mirror of
https://github.com/ArduPilot/ardupilot
synced 2025-01-04 06:58:27 -04:00
1107 lines
43 KiB
C++
1107 lines
43 KiB
C++
/*
|
|
This program is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
/*
|
|
main logic for servo control
|
|
*/
|
|
|
|
#include "Plane.h"
|
|
#include <utility>
|
|
|
|
/*****************************************
|
|
* Throttle slew limit
|
|
*****************************************/
|
|
void Plane::throttle_slew_limit(SRV_Channel::Aux_servo_function_t func)
|
|
{
|
|
#if HAL_QUADPLANE_ENABLED
|
|
const bool do_throttle_slew = (control_mode->does_auto_throttle() || quadplane.in_assisted_flight() || quadplane.in_vtol_mode());
|
|
#else
|
|
const bool do_throttle_slew = control_mode->does_auto_throttle();
|
|
#endif
|
|
|
|
if (!do_throttle_slew) {
|
|
// only do throttle slew limiting in modes where throttle control is automatic
|
|
SRV_Channels::set_slew_rate(func, 0.0, 100, G_Dt);
|
|
return;
|
|
}
|
|
|
|
uint8_t slewrate = aparm.throttle_slewrate;
|
|
if (control_mode == &mode_auto) {
|
|
if (auto_state.takeoff_complete == false && g.takeoff_throttle_slewrate != 0) {
|
|
slewrate = g.takeoff_throttle_slewrate;
|
|
} else if (landing.get_throttle_slewrate() != 0 && flight_stage == AP_Vehicle::FixedWing::FLIGHT_LAND) {
|
|
slewrate = landing.get_throttle_slewrate();
|
|
}
|
|
}
|
|
if (g.takeoff_throttle_slewrate != 0 &&
|
|
(flight_stage == AP_Vehicle::FixedWing::FLIGHT_TAKEOFF ||
|
|
flight_stage == AP_Vehicle::FixedWing::FLIGHT_VTOL)) {
|
|
// for VTOL we use takeoff slewrate, which helps with transition
|
|
slewrate = g.takeoff_throttle_slewrate;
|
|
}
|
|
#if HAL_QUADPLANE_ENABLED
|
|
if (g.takeoff_throttle_slewrate != 0 && quadplane.in_transition()) {
|
|
slewrate = g.takeoff_throttle_slewrate;
|
|
}
|
|
#endif
|
|
SRV_Channels::set_slew_rate(func, slewrate, 100, G_Dt);
|
|
}
|
|
|
|
/* We want to suppress the throttle if we think we are on the ground and in an autopilot controlled throttle mode.
|
|
|
|
Disable throttle if following conditions are met:
|
|
* 1 - We are in Circle mode (which we use for short term failsafe), or in FBW-B or higher
|
|
* AND
|
|
* 2 - Our reported altitude is within 10 meters of the home altitude.
|
|
* 3 - Our reported speed is under 5 meters per second.
|
|
* 4 - We are not performing a takeoff in Auto mode or takeoff speed/accel not yet reached
|
|
* OR
|
|
* 5 - Home location is not set
|
|
* OR
|
|
* 6- Landing does not want to allow throttle
|
|
*/
|
|
bool Plane::suppress_throttle(void)
|
|
{
|
|
#if PARACHUTE == ENABLED
|
|
if (control_mode->does_auto_throttle() && parachute.release_initiated()) {
|
|
// throttle always suppressed in auto-throttle modes after parachute release initiated
|
|
throttle_suppressed = true;
|
|
return true;
|
|
}
|
|
#endif
|
|
|
|
if (landing.is_throttle_suppressed()) {
|
|
return true;
|
|
}
|
|
|
|
if (!throttle_suppressed) {
|
|
// we've previously met a condition for unsupressing the throttle
|
|
return false;
|
|
}
|
|
if (!control_mode->does_auto_throttle()) {
|
|
// the user controls the throttle
|
|
throttle_suppressed = false;
|
|
return false;
|
|
}
|
|
|
|
bool gps_movement = (gps.status() >= AP_GPS::GPS_OK_FIX_2D && gps.ground_speed() >= 5);
|
|
|
|
if ((control_mode == &mode_auto &&
|
|
auto_state.takeoff_complete == false) ||
|
|
control_mode == &mode_takeoff) {
|
|
|
|
uint32_t launch_duration_ms = ((int32_t)g.takeoff_throttle_delay)*100 + 2000;
|
|
if (is_flying() &&
|
|
millis() - started_flying_ms > MAX(launch_duration_ms, 5000U) && // been flying >5s in any mode
|
|
adjusted_relative_altitude_cm() > 500 && // are >5m above AGL/home
|
|
labs(ahrs.pitch_sensor) < 3000 && // not high pitch, which happens when held before launch
|
|
gps_movement) { // definite gps movement
|
|
// we're already flying, do not suppress the throttle. We can get
|
|
// stuck in this condition if we reset a mission and cmd 1 is takeoff
|
|
// but we're currently flying around below the takeoff altitude
|
|
throttle_suppressed = false;
|
|
return false;
|
|
}
|
|
if (auto_takeoff_check()) {
|
|
// we're in auto takeoff
|
|
throttle_suppressed = false;
|
|
auto_state.baro_takeoff_alt = barometer.get_altitude();
|
|
return false;
|
|
}
|
|
// keep throttle suppressed
|
|
return true;
|
|
}
|
|
|
|
if (fabsf(relative_altitude) >= 10.0f) {
|
|
// we're more than 10m from the home altitude
|
|
throttle_suppressed = false;
|
|
return false;
|
|
}
|
|
|
|
if (gps_movement) {
|
|
// if we have an airspeed sensor, then check it too, and
|
|
// require 5m/s. This prevents throttle up due to spiky GPS
|
|
// groundspeed with bad GPS reception
|
|
#if AP_AIRSPEED_ENABLED
|
|
if ((!ahrs.airspeed_sensor_enabled()) || airspeed.get_airspeed() >= 5) {
|
|
// we're moving at more than 5 m/s
|
|
throttle_suppressed = false;
|
|
return false;
|
|
}
|
|
#else
|
|
// no airspeed sensor, so we trust that the GPS's movement is truthful
|
|
throttle_suppressed = false;
|
|
return false;
|
|
#endif
|
|
}
|
|
|
|
#if HAL_QUADPLANE_ENABLED
|
|
if (quadplane.is_flying()) {
|
|
throttle_suppressed = false;
|
|
return false;
|
|
}
|
|
#endif
|
|
|
|
// throttle remains suppressed
|
|
return true;
|
|
}
|
|
|
|
|
|
/*
|
|
mixer for elevon and vtail channels setup using designated servo
|
|
function values. This mixer operates purely on scaled values,
|
|
allowing the user to trim and limit individual servos using the
|
|
SERVOn_* parameters
|
|
*/
|
|
void Plane::channel_function_mixer(SRV_Channel::Aux_servo_function_t func1_in, SRV_Channel::Aux_servo_function_t func2_in,
|
|
SRV_Channel::Aux_servo_function_t func1_out, SRV_Channel::Aux_servo_function_t func2_out) const
|
|
{
|
|
// the order is setup so that non-reversed servos go "up", and
|
|
// func1 is the "left" channel. Users can adjust with channel
|
|
// reversal as needed
|
|
float in1 = SRV_Channels::get_output_scaled(func1_in);
|
|
float in2 = SRV_Channels::get_output_scaled(func2_in);
|
|
|
|
// apply MIXING_OFFSET to input channels
|
|
if (g.mixing_offset < 0) {
|
|
in2 *= (100 - g.mixing_offset) * 0.01;
|
|
} else if (g.mixing_offset > 0) {
|
|
in1 *= (100 + g.mixing_offset) * 0.01;
|
|
}
|
|
|
|
float out1 = constrain_float((in2 - in1) * g.mixing_gain, -4500, 4500);
|
|
float out2 = constrain_float((in2 + in1) * g.mixing_gain, -4500, 4500);
|
|
SRV_Channels::set_output_scaled(func1_out, out1);
|
|
SRV_Channels::set_output_scaled(func2_out, out2);
|
|
}
|
|
|
|
|
|
/*
|
|
setup flaperon output channels
|
|
*/
|
|
void Plane::flaperon_update()
|
|
{
|
|
/*
|
|
flaperons are implemented as a mixer between aileron and a
|
|
percentage of flaps. Flap input can come from a manual channel
|
|
or from auto flaps.
