mirror of
https://github.com/ArduPilot/ardupilot
synced 2025-01-09 17:38:32 -04:00
1142 lines
39 KiB
Plaintext
1142 lines
39 KiB
Plaintext
/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
|
|
|
|
#define THISFIRMWARE "ArduPlane V2.28"
|
|
/*
|
|
Authors: Doug Weibel, Jose Julio, Jordi Munoz, Jason Short, Andrew Tridgell, Randy Mackay, Pat Hickey, John Arne Birkeland, Olivier Adler
|
|
Thanks to: Chris Anderson, Michael Oborne, Paul Mather, Bill Premerlani, James Cohen, JB from rotorFX, Automatik, Fefenin, Peter Meister, Remzibi, Yury Smirnov, Sandro Benigno, Max Levine, Roberto Navoni, Lorenz Meier
|
|
Please contribute your ideas!
|
|
|
|
|
|
This firmware is free software; you can redistribute it and/or
|
|
modify it under the terms of the GNU Lesser General Public
|
|
License as published by the Free Software Foundation; either
|
|
version 2.1 of the License, or (at your option) any later version.
|
|
*/
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Header includes
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
// AVR runtime
|
|
#include <avr/io.h>
|
|
#include <avr/eeprom.h>
|
|
#include <avr/pgmspace.h>
|
|
#include <math.h>
|
|
|
|
// Libraries
|
|
#include <FastSerial.h>
|
|
#include <AP_Common.h>
|
|
#include <Arduino_Mega_ISR_Registry.h>
|
|
#include <APM_RC.h> // ArduPilot Mega RC Library
|
|
#include <AP_GPS.h> // ArduPilot GPS library
|
|
#include <I2C.h> // Wayne Truchsess I2C lib
|
|
#include <SPI.h> // Arduino SPI lib
|
|
#include <DataFlash.h> // ArduPilot Mega Flash Memory Library
|
|
#include <AP_ADC.h> // ArduPilot Mega Analog to Digital Converter Library
|
|
#include <AP_AnalogSource.h>// ArduPilot Mega polymorphic analog getter
|
|
#include <AP_PeriodicProcess.h> // ArduPilot Mega TimerProcess
|
|
#include <AP_Baro.h> // ArduPilot barometer library
|
|
#include <AP_Compass.h> // ArduPilot Mega Magnetometer Library
|
|
#include <AP_Math.h> // ArduPilot Mega Vector/Matrix math Library
|
|
#include <AP_InertialSensor.h> // Inertial Sensor (uncalibated IMU) Library
|
|
#include <AP_IMU.h> // ArduPilot Mega IMU Library
|
|
#include <AP_DCM.h> // ArduPilot Mega DCM Library
|
|
#include <PID.h> // PID library
|
|
#include <RC_Channel.h> // RC Channel Library
|
|
#include <AP_RangeFinder.h> // Range finder library
|
|
#include <ModeFilter.h>
|
|
#include <AP_Relay.h> // APM relay
|
|
#include <AP_Mount.h> // Camera/Antenna mount
|
|
#include <GCS_MAVLink.h> // MAVLink GCS definitions
|
|
#include <memcheck.h>
|
|
|
|
// Configuration
|
|
#include "config.h"
|
|
|
|
// Local modules
|
|
#include "defines.h"
|
|
#include "Parameters.h"
|
|
#include "GCS.h"
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Serial ports
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// Note that FastSerial port buffers are allocated at ::begin time,
|
|
// so there is not much of a penalty to defining ports that we don't
|
|
// use.
