ardupilot/libraries/AP_Notify/OreoLED_I2C.cpp
Peter Barker c136257a3a AP_Notify: gate mavlink access on HAL_GCS_ENABLED
via AP_NOTIFY_MAVLINK_LED_CONTROL_SUPPORT_ENABLED
2022-10-26 21:22:39 +11:00

712 lines
25 KiB
C++

/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/*
OreoLED I2C driver. Based primarily on ArduPilot OreoLED_PX4.cpp,
but with some components from orleod.cpp from px4 firmware
*/
#include <AP_HAL/AP_HAL.h>
#include <AP_HAL/I2CDevice.h>
#include <AP_BoardConfig/AP_BoardConfig.h>
#include "OreoLED_I2C.h"
#include "AP_Notify.h"
#include <utility>
// OreoLEDs start at address 0x68 and add device number. So LED2 is at 0x6A
#define OREOLED_BASE_I2C_ADDR 0x68
#define OREOLED_BACKLEFT 0 // back left led instance number
#define OREOLED_BACKRIGHT 1 // back right led instance number
#define OREOLED_FRONTRIGHT 2 // front right led instance number
#define OREOLED_FRONTLEFT 3 // front left led instance number
#define PERIOD_SLOW 800 // slow flash rate
#define PERIOD_FAST 500 // fast flash rate
#define PERIOD_SUPER 150 // super fast rate
#define PO_ALTERNATE 180 // 180 degree phase offset
#define OREOLED_BOOT_CMD_BOOT_APP 0x60
#define OREOLED_BOOT_CMD_BOOT_NONCE 0xA2
extern const AP_HAL::HAL& hal;
// constructor
OreoLED_I2C::OreoLED_I2C(uint8_t bus, uint8_t theme):
NotifyDevice(),
_bus(bus),
_oreo_theme(theme)
{
}
//
// Initialize the LEDs
//
bool OreoLED_I2C::init()
{
// first look for led on external bus
_dev = std::move(hal.i2c_mgr->get_device(_bus, OREOLED_BASE_I2C_ADDR));
if (!_dev) {
return false;
}
// register timer
_dev->register_periodic_callback(1000, FUNCTOR_BIND_MEMBER(&OreoLED_I2C::update_timer, void));
// return health
return true;
}
// UPDATE device according to timed_updated. Called at 50Hz
void OreoLED_I2C::update()
{
if (slow_counter()) {
return; // slow rate from 50hz to 10hz
}
if (mode_firmware_update()) {
return; // don't go any further if in firmware update
}
if (mode_init()) {
return; // don't go any further if initializing
}
if (mode_failsafe_radio()) {
return; // don't go any further if in radio failsafe
}
if (mode_failsafe_gcs()) {
return; // don't go any further if in gcs failsafe
}
set_standard_colors();
if (mode_failsafe_batt()) {
return; // stop here if the battery is low.
}
if (_pattern_override) {
return; // stop here if in mavlink LED control override.
}
if (mode_auto_flight()) {
return; // stop here if in an autopilot mode.
}
mode_pilot_flight(); // stop here if in an pilot controlled mode.
}
// Slow the update rate from 50hz to 10hz
// Returns true if counting up
// Returns false and resets one counter hits 5
bool OreoLED_I2C::slow_counter()
{
_slow_count++;
if (_slow_count < 5) {
return true;
} else {
_slow_count = 0;
return false;
}
}
// Procedure for when in FW update / bootloader
// Makes all LEDs go into color cycle mode
// Returns true if firmware update in progress. False if not
bool OreoLED_I2C::mode_firmware_update()
{
if (AP_Notify::flags.firmware_update) {
set_macro(OREOLED_INSTANCE_ALL, OREOLED_PARAM_MACRO_COLOUR_CYCLE);
return true;
} else {
return false;
}
}
// Makes all LEDs rapidly strobe blue while gyros initialize.