|
|
*/
|
|
float aileron = SRV_Channels::get_output_scaled(SRV_Channel::k_aileron);
|
|
float flap_percent = SRV_Channels::get_slew_limited_output_scaled(SRV_Channel::k_flap_auto);
|
|
float flaperon_left = constrain_float(aileron + flap_percent * 45, -4500, 4500);
|
|
float flaperon_right = constrain_float(aileron - flap_percent * 45, -4500, 4500);
|
|
SRV_Channels::set_output_scaled(SRV_Channel::k_flaperon_left, flaperon_left);
|
|
SRV_Channels::set_output_scaled(SRV_Channel::k_flaperon_right, flaperon_right);
|
|
}
|
|
|
|
|
|
/*
|
|
setup differential spoiler output channels
|
|
|
|
Differential spoilers are a type of elevon that is split on each
|
|
wing to give yaw control, mixed from rudder
|
|
*/
|
|
void Plane::dspoiler_update(void)
|
|
{
|
|
const int8_t bitmask = g2.crow_flap_options.get();
|
|
const bool flying_wing = (bitmask & CrowFlapOptions::FLYINGWING) != 0;
|
|
const bool full_span_aileron = (bitmask & CrowFlapOptions::FULLSPAN) != 0;
|
|
//progressive crow when option is set or RC switch is set to progressive
|
|
const bool progressive_crow = (bitmask & CrowFlapOptions::PROGRESSIVE_CROW) != 0 || crow_mode == CrowMode::PROGRESSIVE;
|
|
|
|
// if flying wing use elevons else use ailerons
|
|
float elevon_left;
|
|
float elevon_right;
|
|
if (flying_wing) {
|
|
elevon_left = SRV_Channels::get_output_scaled(SRV_Channel::k_elevon_left);
|
|
elevon_right = SRV_Channels::get_output_scaled(SRV_Channel::k_elevon_right);
|
|
} else {
|
|
const float aileron = SRV_Channels::get_output_scaled(SRV_Channel::k_aileron);
|
|
elevon_left = -aileron;
|
|
elevon_right = aileron;
|
|
}
|
|
|
|
const float rudder_rate = g.dspoiler_rud_rate * 0.01f;
|
|
const float rudder = SRV_Channels::get_output_scaled(SRV_Channel::k_rudder) * rudder_rate;
|
|
float dspoiler_outer_left = elevon_left;
|
|
float dspoiler_outer_right = elevon_right;
|
|
|
|
float dspoiler_inner_left = 0;
|
|
float dspoiler_inner_right = 0;
|
|
|
|
// full span ailerons / elevons
|
|
if (full_span_aileron) {
|
|
dspoiler_inner_left = elevon_left;
|
|
dspoiler_inner_right = elevon_right;
|
|
}
|
|
|
|
if (rudder > 0) {
|
|
// apply rudder to right wing
|
|
dspoiler_outer_right = constrain_float(dspoiler_outer_right + rudder, -4500, 4500);
|
|
dspoiler_inner_right = constrain_float(dspoiler_inner_right - rudder, -4500, 4500);
|
|
} else {
|
|
// apply rudder to left wing
|
|
dspoiler_outer_left = constrain_float(dspoiler_outer_left - rudder, -4500, 4500);
|
|
dspoiler_inner_left = constrain_float(dspoiler_inner_left + rudder, -4500, 4500);
|
|
}
|
|
|
|
// limit flap throw used for aileron
|
|
const int8_t aileron_matching = g2.crow_flap_aileron_matching.get();
|
|
if (aileron_matching < 100) {
|
|
// only do matching if it will make a difference
|
|
const float aileron_matching_scaled = aileron_matching * 0.01;
|
|
if (is_negative(dspoiler_inner_left)) {
|
|
dspoiler_inner_left *= aileron_matching_scaled;
|
|
}
|
|
if (is_negative(dspoiler_inner_right)) {
|
|
dspoiler_inner_right *= aileron_matching_scaled;
|
|
}
|
|
}
|
|
|
|
int16_t weight_outer = g2.crow_flap_weight_outer.get();
|
|
if (crow_mode == Plane::CrowMode::CROW_DISABLED) { //override totally aileron crow if crow RC switch set to disabled
|
|
weight_outer = 0;
|
|
}
|
|
const int16_t weight_inner = g2.crow_flap_weight_inner.get();
|
|
if (weight_outer > 0 || weight_inner > 0) {
|
|
/*
|
|
apply crow flaps by apply the same split of the differential
|
|
spoilers to both wings. Get flap percentage from k_flap_auto, which is set
|
|
in set_servos_flaps() as the maximum of manual and auto flap control
|
|
*/
|
|
const float flap_percent = SRV_Channels::get_slew_limited_output_scaled(SRV_Channel::k_flap_auto);
|
|
|
|
if (is_positive(flap_percent)) {
|
|
float inner_flap_scaled = flap_percent;
|
|
float outer_flap_scaled = flap_percent;
|
|
if (progressive_crow) {
|
|
// apply 0 - full inner from 0 to 50% flap then add in outer above 50%
|
|
inner_flap_scaled = constrain_float(inner_flap_scaled * 2, 0,100);
|
|
outer_flap_scaled = constrain_float(outer_flap_scaled - 50, 0,50) * 2;
|
|
}
|
|
// scale flaps so when weights are 100 they give full up or down
|
|
dspoiler_outer_left = constrain_float(dspoiler_outer_left + outer_flap_scaled * weight_outer * 0.45, -4500, 4500);
|
|
dspoiler_inner_left = constrain_float(dspoiler_inner_left - inner_flap_scaled * weight_inner * 0.45, -4500, 4500);
|
|
dspoiler_outer_right = constrain_float(dspoiler_outer_right + outer_flap_scaled * weight_outer * 0.45, -4500, 4500);
|
|
dspoiler_inner_right = constrain_float(dspoiler_inner_right - inner_flap_scaled * weight_inner * 0.45, -4500, 4500);
|
|
}
|
|
}
|
|
|
|
SRV_Channels::set_output_scaled(SRV_Channel::k_dspoilerLeft1, dspoiler_outer_left);
|
|
SRV_Channels::set_output_scaled(SRV_Channel::k_dspoilerLeft2, dspoiler_inner_left);
|
|
SRV_Channels::set_output_scaled(SRV_Channel::k_dspoilerRight1, dspoiler_outer_right);
|
|
SRV_Channels::set_output_scaled(SRV_Channel::k_dspoilerRight2, dspoiler_inner_right);
|
|
}
|
|
|
|
/*
|
|
set airbrakes based on reverse thrust and/or manual input RC channel
|
|
*/
|
|
void Plane::airbrake_update(void)
|
|
{
|
|
// Calculate any manual airbrake input from RC channel option.