|
|
//
|
|
FastSerialPort0(Serial); // FTDI/console
|
|
FastSerialPort1(Serial1); // GPS port
|
|
FastSerialPort3(Serial3); // Telemetry port
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// ISR Registry
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
Arduino_Mega_ISR_Registry isr_registry;
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// APM_RC_Class Instance
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
#if CONFIG_APM_HARDWARE == APM_HARDWARE_APM2
|
|
APM_RC_APM2 APM_RC;
|
|
#else
|
|
APM_RC_APM1 APM_RC;
|
|
#endif
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Dataflash
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
#if CONFIG_APM_HARDWARE == APM_HARDWARE_APM2
|
|
DataFlash_APM2 DataFlash;
|
|
#else
|
|
DataFlash_APM1 DataFlash;
|
|
#endif
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Parameters
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// Global parameters are all contained within the 'g' class.
|
|
//
|
|
static Parameters g;
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// prototypes
|
|
static void update_events(void);
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Sensors
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// There are three basic options related to flight sensor selection.
|
|
//
|
|
// - Normal flight mode. Real sensors are used.
|
|
// - HIL Attitude mode. Most sensors are disabled, as the HIL
|
|
// protocol supplies attitude information directly.
|
|
// - HIL Sensors mode. Synthetic sensors are configured that
|
|
// supply data from the simulation.
|
|
//
|
|
|
|
// All GPS access should be through this pointer.
|
|
static GPS *g_gps;
|
|
|
|
// flight modes convenience array
|
|
static AP_Int8 *flight_modes = &g.flight_mode1;
|
|
|
|
#if HIL_MODE == HIL_MODE_DISABLED
|
|
|
|
// real sensors
|
|
#if CONFIG_ADC == ENABLED
|
|
static AP_ADC_ADS7844 adc;
|
|
#endif
|
|
|
|
#ifdef DESKTOP_BUILD
|
|
AP_Baro_BMP085_HIL barometer;
|
|
AP_Compass_HIL compass;
|
|
#else
|
|
|
|
#if CONFIG_BARO == AP_BARO_BMP085
|
|
# if CONFIG_APM_HARDWARE == APM_HARDWARE_APM2
|
|
static AP_Baro_BMP085 barometer(true);
|
|
# else
|
|
static AP_Baro_BMP085 barometer(false);
|
|
# endif
|
|
#elif CONFIG_BARO == AP_BARO_MS5611
|
|
static AP_Baro_MS5611 barometer;
|
|
#endif
|
|
|
|
static AP_Compass_HMC5843 compass(Parameters::k_param_compass);
|
|
#endif
|
|
|
|
// real GPS selection
|
|
#if GPS_PROTOCOL == GPS_PROTOCOL_AUTO
|
|
AP_GPS_Auto g_gps_driver(&Serial1, &g_gps);
|
|
|
|
#elif GPS_PROTOCOL == GPS_PROTOCOL_NMEA
|
|
AP_GPS_NMEA g_gps_driver(&Serial1);
|
|
|
|
#elif GPS_PROTOCOL == GPS_PROTOCOL_SIRF
|
|
AP_GPS_SIRF g_gps_driver(&Serial1);
|
|
|
|
#elif GPS_PROTOCOL == GPS_PROTOCOL_UBLOX
|
|
AP_GPS_UBLOX g_gps_driver(&Serial1);
|
|
|
|
#elif GPS_PROTOCOL == GPS_PROTOCOL_MTK
|
|
AP_GPS_MTK g_gps_driver(&Serial1);
|
|
|
|
#elif GPS_PROTOCOL == GPS_PROTOCOL_MTK16
|
|
AP_GPS_MTK16 g_gps_driver(&Serial1);
|
|
|
|
#elif GPS_PROTOCOL == GPS_PROTOCOL_NONE
|
|
AP_GPS_None g_gps_driver(NULL);
|
|
|
|
#else
|
|
#error Unrecognised GPS_PROTOCOL setting.