bool OreoLED_I2C::mode_init()
{
if (AP_Notify::flags.initialising) {
set_rgb(OREOLED_INSTANCE_ALL, OREOLED_PATTERN_STROBE, 0, 0, 255,0,0,0,PERIOD_SUPER,0);
return true;
} else {
return false;
}
}
// Procedure for when in radio failsafe
// LEDs perform alternating Red X pattern
bool OreoLED_I2C::mode_failsafe_radio()
{
if (AP_Notify::flags.failsafe_radio) {
set_rgb(OREOLED_FRONTLEFT, OREOLED_PATTERN_STROBE, 255, 0, 0,0,0,0,PERIOD_SLOW,0);
set_rgb(OREOLED_FRONTRIGHT, OREOLED_PATTERN_STROBE, 255, 0, 0,0,0,0,PERIOD_SLOW,PO_ALTERNATE);
set_rgb(OREOLED_BACKLEFT, OREOLED_PATTERN_STROBE, 255, 0, 0,0,0,0,PERIOD_SLOW,PO_ALTERNATE);
set_rgb(OREOLED_BACKRIGHT, OREOLED_PATTERN_STROBE, 255, 0, 0,0,0,0,PERIOD_SLOW,0);
}
return AP_Notify::flags.failsafe_radio;
}
// Procedure for when in GCS failsafe
// LEDs perform alternating yellow X pattern
bool OreoLED_I2C::mode_failsafe_gcs()
{
if (AP_Notify::flags.failsafe_gcs) {
set_rgb(OREOLED_FRONTLEFT, OREOLED_PATTERN_STROBE, 255, 50, 0,0,0,0,PERIOD_SLOW,0);
set_rgb(OREOLED_FRONTRIGHT, OREOLED_PATTERN_STROBE, 255, 50, 0,0,0,0,PERIOD_SLOW,PO_ALTERNATE);
set_rgb(OREOLED_BACKLEFT, OREOLED_PATTERN_STROBE, 255, 50, 0,0,0,0,PERIOD_SLOW,PO_ALTERNATE);
set_rgb(OREOLED_BACKRIGHT, OREOLED_PATTERN_STROBE, 255, 50, 0,0,0,0,PERIOD_SLOW,0);
}
return AP_Notify::flags.failsafe_gcs;
}
// Procedure to set standard rear LED colors in aviation theme
// Back LEDS White for normal, yellow for GPS not usable, purple for EKF bad]
// Returns true GPS or EKF problem, returns false if all ok
bool OreoLED_I2C::set_standard_colors()
{
if (!(AP_Notify::flags.gps_fusion)) {
_rear_color_r = 255;
_rear_color_g = 50;
_rear_color_b = 0;
return true;
} else if (AP_Notify::flags.ekf_bad) {
_rear_color_r = 255;
_rear_color_g = 0;
_rear_color_b = 255;
return true;
} else {
_rear_color_r = 255;
_rear_color_g = 255;
_rear_color_b = 255;
return false;
}
}
// Procedure to set low battery LED output
// Colors standard
// Fast strobe alternating front/back
bool OreoLED_I2C::mode_failsafe_batt()
{
if (AP_Notify::flags.failsafe_battery) {
switch (_oreo_theme) {
case OreoLED_Aircraft:
set_rgb(OREOLED_FRONTLEFT, OREOLED_PATTERN_STROBE, 255, 0, 0,0,0,0,PERIOD_FAST,0);
set_rgb(OREOLED_FRONTRIGHT, OREOLED_PATTERN_STROBE, 0, 255, 0,0,0,0,PERIOD_FAST,0);
set_rgb(OREOLED_BACKLEFT, OREOLED_PATTERN_STROBE, _rear_color_r, _rear_color_g, _rear_color_b,0,0,0,PERIOD_FAST,PO_ALTERNATE);
set_rgb(OREOLED_BACKRIGHT, OREOLED_PATTERN_STROBE, _rear_color_r, _rear_color_g, _rear_color_b,0,0,0,PERIOD_FAST,PO_ALTERNATE);
break;
case OreoLED_Automobile:
set_rgb(OREOLED_FRONTLEFT, OREOLED_PATTERN_STROBE, 255, 255, 255,0,0,0,PERIOD_FAST,0);
set_rgb(OREOLED_FRONTRIGHT, OREOLED_PATTERN_STROBE, 255, 255, 255,0,0,0,PERIOD_FAST,0);
set_rgb(OREOLED_BACKLEFT, OREOLED_PATTERN_STROBE, 255, 0, 0,0,0,0,PERIOD_FAST,PO_ALTERNATE);
set_rgb(OREOLED_BACKRIGHT, OREOLED_PATTERN_STROBE, 255, 0, 0,0,0,0,PERIOD_FAST,PO_ALTERNATE);
break;
default:
set_rgb(OREOLED_FRONTLEFT, OREOLED_PATTERN_STROBE, 255, 255, 255,0,0,0,PERIOD_FAST,0);