|
|
float manual_airbrake_percent = 0;
|
|
|
|
if (channel_airbrake != nullptr && !failsafe.rc_failsafe && failsafe.throttle_counter == 0) {
|
|
manual_airbrake_percent = channel_airbrake->percent_input();
|
|
}
|
|
|
|
// Calculate auto airbrake from negative throttle.
|
|
float throttle_min = aparm.throttle_min.get();
|
|
float airbrake_pc = 0;
|
|
|
|
float throttle_pc = SRV_Channels::get_output_scaled(SRV_Channel::k_throttle);
|
|
|
|
if (throttle_min < 0) {
|
|
if (landing.is_flaring()) {
|
|
// Full airbrakes during the flare.
|
|
airbrake_pc = 100;
|
|
}
|
|
else {
|
|
// Determine fraction between zero and full negative throttle.
|
|
airbrake_pc = constrain_float(-throttle_pc, 0, 100);
|
|
}
|
|
}
|
|
|
|
// Manual overrides auto airbrake setting.
|
|
if (airbrake_pc < manual_airbrake_percent) {
|
|
airbrake_pc = manual_airbrake_percent;
|
|
}
|
|
|
|
// Output to airbrake servo types.
|
|
SRV_Channels::set_output_scaled(SRV_Channel::k_airbrake, airbrake_pc);
|
|
}
|
|
|
|
/*
|
|
setup servos for idle mode
|
|
Idle mode is used during balloon launch to keep servos still, apart
|
|
from occasional wiggle to prevent freezing up
|
|
*/
|
|
void Plane::set_servos_idle(void)
|
|
{
|
|
int16_t servo_value;
|
|
// move over full range for 2 seconds
|
|
if (auto_state.idle_wiggle_stage != 0) {
|
|
auto_state.idle_wiggle_stage += 2;
|
|
}
|
|
if (auto_state.idle_wiggle_stage == 0) {
|
|
servo_value = 0;
|
|
} else if (auto_state.idle_wiggle_stage < 50) {
|
|
servo_value = auto_state.idle_wiggle_stage * (4500 / 50);
|
|
} else if (auto_state.idle_wiggle_stage < 100) {
|
|
servo_value = (100 - auto_state.idle_wiggle_stage) * (4500 / 50);
|
|
} else if (auto_state.idle_wiggle_stage < 150) {
|
|
servo_value = (100 - auto_state.idle_wiggle_stage) * (4500 / 50);
|
|
} else if (auto_state.idle_wiggle_stage < 200) {
|
|
servo_value = (auto_state.idle_wiggle_stage-200) * (4500 / 50);
|
|
} else {
|
|
auto_state.idle_wiggle_stage = 0;
|
|
servo_value = 0;
|
|
}
|
|
SRV_Channels::set_output_scaled(SRV_Channel::k_aileron, servo_value);
|
|
SRV_Channels::set_output_scaled(SRV_Channel::k_elevator, servo_value);
|
|
SRV_Channels::set_output_scaled(SRV_Channel::k_rudder, servo_value);
|
|
SRV_Channels::set_output_to_trim(SRV_Channel::k_throttle);
|
|
|
|
SRV_Channels::output_ch_all();
|
|
}
|
|
|
|
/*
|
|
pass through channels in manual mode
|
|
*/
|
|
void Plane::set_servos_manual_passthrough(void)
|
|
{
|
|
SRV_Channels::set_output_scaled(SRV_Channel::k_aileron, roll_in_expo(false));
|
|
SRV_Channels::set_output_scaled(SRV_Channel::k_elevator, pitch_in_expo(false));
|
|
SRV_Channels::set_output_scaled(SRV_Channel::k_rudder, rudder_in_expo(false));
|
|
float throttle = get_throttle_input(true);
|
|
SRV_Channels::set_output_scaled(SRV_Channel::k_throttle, throttle);
|
|
|
|
#if HAL_QUADPLANE_ENABLED
|
|
if (quadplane.available() && quadplane.option_is_set(QuadPlane::OPTION::IDLE_GOV_MANUAL)) {
|
|
// for quadplanes it can be useful to run the idle governor in MANUAL mode
|
|
// as it prevents the VTOL motors from running
|
|
int8_t min_throttle = aparm.throttle_min.get();
|
|
|
|
// apply idle governor
|
|
#if AP_ICENGINE_ENABLED
|
|
g2.ice_control.update_idle_governor(min_throttle);
|
|
#endif
|
|
throttle = MAX(throttle, min_throttle);
|
|
SRV_Channels::set_output_scaled(SRV_Channel::k_throttle, throttle);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
Scale the throttle to conpensate for battery voltage drop
|
|
*/
|
|
void Plane::throttle_voltage_comp(int8_t &min_throttle, int8_t &max_throttle) const
|
|
{
|
|
// return if not enabled, or setup incorrectly
|
|
if (!is_positive(g2.fwd_thr_batt_voltage_min) || g2.fwd_thr_batt_voltage_min >= g2.fwd_thr_batt_voltage_max) {
|
|
return;
|
|
}
|
|
|
|
float batt_voltage_resting_estimate = AP::battery().voltage_resting_estimate(g2.fwd_thr_batt_idx);
|
|
// Return for a very low battery
|
|