|
|
#endif // GPS PROTOCOL
|
|
|
|
# if CONFIG_IMU_TYPE == CONFIG_IMU_MPU6000
|
|
AP_InertialSensor_MPU6000 ins( CONFIG_MPU6000_CHIP_SELECT_PIN );
|
|
# else
|
|
AP_InertialSensor_Oilpan ins( &adc );
|
|
#endif // CONFIG_IMU_TYPE
|
|
AP_IMU_INS imu( &ins, Parameters::k_param_IMU_calibration );
|
|
AP_DCM dcm(&imu, g_gps);
|
|
|
|
#elif HIL_MODE == HIL_MODE_SENSORS
|
|
// sensor emulators
|
|
AP_ADC_HIL adc;
|
|
AP_Baro_BMP085_HIL barometer;
|
|
AP_Compass_HIL compass;
|
|
AP_GPS_HIL g_gps_driver(NULL);
|
|
AP_InertialSensor_Oilpan ins( &adc );
|
|
AP_IMU_Shim imu;
|
|
AP_DCM dcm(&imu, g_gps);
|
|
|
|
#elif HIL_MODE == HIL_MODE_ATTITUDE
|
|
AP_ADC_HIL adc;
|
|
AP_DCM_HIL dcm;
|
|
AP_GPS_HIL g_gps_driver(NULL);
|
|
AP_Compass_HIL compass; // never used
|
|
AP_IMU_Shim imu; // never used
|
|
AP_Baro_BMP085_HIL barometer;
|
|
|
|
#else
|
|
#error Unrecognised HIL_MODE setting.
|
|
#endif // HIL MODE
|
|
|
|
// we always have a timer scheduler
|
|
AP_TimerProcess timer_scheduler;
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// GCS selection
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
GCS_MAVLINK gcs0(Parameters::k_param_streamrates_port0);
|
|
GCS_MAVLINK gcs3(Parameters::k_param_streamrates_port3);
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// PITOT selection
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
ModeFilter sonar_mode_filter;
|
|
|
|
#if CONFIG_PITOT_SOURCE == PITOT_SOURCE_ADC
|
|
AP_AnalogSource_ADC pitot_analog_source( &adc,
|
|
CONFIG_PITOT_SOURCE_ADC_CHANNEL, 1.0);
|
|
#elif CONFIG_PITOT_SOURCE == PITOT_SOURCE_ANALOG_PIN
|
|
AP_AnalogSource_Arduino pitot_analog_source(CONFIG_PITOT_SOURCE_ANALOG_PIN, 4.0);
|
|
#endif
|
|
|
|
#if SONAR_TYPE == MAX_SONAR_XL
|
|
AP_RangeFinder_MaxsonarXL sonar(&pitot_analog_source, &sonar_mode_filter);
|
|
#elif SONAR_TYPE == MAX_SONAR_LV
|
|
// XXX honestly I think these output the same values
|
|
// If someone knows, can they confirm it?
|
|
AP_RangeFinder_MaxsonarXL sonar(&pitot_analog_source, &sonar_mode_filter);
|
|
#endif
|
|
|
|
AP_Relay relay;
|
|
|
|
// Camera/Antenna mount tracking and stabilisation stuff
|
|
// --------------------------------------
|
|
#if MOUNT == ENABLED
|
|
AP_Mount camera_mount(g_gps, &dcm);
|
|
#endif
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Global variables
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
// APM2 only
|
|
#if USB_MUX_PIN > 0
|
|
static bool usb_connected;
|
|
#endif
|
|
|
|
static const char *comma = ",";
|
|
|
|
static const char* flight_mode_strings[] = {
|
|
"Manual",
|
|
"Circle",
|
|
"Stabilize",
|
|
"",
|
|
"",
|
|
"FBW_A",
|
|
"FBW_B",
|
|
"",
|
|
"",
|
|
"",
|
|
"Auto",
|
|
"RTL",
|
|
"Loiter",
|
|
"Takeoff",
|
|
"Land"};
|
|
|
|
|
|
/* Radio values
|
|
Channel assignments
|
|
1 Ailerons (rudder if no ailerons)
|
|
2 Elevator
|
|
3 Throttle
|
|
4 Rudder (if we have ailerons)
|
|
5 Aux5
|
|
6 Aux6
|
|
7 Aux7
|
|
8 Aux8/Mode
|
|
Each Aux channel can be configured to have any of the available auxiliary functions assigned to it.
