// self.__send(uploader.NSH_INIT)
// self.__send(uploader.NSH_REBOOT)
for (uint8_t i=0; i<hal.num_serial; i++) {
if (serial_index >= 0 && serial_index != i) {
// a specific serial port was selected but this is not it
continue;
}
auto *uart = hal.serial(i);
if (uart == nullptr || !uart->is_initialized()) {
continue;
}
uint32_t available = MIN(uart->available(), 1000U);
while (available-- > 0) {
const char reboot_string[] = "\r\r\rreboot -b\n\r\r\rreboot\n";
const char reboot_string_len = sizeof(reboot_string)-1; // -1 is to remove the null termination
static uint16_t index[hal.num_serial];
const int16_t data = uart->read();
if (data < 0 || data > 0xff) {
// read error
continue;
}
if (index[i] >= reboot_string_len || (uint8_t)data != reboot_string[index[i]]) {
// don't have a perfect match, start over
index[i] = 0;
continue;
}
index[i]++;
if (index[i] == reboot_string_len) {
// received reboot msg. Trigger a reboot and stay in the bootloader
prepare_reboot();
hal.scheduler->reboot(true);
}
}
}
}
#endif // HAL_PERIPH_LISTEN_FOR_SERIAL_UART_REBOOT_CMD_PORT
// prepare for a safe reboot where PWMs and params are gracefully disabled
// This is copied from AP_Vehicle::reboot(bool hold_in_bootloader) minus the actual reboot
void AP_Periph_FW::prepare_reboot()
{
#ifdef HAL_PERIPH_ENABLE_RC_OUT
// force safety on
hal.rcout->force_safety_on();
#endif
// flush pending parameter writes
AP_Param::flush();
// do not process incoming mavlink messages while we delay:
hal.scheduler->register_delay_callback(nullptr, 5);
// delay to give the ACK a chance to get out, the LEDs to flash,
// the IO board safety to be forced on, the parameters to flush,
hal.scheduler->delay(40);
}
AP_Periph_FW *AP_Periph_FW::_singleton;
AP_Periph_FW& AP::periph()
{
return *AP_Periph_FW::get_singleton();
}
AP_HAL_MAIN();