if (batt_voltage_resting_estimate < 0.25f * g2.fwd_thr_batt_voltage_min) {
|
|
return;
|
|
}
|
|
|
|
// constrain read voltage to min and max params
|
|
batt_voltage_resting_estimate = constrain_float(batt_voltage_resting_estimate,g2.fwd_thr_batt_voltage_min,g2.fwd_thr_batt_voltage_max);
|
|
|
|
// don't apply compensation if the voltage is excessively low
|
|
if (batt_voltage_resting_estimate < 1) {
|
|
return;
|
|
}
|
|
|
|
// Scale the throttle up to compensate for voltage drop
|
|
// Ratio = 1 when voltage = voltage max, ratio increases as voltage drops
|
|
const float ratio = g2.fwd_thr_batt_voltage_max / batt_voltage_resting_estimate;
|
|
|
|
// Scale the throttle limits to prevent subsequent clipping
|
|
min_throttle = int8_t(MAX((ratio * (float)min_throttle), -100));
|
|
max_throttle = int8_t(MIN((ratio * (float)max_throttle), 100));
|
|
|
|
SRV_Channels::set_output_scaled(SRV_Channel::k_throttle,
|
|
constrain_float(SRV_Channels::get_output_scaled(SRV_Channel::k_throttle) * ratio, -100, 100));
|
|
}
|
|
|
|
/*
|
|
calculate any throttle limits based on the watt limiter
|
|
*/
|
|
void Plane::throttle_watt_limiter(int8_t &min_throttle, int8_t &max_throttle)
|
|
{
|
|
uint32_t now = millis();
|
|
if (battery.overpower_detected()) {
|
|
// overpower detected, cut back on the throttle if we're maxing it out by calculating a limiter value
|
|
// throttle limit will attack by 10% per second
|
|
|
|
if (is_positive(SRV_Channels::get_output_scaled(SRV_Channel::k_throttle)) && // demanding too much positive thrust
|
|
throttle_watt_limit_max < max_throttle - 25 &&
|
|
now - throttle_watt_limit_timer_ms >= 1) {
|
|
// always allow for 25% throttle available regardless of battery status
|
|
throttle_watt_limit_timer_ms = now;
|
|
throttle_watt_limit_max++;
|
|
|
|
} else if (is_negative(SRV_Channels::get_output_scaled(SRV_Channel::k_throttle)) &&
|
|
min_throttle < 0 && // reverse thrust is available
|
|
throttle_watt_limit_min < -(min_throttle) - 25 &&
|
|
now - throttle_watt_limit_timer_ms >= 1) {
|
|
// always allow for 25% throttle available regardless of battery status
|
|
throttle_watt_limit_timer_ms = now;
|
|
throttle_watt_limit_min++;
|
|
}
|
|
|
|
} else if (now - throttle_watt_limit_timer_ms >= 1000) {
|
|
// it has been 1 second since last over-current, check if we can resume higher throttle.
|
|
// this throttle release is needed to allow raising the max_throttle as the battery voltage drains down
|
|
// throttle limit will release by 1% per second
|
|
if (SRV_Channels::get_output_scaled(SRV_Channel::k_throttle) > throttle_watt_limit_max && // demanding max forward thrust
|
|
throttle_watt_limit_max > 0) { // and we're currently limiting it
|
|
throttle_watt_limit_timer_ms = now;
|
|
throttle_watt_limit_max--;
|
|
|
|
} else if (SRV_Channels::get_output_scaled(SRV_Channel::k_throttle) < throttle_watt_limit_min && // demanding max negative thrust
|
|
throttle_watt_limit_min > 0) { // and we're limiting it
|
|
throttle_watt_limit_timer_ms = now;
|
|
throttle_watt_limit_min--;
|
|
}
|
|
}
|
|
|
|
max_throttle = constrain_int16(max_throttle, 0, max_throttle - throttle_watt_limit_max);
|
|
if (min_throttle < 0) {
|
|
min_throttle = constrain_int16(min_throttle, min_throttle + throttle_watt_limit_min, 0);
|
|
}
|
|
}
|
|
|
|
/*
|
|
setup output channels all non-manual modes
|
|
*/
|
|
void Plane::set_servos_controlled(void)
|
|
{
|
|
if (flight_stage == AP_Vehicle::FixedWing::FLIGHT_LAND) {
|
|
// allow landing to override servos if it would like to
|
|
landing.override_servos();
|
|
}
|
|
|
|
// convert 0 to 100% (or -100 to +100) into PWM
|
|
int8_t min_throttle = aparm.throttle_min.get();
|
|
int8_t max_throttle = aparm.throttle_max.get();
|
|
|
|
#if AP_ICENGINE_ENABLED
|
|
// apply idle governor
|
|
g2.ice_control.update_idle_governor(min_throttle);
|
|
#endif
|
|
|
|
if (min_throttle < 0 && !allow_reverse_thrust()) {
|
|
// reverse thrust is available but inhibited.