set_rgb(OREOLED_FRONTRIGHT, OREOLED_PATTERN_STROBE, 255, 255, 255,0,0,0,PERIOD_FAST,0);
set_rgb(OREOLED_BACKLEFT, OREOLED_PATTERN_STROBE, 255, 0, 0,0,0,0,PERIOD_FAST,PO_ALTERNATE);
set_rgb(OREOLED_BACKRIGHT, OREOLED_PATTERN_STROBE, 255, 0, 0,0,0,0,PERIOD_FAST,PO_ALTERNATE);
break;
}
}
return AP_Notify::flags.failsafe_battery;
}
// Procedure for when in an autopilot mode
// Makes all LEDs strobe super fast using standard colors
bool OreoLED_I2C::mode_auto_flight()
{
switch (_oreo_theme) {
case OreoLED_Aircraft:
set_rgb(OREOLED_FRONTLEFT, OREOLED_PATTERN_STROBE, 255, 0, 0,0,0,0,PERIOD_SUPER,0);
set_rgb(OREOLED_FRONTRIGHT, OREOLED_PATTERN_STROBE, 0, 255, 0,0,0,0,PERIOD_SUPER,0);
if ((AP_Notify::flags.pre_arm_check && AP_Notify::flags.pre_arm_gps_check) || AP_Notify::flags.armed) {
set_rgb(OREOLED_BACKLEFT, OREOLED_PATTERN_STROBE, _rear_color_r, _rear_color_g, _rear_color_b,0,0,0,PERIOD_SUPER,PO_ALTERNATE);
set_rgb(OREOLED_BACKRIGHT, OREOLED_PATTERN_STROBE, _rear_color_r, _rear_color_g, _rear_color_b,0,0,0,PERIOD_SUPER,PO_ALTERNATE);
} else {
set_rgb(OREOLED_BACKLEFT, OREOLED_PATTERN_SOLID, _rear_color_r, _rear_color_g, _rear_color_b);
set_rgb(OREOLED_BACKRIGHT, OREOLED_PATTERN_SOLID, _rear_color_r, _rear_color_g, _rear_color_b);
}
break;
case OreoLED_Automobile:
set_rgb(OREOLED_FRONTLEFT, OREOLED_PATTERN_STROBE, 255, 255, 255,0,0,0,PERIOD_SUPER,0);
set_rgb(OREOLED_FRONTRIGHT, OREOLED_PATTERN_STROBE, 255, 255, 255,0,0,0,PERIOD_SUPER,0);
set_rgb(OREOLED_BACKLEFT, OREOLED_PATTERN_STROBE, 255, 0, 0,0,0,0,PERIOD_SUPER,PO_ALTERNATE);
set_rgb(OREOLED_BACKRIGHT, OREOLED_PATTERN_STROBE, 255, 0, 0,0,0,0,PERIOD_SUPER,PO_ALTERNATE);
break;
default:
set_rgb(OREOLED_FRONTLEFT, OREOLED_PATTERN_STROBE, 255, 255, 255,0,0,0,PERIOD_SUPER,0);
set_rgb(OREOLED_FRONTRIGHT, OREOLED_PATTERN_STROBE, 255, 255, 255,0,0,0,PERIOD_SUPER,0);
set_rgb(OREOLED_BACKLEFT, OREOLED_PATTERN_STROBE, 255, 0, 0,0,0,0,PERIOD_SUPER,PO_ALTERNATE);
set_rgb(OREOLED_BACKRIGHT, OREOLED_PATTERN_STROBE, 255, 0, 0,0,0,0,PERIOD_SUPER,PO_ALTERNATE);
break;
}
return AP_Notify::flags.autopilot_mode;
}
// Procedure for when in a pilot controlled mode
// All LEDs use standard pattern and colors
bool OreoLED_I2C::mode_pilot_flight()
{
switch (_oreo_theme) {
case OreoLED_Aircraft:
set_rgb(OREOLED_FRONTLEFT, OREOLED_PATTERN_SOLID, 255, 0, 0);
set_rgb(OREOLED_FRONTRIGHT, OREOLED_PATTERN_SOLID, 0, 255, 0);
if ((AP_Notify::flags.pre_arm_check && AP_Notify::flags.pre_arm_gps_check) || AP_Notify::flags.armed) {
set_rgb(OREOLED_BACKLEFT, OREOLED_PATTERN_STROBE, _rear_color_r, _rear_color_g, _rear_color_b,0,0,0,PERIOD_FAST,0);
set_rgb(OREOLED_BACKRIGHT, OREOLED_PATTERN_STROBE, _rear_color_r, _rear_color_g, _rear_color_b,0,0,0,PERIOD_FAST,PO_ALTERNATE);
} else {
set_rgb(OREOLED_BACKLEFT, OREOLED_PATTERN_SOLID, _rear_color_r, _rear_color_g, _rear_color_b);
set_rgb(OREOLED_BACKRIGHT, OREOLED_PATTERN_SOLID, _rear_color_r, _rear_color_g, _rear_color_b);
}
break;
case OreoLED_Automobile:
set_rgb(OREOLED_FRONTLEFT, OREOLED_PATTERN_SOLID, 255, 255, 255);