|
|
min_throttle = 0;
|
|
}
|
|
|
|
bool flight_stage_determines_max_throttle = false;
|
|
if (flight_stage == AP_Vehicle::FixedWing::FLIGHT_TAKEOFF ||
|
|
flight_stage == AP_Vehicle::FixedWing::FLIGHT_ABORT_LAND
|
|
) {
|
|
flight_stage_determines_max_throttle = true;
|
|
}
|
|
#if HAL_QUADPLANE_ENABLED
|
|
if (quadplane.in_transition()) {
|
|
flight_stage_determines_max_throttle = true;
|
|
}
|
|
#endif
|
|
if (flight_stage_determines_max_throttle) {
|
|
if (aparm.takeoff_throttle_max != 0) {
|
|
max_throttle = aparm.takeoff_throttle_max;
|
|
} else {
|
|
max_throttle = aparm.throttle_max;
|
|
}
|
|
} else if (landing.is_flaring()) {
|
|
min_throttle = 0;
|
|
}
|
|
|
|
// conpensate for battery voltage drop
|
|
throttle_voltage_comp(min_throttle, max_throttle);
|
|
|
|
// apply watt limiter
|
|
throttle_watt_limiter(min_throttle, max_throttle);
|
|
|
|
SRV_Channels::set_output_scaled(SRV_Channel::k_throttle,
|
|
constrain_float(SRV_Channels::get_output_scaled(SRV_Channel::k_throttle), min_throttle, max_throttle));
|
|
|
|
if (!hal.util->get_soft_armed()) {
|
|
if (arming.arming_required() == AP_Arming::Required::YES_ZERO_PWM) {
|
|
SRV_Channels::set_output_limit(SRV_Channel::k_throttle, SRV_Channel::Limit::ZERO_PWM);
|
|
SRV_Channels::set_output_limit(SRV_Channel::k_throttleLeft, SRV_Channel::Limit::ZERO_PWM);
|
|
SRV_Channels::set_output_limit(SRV_Channel::k_throttleRight, SRV_Channel::Limit::ZERO_PWM);
|
|
} else {
|
|
SRV_Channels::set_output_scaled(SRV_Channel::k_throttle, 0.0);
|
|
SRV_Channels::set_output_scaled(SRV_Channel::k_throttleLeft, 0.0);
|
|
SRV_Channels::set_output_scaled(SRV_Channel::k_throttleRight, 0.0);
|
|
}
|
|
} else if (suppress_throttle()) {
|
|
SRV_Channels::set_output_scaled(SRV_Channel::k_throttle, 0.0); // default
|
|
// throttle is suppressed (above) to zero in final flare in auto mode, but we allow instead thr_min if user prefers, eg turbines:
|
|
if (landing.is_flaring() && landing.use_thr_min_during_flare() ) {
|
|
SRV_Channels::set_output_scaled(SRV_Channel::k_throttle, aparm.throttle_min.get());
|
|
}
|
|
if (g.throttle_suppress_manual) {
|
|
// manual pass through of throttle while throttle is suppressed
|
|
SRV_Channels::set_output_scaled(SRV_Channel::k_throttle, get_throttle_input(true));
|
|
}
|
|
#if AP_SCRIPTING_ENABLED
|
|
} else if (plane.nav_scripting.current_ms > 0 && nav_scripting.enabled) {
|
|
SRV_Channels::set_output_scaled(SRV_Channel::k_throttle, plane.nav_scripting.throttle_pct);
|
|
#endif
|
|
} else if (control_mode == &mode_stabilize ||
|
|
control_mode == &mode_training ||
|
|
control_mode == &mode_acro ||
|
|
control_mode == &mode_fbwa ||
|
|
control_mode == &mode_autotune) {
|
|
// a manual throttle mode
|
|
if (!rc().has_valid_input()) {
|
|
SRV_Channels::set_output_scaled(SRV_Channel::k_throttle, 0.0);
|
|
} else if (g.throttle_passthru_stabilize) {
|
|
// manual pass through of throttle while in FBWA or
|
|
// STABILIZE mode with THR_PASS_STAB set
|
|
SRV_Channels::set_output_scaled(SRV_Channel::k_throttle, get_throttle_input(true));
|
|
} else {
|
|
// get throttle, but adjust center to output TRIM_THROTTLE if flight option set
|
|
SRV_Channels::set_output_scaled(SRV_Channel::k_throttle,
|
|
constrain_int16(get_adjusted_throttle_input(true), min_throttle, max_throttle));
|
|
}
|
|
} else if (control_mode->is_guided_mode() &&
|
|
guided_throttle_passthru) {
|
|
// manual pass through of throttle while in GUIDED
|
|
SRV_Channels::set_output_scaled(SRV_Channel::k_throttle, get_throttle_input(true));
|
|
#if HAL_QUADPLANE_ENABLED
|
|
} else if (quadplane.in_vtol_mode()) {
|
|
float fwd_thr = 0;
|
|
// if armed and not spooled down ask quadplane code for forward throttle
|
|
if (quadplane.motors->armed() &&
|
|
quadplane.motors->get_desired_spool_state() != AP_Motors::DesiredSpoolState::SHUT_DOWN) {
|
|
|
|
fwd_thr = constrain_float(quadplane.forward_throttle_pct(), min_throttle, max_throttle);
|
|
}
|
|
SRV_Channels::set_output_scaled(SRV_Channel::k_throttle, fwd_thr);
|
|
#endif // HAL_QUADPLANE_ENABLED
|
|
}
|
|
|
|
// let EKF know to start GSF yaw estimator before takeoff movement starts so that yaw angle is better estimated
|
|
const float throttle = SRV_Channels::get_output_scaled(SRV_Channel::k_throttle);
|
|
if (!is_flying() && arming.is_armed()) {
|
|
// Check if rate of change of velocity along X axis exceeds 1-g which normally indicates a throw.
|
|
// Tests with hand carriage of micro UAS indicates that a 1-g threshold does not false trigger prior
|
|
// to the throw, but there is margin to increase this threshold if false triggering becomes problematic.
|
|
const float accel_x_due_to_gravity = GRAVITY_MSS * ahrs.sin_pitch();
|
|
const float accel_x_due_to_throw = ahrs.get_accel().x - accel_x_due_to_gravity;
|
|
bool throw_detected = accel_x_due_to_throw > GRAVITY_MSS;
|
|
bool throttle_up_detected = throttle > aparm.throttle_cruise;
|
|
if (throw_detected || throttle_up_detected) {
|
|
plane.ahrs.set_takeoff_expected(true);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
setup flap outputs
|
|
*/
|
|
void Plane::set_servos_flaps(void)
|
|
{
|
|
// Auto flap deployment
|
|
int8_t auto_flap_percent = 0;
|
|
int8_t manual_flap_percent = 0;
|
|
|
|
// work out any manual flap input
|
|
if (channel_flap != nullptr && rc().has_valid_input()) {
|
|
manual_flap_percent = channel_flap->percent_input();
|
|
}
|
|
|
|
if (control_mode->does_auto_throttle()) {
|
|
int16_t flapSpeedSource = 0;
|
|
if (ahrs.airspeed_sensor_enabled()) {
|
|
flapSpeedSource = target_airspeed_cm * 0.01f;
|
|
} else {
|
|
flapSpeedSource = aparm.throttle_cruise;
|
|
}
|
|
if (g.flap_2_speed != 0 && flapSpeedSource <= g.flap_2_speed) {
|
|
auto_flap_percent = g.flap_2_percent;
|
|
} else if ( g.flap_1_speed != 0 && flapSpeedSource <= g.flap_1_speed) {
|
|
auto_flap_percent = g.flap_1_percent;
|
|
} //else flaps stay at default zero deflection
|
|
|
|
#if HAL_SOARING_ENABLED
|
|
if (control_mode == &mode_thermal) {
|
|
auto_flap_percent = g2.soaring_controller.get_thermalling_flap();
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
special flap levels for takeoff and landing. This works
|
|
better than speed based flaps as it leads to less
|
|
possibility of oscillation
|
|
*/
|
|
switch (flight_stage) {
|
|
case AP_Vehicle::FixedWing::FLIGHT_TAKEOFF:
|
|
case AP_Vehicle::FixedWing::FLIGHT_ABORT_LAND:
|
|
if (g.takeoff_flap_percent != 0) {
|
|
auto_flap_percent = g.takeoff_flap_percent;
|
|
}
|
|
break;
|
|
case AP_Vehicle::FixedWing::FLIGHT_NORMAL:
|
|
if (g.takeoff_flap_percent != 0 && in_preLaunch_flight_stage()) {
|
|
// TODO: move this to a new FLIGHT_PRE_TAKEOFF stage
|
|
auto_flap_percent = g.takeoff_flap_percent;
|
|
}
|
|
break;
|
|
case AP_Vehicle::FixedWing::FLIGHT_LAND:
|
|
if (landing.get_flap_percent() != 0) {
|
|
auto_flap_percent = landing.get_flap_percent();
|
|
}
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
// manual flap input overrides auto flap input
|
|
if (abs(manual_flap_percent) > auto_flap_percent) {
|
|
auto_flap_percent = manual_flap_percent;
|
|
}
|
|
|
|
SRV_Channels::set_output_scaled(SRV_Channel::k_flap_auto, auto_flap_percent);
|
|
SRV_Channels::set_output_scaled(SRV_Channel::k_flap, manual_flap_percent);
|
|
|
|
SRV_Channels::set_slew_rate(SRV_Channel::k_flap_auto, g.flap_slewrate, 100, G_Dt);
|
|
SRV_Channels::set_slew_rate(SRV_Channel::k_flap, g.flap_slewrate, 100, G_Dt);
|
|
|
|
// output to flaperons, if any
|
|
flaperon_update();
|
|
}
|
|
|
|
#if LANDING_GEAR_ENABLED == ENABLED
|
|
/*
|
|
setup landing gear state
|
|
*/
|
|
void Plane::set_landing_gear(void)
|
|
{
|
|
if (control_mode == &mode_auto && hal.util->get_soft_armed() && is_flying() && gear.last_flight_stage != flight_stage) {
|
|
switch (flight_stage) {
|
|
case AP_Vehicle::FixedWing::FLIGHT_LAND:
|
|
g2.landing_gear.deploy_for_landing();
|
|
break;
|
|
case AP_Vehicle::FixedWing::FLIGHT_NORMAL:
|
|
g2.landing_gear.retract_after_takeoff();
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
gear.last_flight_stage = flight_stage;
|
|
}
|
|
#endif // LANDING_GEAR_ENABLED
|
|
|
|
|
|
/*
|
|
support for twin-engine planes
|
|
*/
|
|
void Plane::servos_twin_engine_mix(void)
|
|
{
|
|
float throttle = SRV_Channels::get_output_scaled(SRV_Channel::k_throttle);
|
|
float rud_gain = float(plane.g2.rudd_dt_gain) * 0.01f;
|
|
rudder_dt = rud_gain * SRV_Channels::get_output_scaled(SRV_Channel::k_rudder) / SERVO_MAX;
|
|
|
|
#if ADVANCED_FAILSAFE == ENABLED
|
|
if (afs.should_crash_vehicle()) {
|
|
// when in AFS failsafe force rudder input for differential thrust to zero
|
|
rudder_dt = 0;
|
|
}
|
|
#endif
|
|
|
|
float throttle_left, throttle_right;
|
|
|
|
if (throttle < 0 && have_reverse_thrust() && allow_reverse_thrust()) {
|
|
// doing reverse thrust
|
|
throttle_left = constrain_float(throttle + 50 * rudder_dt, -100, 0);
|
|
throttle_right = constrain_float(throttle - 50 * rudder_dt, -100, 0);
|
|
} else if (throttle <= 0) {
|
|
throttle_left = throttle_right = 0;
|
|
} else {
|
|
// doing forward thrust
|
|
throttle_left = constrain_float(throttle + 50 * rudder_dt, 0, 100);
|
|
throttle_right = constrain_float(throttle - 50 * rudder_dt, 0, 100);
|
|
}
|
|
if (!hal.util->get_soft_armed()) {
|
|
if (arming.arming_required() == AP_Arming::Required::YES_ZERO_PWM) {
|
|
SRV_Channels::set_output_limit(SRV_Channel::k_throttleLeft, SRV_Channel::Limit::ZERO_PWM);
|
|
SRV_Channels::set_output_limit(SRV_Channel::k_throttleRight, SRV_Channel::Limit::ZERO_PWM);
|
|
} else {
|
|
SRV_Channels::set_output_scaled(SRV_Channel::k_throttleLeft, 0);
|
|
SRV_Channels::set_output_scaled(SRV_Channel::k_throttleRight, 0);
|
|
}
|
|
} else {
|
|
SRV_Channels::set_output_scaled(SRV_Channel::k_throttleLeft, throttle_left);
|
|
SRV_Channels::set_output_scaled(SRV_Channel::k_throttleRight, throttle_right);
|
|
throttle_slew_limit(SRV_Channel::k_throttleLeft);
|
|
throttle_slew_limit(SRV_Channel::k_throttleRight);
|
|
}
|
|
}
|
|
|
|
/*
|
|
Set throttle,attitude(in Attitude.cpp), and tilt servos for forced flare by RCx_OPTION switch for landing in FW mode
|
|
For Fixed Wind modes with manual throttle control only. Forces tilts up and throttle to THR_MIN.
|
|
Throttle stick must be in idle deadzone. This allows non-momentary switch to be used and quick bailouts
|
|
for go-arounds. Also helps prevent propstrike after landing with switch release on ground.
|
|
*/
|
|
void Plane::force_flare(void)
|
|
{
|
|
#if HAL_QUADPLANE_ENABLED
|
|
if (quadplane.in_transition() && plane.arming.is_armed()) { //allows for ground checking of flare tilts
|
|
return;
|
|
}
|
|
if (control_mode->is_vtol_mode()) {
|
|
return;
|
|
}
|
|
/* to be active must be:
|
|
-manual throttle mode
|
|
-in an enabled flare mode (RC switch active)
|
|
-at zero thrust: in throttle trim dz except for sprung throttle option where trim is at hover stick
|
|
*/
|
|
if (!control_mode->does_auto_throttle() && flare_mode != FlareMode::FLARE_DISABLED && throttle_at_zero()) {
|
|
int32_t tilt = -SERVO_MAX; //this is tilts up for a normal tiltrotor if at zero thrust throttle stick
|
|
if (quadplane.tiltrotor.enabled() && (quadplane.tiltrotor.type == Tiltrotor::TILT_TYPE_BICOPTER)) {
|
|
tilt = 0; // this is tilts up for a Bicopter
|
|
}
|
|
if (quadplane.tailsitter.enabled()) {
|
|
tilt = SERVO_MAX; //this is tilts up for a tailsitter
|
|
}
|
|
SRV_Channels::set_output_scaled(SRV_Channel::k_motor_tilt, tilt);
|
|
SRV_Channels::set_output_scaled(SRV_Channel::k_tiltMotorLeft, tilt);
|
|
SRV_Channels::set_output_scaled(SRV_Channel::k_tiltMotorRight, tilt);
|
|
SRV_Channels::set_output_scaled(SRV_Channel::k_tiltMotorRear, tilt);
|
|
SRV_Channels::set_output_scaled(SRV_Channel::k_tiltMotorRearLeft, tilt);
|
|
SRV_Channels::set_output_scaled(SRV_Channel::k_tiltMotorRearRight, tilt);
|
|
float throttle_min = MAX(aparm.throttle_min.get(),0); //allows ICE to run if used but accounts for reverse thrust setups
|
|
if (arming.is_armed()) { //prevent running motors if unarmed
|
|
SRV_Channels::set_output_scaled(SRV_Channel::k_throttle, throttle_min);
|
|
SRV_Channels::set_output_scaled(SRV_Channel::k_throttleLeft, throttle_min);
|
|
SRV_Channels::set_output_scaled(SRV_Channel::k_throttleRight, throttle_min);
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/* Set the flight control servos based on the current calculated values
|
|
|
|
This function operates by first building up output values for
|
|
channels using set_servo() and set_radio_out(). Using
|
|
set_radio_out() is for when a raw PWM value of output is given which
|
|
does not depend on any output scaling. Using set_servo() is for when
|
|
scaling and mixing will be needed.