set_rgb(OREOLED_FRONTRIGHT, OREOLED_PATTERN_SOLID, 255, 255, 255);
set_rgb(OREOLED_BACKLEFT, OREOLED_PATTERN_SOLID, 255, 0, 0);
set_rgb(OREOLED_BACKRIGHT, OREOLED_PATTERN_SOLID, 255, 0, 0);
break;
default:
set_rgb(OREOLED_FRONTLEFT, OREOLED_PATTERN_SOLID, 255, 255, 255);
set_rgb(OREOLED_FRONTRIGHT, OREOLED_PATTERN_SOLID, 255, 255, 255);
set_rgb(OREOLED_BACKLEFT, OREOLED_PATTERN_SOLID, 255, 0, 0);
set_rgb(OREOLED_BACKRIGHT, OREOLED_PATTERN_SOLID, 255, 0, 0);
break;
}
return true;
}
// set_rgb - Solid color settings only
void OreoLED_I2C::set_rgb(uint8_t instance, uint8_t red, uint8_t green, uint8_t blue)
{
set_rgb(instance, OREOLED_PATTERN_SOLID, red, green, blue);
}
// set_rgb - Set a color and selected pattern.
void OreoLED_I2C::set_rgb(uint8_t instance, oreoled_pattern pattern, uint8_t red, uint8_t green, uint8_t blue)
{
// get semaphore
WITH_SEMAPHORE(_sem);
// check for all instances
if (instance == OREOLED_INSTANCE_ALL) {
// store desired rgb for all LEDs
for (uint8_t i=0; i<OREOLED_NUM_LEDS; i++) {
_state_desired[i].set_rgb(pattern, red, green, blue);
if (!(_state_desired[i] == _state_sent[i])) {
_send_required = true;
}
}
} else if (instance < OREOLED_NUM_LEDS) {
// store desired rgb for one LED
_state_desired[instance].set_rgb(pattern, red, green, blue);
if (!(_state_desired[instance] == _state_sent[instance])) {
_send_required = true;
}
}
}
// set_rgb - Sets a color, pattern, and uses extended options for amplitude, period, and phase offset
void OreoLED_I2C::set_rgb(uint8_t instance, oreoled_pattern pattern, uint8_t red, uint8_t green, uint8_t blue,
uint8_t amplitude_red, uint8_t amplitude_green, uint8_t amplitude_blue,
uint16_t period, uint16_t phase_offset)
{
WITH_SEMAPHORE(_sem);
// check for all instances
if (instance == OREOLED_INSTANCE_ALL) {
// store desired rgb for all LEDs
for (uint8_t i=0; i<OREOLED_NUM_LEDS; i++) {
_state_desired[i].set_rgb(pattern, red, green, blue, amplitude_red, amplitude_green, amplitude_blue, period, phase_offset);
if (!(_state_desired[i] == _state_sent[i])) {
_send_required = true;
}
}
} else if (instance < OREOLED_NUM_LEDS) {
// store desired rgb for one LED
_state_desired[instance].set_rgb(pattern, red, green, blue, amplitude_red, amplitude_green, amplitude_blue, period, phase_offset);
if (!(_state_desired[instance] == _state_sent[instance])) {
_send_required = true;
}
}
}
// set_macro - set macro for one or all LEDs
void OreoLED_I2C::set_macro(uint8_t instance, oreoled_macro macro)
{
WITH_SEMAPHORE(_sem);
// check for all instances
if (instance == OREOLED_INSTANCE_ALL) {
// store desired macro for all LEDs
for (uint8_t i=0; i<OREOLED_NUM_LEDS; i++) {
_state_desired[i].set_macro(macro);
if (!(_state_desired[i] == _state_sent[i])) {
_send_required = true;
}
}
} else if (instance < OREOLED_NUM_LEDS) {
// store desired macro for one LED
_state_desired[instance].set_macro(macro);
if (!(_state_desired[instance] == _state_sent[instance])) {
_send_required = true;
}
}
}
// Clear the desired state
void OreoLED_I2C::clear_state(void)
{