|
|
|
|
Finally servos_output() is called to push the final PWM values
|
|
for output channels
|
|
*/
|
|
void Plane::set_servos(void)
|
|
{
|
|
// start with output corked. the cork is released when we run
|
|
// servos_output(), which is run from all code paths in this
|
|
// function
|
|
SRV_Channels::cork();
|
|
|
|
// this is to allow the failsafe module to deliberately crash
|
|
// the plane. Only used in extreme circumstances to meet the
|
|
// OBC rules
|
|
#if ADVANCED_FAILSAFE == ENABLED
|
|
if (afs.should_crash_vehicle()) {
|
|
afs.terminate_vehicle();
|
|
if (!afs.terminating_vehicle_via_landing()) {
|
|
return;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
// do any transition updates for quadplane
|
|
#if HAL_QUADPLANE_ENABLED
|
|
quadplane.update();
|
|
#endif
|
|
|
|
if (control_mode == &mode_auto && auto_state.idle_mode) {
|
|
// special handling for balloon launch
|
|
set_servos_idle();
|
|
servos_output();
|
|
return;
|
|
}
|
|
|
|
/*
|
|
see if we are doing ground steering.
|
|
*/
|
|
if (!steering_control.ground_steering) {
|
|
// we are not at an altitude for ground steering. Set the nose
|
|
// wheel to the rudder just in case the barometer has drifted
|
|
// a lot
|
|
steering_control.steering = steering_control.rudder;
|
|
} else if (!SRV_Channels::function_assigned(SRV_Channel::k_steering)) {
|
|
// we are within the ground steering altitude but don't have a
|
|
// dedicated steering channel. Set the rudder to the ground
|
|
// steering output
|
|
steering_control.rudder = steering_control.steering;
|
|
}
|
|
|
|
// clear ground_steering to ensure manual control if the yaw stabilizer doesn't run
|
|
steering_control.ground_steering = false;
|
|
|
|
if (control_mode == &mode_training) {
|
|
steering_control.rudder = rudder_in_expo(false);
|
|
}
|
|
|
|
SRV_Channels::set_output_scaled(SRV_Channel::k_rudder, steering_control.rudder);
|
|
SRV_Channels::set_output_scaled(SRV_Channel::k_steering, steering_control.steering);
|
|
|
|
if (control_mode == &mode_manual) {
|
|
set_servos_manual_passthrough();
|
|
} else {
|
|
set_servos_controlled();
|
|
}
|
|
|
|
// setup flap outputs
|
|
set_servos_flaps();
|
|
|
|
#if LANDING_GEAR_ENABLED == ENABLED
|
|
// setup landing gear output
|
|
set_landing_gear();
|
|
#endif
|
|
|
|
// set airbrake outputs
|
|
airbrake_update();
|
|
|
|
// slew rate limit throttle
|
|
throttle_slew_limit(SRV_Channel::k_throttle);
|
|
|
|
#if AP_ICENGINE_ENABLED
|
|
const float base_throttle = SRV_Channels::get_output_scaled(SRV_Channel::k_throttle);
|
|
#endif
|
|
|
|
if (!arming.is_armed()) {
|
|
//Some ESCs get noisy (beep error msgs) if PWM == 0.
|
|
//This little segment aims to avoid this.
|
|
switch (arming.arming_required()) {
|
|
case AP_Arming::Required::NO:
|
|
//keep existing behavior: do nothing to radio_out
|
|
//(don't disarm throttle channel even if AP_Arming class is)
|
|
break;
|
|
|
|
case AP_Arming::Required::YES_ZERO_PWM:
|
|
SRV_Channels::set_output_pwm(SRV_Channel::k_throttle, 0);
|
|
SRV_Channels::set_output_pwm(SRV_Channel::k_throttleLeft, 0);
|
|
SRV_Channels::set_output_pwm(SRV_Channel::k_throttleRight, 0);
|
|
break;
|
|
|
|
case AP_Arming::Required::YES_MIN_PWM:
|
|
default:
|
|
int8_t min_throttle = MAX(aparm.throttle_min.get(),0);
|
|
SRV_Channels::set_output_scaled(SRV_Channel::k_throttle, min_throttle);
|
|
SRV_Channels::set_output_scaled(SRV_Channel::k_throttleLeft, min_throttle);
|
|
SRV_Channels::set_output_scaled(SRV_Channel::k_throttleRight, min_throttle);
|
|
break;
|
|
}
|
|
}
|
|
|
|
#if AP_ICENGINE_ENABLED
|
|
float override_pct = SRV_Channels::get_output_scaled(SRV_Channel::k_throttle);
|
|
if (g2.ice_control.throttle_override(override_pct, base_throttle)) {
|
|
// the ICE controller wants to override the throttle for starting, idle, or redline
|
|
SRV_Channels::set_output_scaled(SRV_Channel::k_throttle, override_pct);
|
|
#if HAL_QUADPLANE_ENABLED
|
|
quadplane.vel_forward.integrator = 0;
|
|
#endif
|
|
}
|
|
#endif // AP_ICENGINE_ENABLED
|
|
|
|
// run output mixer and send values to the hal for output
|
|
servos_output();
|
|
}
|
|
|
|
/*
|
|
This sets servos to neutral if it is a control surface servo in auto mode
|
|
*/
|
|
void Plane::landing_neutral_control_surface_servos(void)
|
|
{
|
|
if (!(landing.get_then_servos_neutral() > 0 &&
|
|
control_mode == &mode_auto &&
|
|
landing.get_disarm_delay() > 0 &&
|
|
landing.is_complete() &&
|
|
!arming.is_armed())) {
|
|
return;
|
|
}
|
|
|
|
|
|
// after an auto land and auto disarm, set the servos to be neutral just
|
|
// in case we're upside down or some crazy angle and straining the servos.