WITH_SEMAPHORE(_sem);
for (uint8_t i=0; i<OREOLED_NUM_LEDS; i++) {
_state_desired[i].clear_state();
}
_send_required = false;
}
/*
send a command onto the I2C bus
*/
bool OreoLED_I2C::command_send(oreoled_cmd_t &cmd)
{
//printf("sending %u\n", cmd.num_bytes);
_dev->set_address(OREOLED_BASE_I2C_ADDR + cmd.led_num);
/* Calculate XOR CRC and append to the i2c write data */
uint8_t cmd_xor = OREOLED_BASE_I2C_ADDR + cmd.led_num;
for (uint8_t i = 0; i < cmd.num_bytes; i++) {
cmd_xor ^= cmd.buff[i];
}
cmd.buff[cmd.num_bytes++] = cmd_xor;
uint8_t reply[3] {};
bool ret = _dev->transfer(cmd.buff, cmd.num_bytes, reply, sizeof(reply));
//printf("command[%u] %02x %02x %02x %s -> %02x %02x %02x\n", cmd.led_num, ret?"OK":"fail", reply[0], reply[1], reply[2]);
return ret;
}
/*
send boot command to all LEDs
*/
void OreoLED_I2C::boot_leds(void)
{
oreoled_cmd_t cmd;
for (uint8_t i=0; i<OREOLED_NUM_LEDS; i++) {
cmd.led_num = i;
cmd.buff[0] = OREOLED_BOOT_CMD_BOOT_APP;
cmd.buff[1] = OREOLED_BOOT_CMD_BOOT_NONCE;
cmd.buff[2] = OREOLED_BASE_I2C_ADDR + i;
cmd.num_bytes = 3;
command_send(cmd);
}
}
// update_timer - called by scheduler and updates driver with commands
void OreoLED_I2C::update_timer(void)
{
WITH_SEMAPHORE(_sem);
uint32_t now = AP_HAL::millis();
if (_boot_count < 20 &&
now - _last_boot_ms > 100) {
// send boot command 20 times
_boot_count++;
_last_boot_ms = now;
boot_leds();
}
// send a sync every 4.1s. The driver uses 4ms, but using
// exactly 4ms does not work. It seems that the oreoled firmware
// relies on the inaccuracy of the NuttX scheduling for this to
// work, and exactly 4ms from ChibiOS causes syncronisation to
// fail
if (now - _last_sync_ms > 4100) {
_last_sync_ms = now;
send_sync();
}
// exit immediately if send not required, or state is being updated
if (!_send_required) {
return;
}
// for each LED
for (uint8_t i=0; i<OREOLED_NUM_LEDS; i++) {
// check for state change
if (true) {
switch (_state_desired[i].mode) {
case OREOLED_MODE_MACRO: {
oreoled_cmd_t cmd {};
cmd.led_num = i;
cmd.buff[0] = OREOLED_PATTERN_PARAMUPDATE;
cmd.buff[1] = OREOLED_PARAM_MACRO;
cmd.buff[2] = _state_desired[i].macro;
cmd.num_bytes = 3;
command_send(cmd);
break;
}
case OREOLED_MODE_RGB: {
oreoled_cmd_t cmd {};
cmd.led_num = i;
cmd.buff[0] = _state_desired[i].pattern;
cmd.buff[1] = OREOLED_PARAM_BIAS_RED;
cmd.buff[2] = _state_desired[i].red;
cmd.buff[3] = OREOLED_PARAM_BIAS_GREEN;
cmd.buff[4] = _state_desired[i].green;
cmd.buff[5] = OREOLED_PARAM_BIAS_BLUE;
cmd.buff[6] = _state_desired[i].blue;
cmd.num_bytes = 7;
command_send(cmd);
break;
}
case OREOLED_MODE_RGB_EXTENDED: {
oreoled_cmd_t cmd {};
cmd.led_num = i;
cmd.buff[0] = _state_desired[i].pattern;
cmd.buff[1] = OREOLED_PARAM_BIAS_RED;
cmd.buff[2] = _state_desired[i].red;
cmd.buff[3] = OREOLED_PARAM_BIAS_GREEN;
cmd.buff[4] = _state_desired[i].green;
cmd.buff[5] = OREOLED_PARAM_BIAS_BLUE;
cmd.buff[6] = _state_desired[i].blue;
cmd.buff[7] = OREOLED_PARAM_AMPLITUDE_RED;
cmd.buff[8] = _state_desired[i].amplitude_red;
cmd.buff[9] = OREOLED_PARAM_AMPLITUDE_GREEN;