|
|
for (uint8_t i = 0; i < NUM_SERVO_CHANNELS ; i++) {
|
|
SRV_Channel *chan = SRV_Channels::srv_channel(i);
|
|
if (chan == nullptr || !SRV_Channel::is_control_surface(chan->get_function())) {
|
|
continue;
|
|
}
|
|
|
|
if (landing.get_then_servos_neutral() == 1) {
|
|
SRV_Channels::set_output_scaled(chan->get_function(), 0);
|
|
} else if (landing.get_then_servos_neutral() == 2) {
|
|
SRV_Channels::set_output_limit(chan->get_function(), SRV_Channel::Limit::ZERO_PWM);
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
/*
|
|
run configured output mixer. This takes calculated servo_out values
|
|
for each channel and calculates PWM values, then pushes them to
|
|
hal.rcout
|
|
*/
|
|
void Plane::servos_output(void)
|
|
{
|
|
SRV_Channels::cork();
|
|
|
|
// support twin-engine aircraft
|
|
servos_twin_engine_mix();
|
|
|
|
// run vtail and elevon mixers
|
|
channel_function_mixer(SRV_Channel::k_aileron, SRV_Channel::k_elevator, SRV_Channel::k_elevon_left, SRV_Channel::k_elevon_right);
|
|
channel_function_mixer(SRV_Channel::k_rudder, SRV_Channel::k_elevator, SRV_Channel::k_vtail_right, SRV_Channel::k_vtail_left);
|
|
|
|
#if HAL_QUADPLANE_ENABLED
|
|
// cope with tailsitters and bicopters
|
|
quadplane.tailsitter.output();
|
|
quadplane.tiltrotor.bicopter_output();
|
|
#endif
|
|
|
|
// support forced flare option
|
|
force_flare();
|
|
|
|
// implement differential spoilers
|
|
dspoiler_update();
|
|
|
|
// set control surface servos to neutral
|
|
landing_neutral_control_surface_servos();
|
|
|
|
// support MANUAL_RCMASK
|
|
if (g2.manual_rc_mask.get() != 0 && control_mode == &mode_manual) {
|
|
SRV_Channels::copy_radio_in_out_mask(uint32_t(g2.manual_rc_mask.get()));
|
|
}
|
|
|
|
SRV_Channels::calc_pwm();
|
|
|
|
SRV_Channels::output_ch_all();
|
|
|
|
SRV_Channels::push();
|
|
|
|
if (g2.servo_channels.auto_trim_enabled()) {
|
|
servos_auto_trim();
|
|
}
|
|
}
|
|
|
|
void Plane::update_throttle_hover() {
|
|
// update hover throttle at 100Hz
|
|
#if HAL_QUADPLANE_ENABLED
|
|
quadplane.update_throttle_hover();
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
implement automatic persistent trim of control surfaces with
|
|
AUTO_TRIM=2, only available when SERVO_RNG_ENABLE=1 as otherwise it
|
|
would impact R/C transmitter calibration
|
|
*/
|
|
void Plane::servos_auto_trim(void)
|
|
{
|
|
// only in auto modes and FBWA
|
|
if (!control_mode->does_auto_throttle() && control_mode != &mode_fbwa) {
|
|
return;
|
|
}
|
|
if (!hal.util->get_soft_armed()) {
|
|
return;
|
|
}
|
|
if (!is_flying()) {
|
|
return;
|
|
}
|
|
#if HAL_QUADPLANE_ENABLED
|
|
if (!quadplane.allow_servo_auto_trim()) {
|
|
// can't auto-trim with quadplane motors running
|
|
return;
|
|
}
|
|
#endif
|
|
if (abs(nav_roll_cd) > 700 || abs(nav_pitch_cd) > 700) {
|
|
// only when close to level
|
|
return;
|
|
}
|
|
uint32_t now = AP_HAL::millis();
|
|
if (now - auto_trim.last_trim_check < 500) {
|
|
// check twice a second. We want slow trim update
|
|
return;
|
|
}
|
|
if (ahrs.groundspeed() < 8 || smoothed_airspeed < 8) {
|
|
// only when definitely moving
|
|
return;
|
|
}
|
|
|
|
// adjust trim on channels by a small amount according to I value
|
|
float roll_I = rollController.get_pid_info().I;
|
|
float pitch_I = pitchController.get_pid_info().I;
|
|
|
|
g2.servo_channels.adjust_trim(SRV_Channel::k_aileron, roll_I);
|
|
g2.servo_channels.adjust_trim(SRV_Channel::k_elevator, pitch_I);
|
|
|
|
g2.servo_channels.adjust_trim(SRV_Channel::k_elevon_left, pitch_I - roll_I);
|
|
g2.servo_channels.adjust_trim(SRV_Channel::k_elevon_right, pitch_I + roll_I);
|
|
|
|
g2.servo_channels.adjust_trim(SRV_Channel::k_vtail_left, pitch_I);
|
|
g2.servo_channels.adjust_trim(SRV_Channel::k_vtail_right, pitch_I);
|
|
|
|
g2.servo_channels.adjust_trim(SRV_Channel::k_flaperon_left, roll_I);
|
|
g2.servo_channels.adjust_trim(SRV_Channel::k_flaperon_right, roll_I);
|
|
|
|
// cope with various dspoiler options
|
|
const int8_t bitmask = g2.crow_flap_options.get();
|
|
const bool flying_wing = (bitmask & CrowFlapOptions::FLYINGWING) != 0;
|
|
const bool full_span_aileron = (bitmask & CrowFlapOptions::FULLSPAN) != 0;
|
|
|
|
float dspoiler_outer_left = - roll_I;
|
|
float dspoiler_inner_left = 0.0f;
|
|
float dspoiler_outer_right = roll_I;
|
|
float dspoiler_inner_right = 0.0f;
|
|
|
|
if (flying_wing) {
|
|
dspoiler_outer_left += pitch_I;
|
|
dspoiler_outer_right += pitch_I;
|
|
}
|
|
if (full_span_aileron) {
|
|
dspoiler_inner_left = dspoiler_outer_left;
|
|
dspoiler_inner_right = dspoiler_outer_right;
|
|
}
|
|
|
|
g2.servo_channels.adjust_trim(SRV_Channel::k_dspoilerLeft1, dspoiler_outer_left);
|
|
g2.servo_channels.adjust_trim(SRV_Channel::k_dspoilerLeft2, dspoiler_inner_left);
|
|
g2.servo_channels.adjust_trim(SRV_Channel::k_dspoilerRight1, dspoiler_outer_right);
|
|
g2.servo_channels.adjust_trim(SRV_Channel::k_dspoilerRight2, dspoiler_inner_right);
|
|
|
|
auto_trim.last_trim_check = now;
|
|
|
|
if (now - auto_trim.last_trim_save > 10000) {
|
|
auto_trim.last_trim_save = now;
|
|
g2.servo_channels.save_trim();
|
|
}
|
|
|
|
}
|