cmd.buff[10] = _state_desired[i].amplitude_green;
cmd.buff[11] = OREOLED_PARAM_AMPLITUDE_BLUE;
cmd.buff[12] = _state_desired[i].amplitude_blue;
// Note: The Oreo LED controller expects to receive uint16 values
// in little endian order
cmd.buff[13] = OREOLED_PARAM_PERIOD;
cmd.buff[14] = (_state_desired[i].period & 0xFF00) >> 8;
cmd.buff[15] = (_state_desired[i].period & 0x00FF);
cmd.buff[16] = OREOLED_PARAM_PHASEOFFSET;
cmd.buff[17] = (_state_desired[i].phase_offset & 0xFF00) >> 8;
cmd.buff[18] = (_state_desired[i].phase_offset & 0x00FF);
cmd.num_bytes = 19;
command_send(cmd);
break;
}
default:
break;
};
// save state change
_state_sent[i] = _state_desired[i];
}
}
// flag updates sent
_send_required = false;
}
void OreoLED_I2C::send_sync(void)
{
/* set I2C address to zero */
_dev->set_address(0);
/* prepare command : 0x01 = general hardware call, 0x00 = I2C address of master (but we don't act as a slave so set to zero)*/
uint8_t msg[] = {0x01, 0x00};
/* send I2C command */
_dev->set_retries(0);
_dev->transfer(msg, sizeof(msg), nullptr, 0);
_dev->set_retries(2);
}
#if AP_NOTIFY_MAVLINK_LED_CONTROL_SUPPORT_ENABLED
// Handle an LED_CONTROL mavlink message
void OreoLED_I2C::handle_led_control(const mavlink_message_t &msg)
{
// decode mavlink message
mavlink_led_control_t packet;
mavlink_msg_led_control_decode(&msg, &packet);
// exit immediately if instance is invalid
if (packet.instance >= OREOLED_NUM_LEDS && packet.instance != OREOLED_INSTANCE_ALL) {
return;
}
// if pattern is OFF, we clear pattern override so normal lighting should resume
if (packet.pattern == LED_CONTROL_PATTERN_OFF) {
_pattern_override = 0;
clear_state();
return;
}
if (packet.pattern == LED_CONTROL_PATTERN_CUSTOM) {
// Here we handle two different "sub commands",
// depending on the bytes in the first CUSTOM_HEADER_LENGTH
// of the custom pattern byte buffer
// Return if we don't have at least CUSTOM_HEADER_LENGTH bytes
if (packet.custom_len < CUSTOM_HEADER_LENGTH) {
return;
}
// check for the RGB0 sub-command
if (memcmp(packet.custom_bytes, "RGB0", CUSTOM_HEADER_LENGTH) == 0) {
// check to make sure the total length matches the length of the RGB0 command + data values
if (packet.custom_len != CUSTOM_HEADER_LENGTH + 4) {
return;
}
// check for valid pattern id
if (packet.custom_bytes[CUSTOM_HEADER_LENGTH] >= OREOLED_PATTERN_ENUM_COUNT) {
return;
}
// convert the first byte after the command to a oreoled_pattern
oreoled_pattern pattern = (oreoled_pattern)packet.custom_bytes[CUSTOM_HEADER_LENGTH];
// call the set_rgb function, using the rest of the bytes as the RGB values
set_rgb(packet.instance, pattern, packet.custom_bytes[CUSTOM_HEADER_LENGTH + 1], packet.custom_bytes[CUSTOM_HEADER_LENGTH + 2], packet.custom_bytes[CUSTOM_HEADER_LENGTH + 3]);
} else if (memcmp(packet.custom_bytes, "RGB1", CUSTOM_HEADER_LENGTH) == 0) { // check for the RGB1 sub-command
// check to make sure the total length matches the length of the RGB1 command + data values
if (packet.custom_len != CUSTOM_HEADER_LENGTH + 11) {
return;
}
// check for valid pattern id
if (packet.custom_bytes[CUSTOM_HEADER_LENGTH] >= OREOLED_PATTERN_ENUM_COUNT) {
return;
}
// convert the first byte after the command to a oreoled_pattern
oreoled_pattern pattern = (oreoled_pattern)packet.custom_bytes[CUSTOM_HEADER_LENGTH];
// uint16_t values are stored in custom_bytes in little endian order
// assume the flight controller is little endian when decoding values
uint16_t period =
((0x00FF & (uint16_t)packet.custom_bytes[CUSTOM_HEADER_LENGTH + 7]) << 8) |
(0x00FF & (uint16_t)packet.custom_bytes[CUSTOM_HEADER_LENGTH + 8]);
uint16_t phase_offset =
((0x00FF & (uint16_t)packet.custom_bytes[CUSTOM_HEADER_LENGTH + 9]) << 8) |
(0x00FF & (uint16_t)packet.custom_bytes[CUSTOM_HEADER_LENGTH + 10]);
// call the set_rgb function, using the rest of the bytes as the RGB values
set_rgb(packet.instance, pattern, packet.custom_bytes[CUSTOM_HEADER_LENGTH + 1], packet.custom_bytes[CUSTOM_HEADER_LENGTH + 2],
packet.custom_bytes[CUSTOM_HEADER_LENGTH + 3], packet.custom_bytes[CUSTOM_HEADER_LENGTH + 4], packet.custom_bytes[CUSTOM_HEADER_LENGTH + 5],
packet.custom_bytes[CUSTOM_HEADER_LENGTH + 6], period, phase_offset);
} else { // unrecognized command
return;
}
} else {
// other patterns sent as macro
set_macro(packet.instance, (oreoled_macro)packet.pattern);
}
_pattern_override = packet.pattern;
}
#endif
OreoLED_I2C::oreo_state::oreo_state()
{
clear_state();
}
void OreoLED_I2C::oreo_state::clear_state()
{
mode = OREOLED_MODE_NONE;
pattern = OREOLED_PATTERN_OFF;
macro = OREOLED_PARAM_MACRO_RESET;
red = 0;
green = 0;
blue = 0;
amplitude_red = 0;
amplitude_green = 0;
amplitude_blue = 0;
period = 0;
repeat = 0;
phase_offset = 0;
}
void OreoLED_I2C::oreo_state::set_macro(oreoled_macro new_macro)
{
clear_state();
mode = OREOLED_MODE_MACRO;
macro = new_macro;
}
void OreoLED_I2C::oreo_state::set_rgb(enum oreoled_pattern new_pattern, uint8_t new_red, uint8_t new_green, uint8_t new_blue)
{
clear_state();
mode = OREOLED_MODE_RGB;
pattern = new_pattern;
red = new_red;
green = new_green;
blue = new_blue;
}
void OreoLED_I2C::oreo_state::set_rgb(enum oreoled_pattern new_pattern, uint8_t new_red, uint8_t new_green,
uint8_t new_blue, uint8_t new_amplitude_red, uint8_t new_amplitude_green, uint8_t new_amplitude_blue,
uint16_t new_period, uint16_t new_phase_offset)
{
clear_state();
mode = OREOLED_MODE_RGB_EXTENDED;
pattern = new_pattern;
red = new_red;
green = new_green;
blue = new_blue;
amplitude_red = new_amplitude_red;
amplitude_green = new_amplitude_green;
amplitude_blue = new_amplitude_blue;
period = new_period;
phase_offset = new_phase_offset;
}
bool OreoLED_I2C::oreo_state::operator==(const OreoLED_I2C::oreo_state &os) const
{
return ((os.mode==mode) && (os.pattern==pattern) && (os.macro==macro) && (os.red==red) && (os.green==green) && (os.blue==blue)
&& (os.amplitude_red==amplitude_red) && (os.amplitude_green==amplitude_green) && (os.amplitude_blue==amplitude_blue)
&& (os.period==period) && (os.repeat==repeat) && (os.phase_offset==phase_offset));
}