|
|
See libraries/RC_Channel/RC_Channel_aux.h for more information
|
|
*/
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Radio
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// This is the state of the flight control system
|
|
// There are multiple states defined such as MANUAL, FBW-A, AUTO
|
|
byte control_mode = INITIALISING;
|
|
// Used to maintain the state of the previous control switch position
|
|
// This is set to -1 when we need to re-read the switch
|
|
byte oldSwitchPosition;
|
|
// This is used to enable the inverted flight feature
|
|
bool inverted_flight = false;
|
|
// These are trim values used for elevon control
|
|
// For elevons radio_in[CH_ROLL] and radio_in[CH_PITCH] are equivalent aileron and elevator, not left and right elevon
|
|
static uint16_t elevon1_trim = 1500;
|
|
static uint16_t elevon2_trim = 1500;
|
|
// These are used in the calculation of elevon1_trim and elevon2_trim
|
|
static uint16_t ch1_temp = 1500;
|
|
static uint16_t ch2_temp = 1500;
|
|
// These are values received from the GCS if the user is using GCS joystick
|
|
// control and are substituted for the values coming from the RC radio
|
|
static int16_t rc_override[8] = {0,0,0,0,0,0,0,0};
|
|
// A flag if GCS joystick control is in use
|
|
static bool rc_override_active = false;
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Failsafe
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// A tracking variable for type of failsafe active
|
|
// Used for failsafe based on loss of RC signal or GCS signal
|
|
static int failsafe;
|
|
// Used to track if the value on channel 3 (throtttle) has fallen below the failsafe threshold
|
|
// RC receiver should be set up to output a low throttle value when signal is lost
|
|
static bool ch3_failsafe;
|
|
// A timer used to help recovery from unusual attitudes. If we enter an unusual attitude
|
|
// while in autonomous flight this variable is used to hold roll at 0 for a recovery period
|
|
static byte crash_timer;
|
|
// A timer used to track how long since we have received the last GCS heartbeat or rc override message
|
|
static uint32_t rc_override_fs_timer = 0;
|
|
// A timer used to track how long we have been in a "short failsafe" condition due to loss of RC signal
|
|
static uint32_t ch3_failsafe_timer = 0;
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// LED output
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// state of the GPS light (on/off)
|
|
static bool GPS_light;
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// GPS variables
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// This is used to scale GPS values for EEPROM storage
|
|
// 10^7 times Decimal GPS means 1 == 1cm
|
|
// This approximation makes calculations integer and it's easy to read
|
|
static const float t7 = 10000000.0;
|
|
// We use atan2 and other trig techniques to calaculate angles
|
|
// We need to scale the longitude up to make these calcs work
|
|
// to account for decreasing distance between lines of longitude away from the equator
|
|
static float scaleLongUp = 1;
|
|
// Sometimes we need to remove the scaling for distance calcs
|
|
static float scaleLongDown = 1;
|
|
// A counter used to count down valid gps fixes to allow the gps estimate to settle
|
|
// before recording our home position (and executing a ground start if we booted with an air start)
|
|
static byte ground_start_count = 5;
|
|
// Used to compute a speed estimate from the first valid gps fixes to decide if we are
|
|
// on the ground or in the air. Used to decide if a ground start is appropriate if we
|
|
// booted with an air start.
|
|
static int ground_start_avg;
|
|
// Tracks if GPS is enabled based on statup routine
|
|
// If we do not detect GPS at startup, we stop trying and assume GPS is not connected
|
|
static bool GPS_enabled = false;
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Location & Navigation
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Constants
|
|
const float radius_of_earth = 6378100; // meters
|
|
const float gravity = 9.81; // meters/ sec^2
|
|
// This is the currently calculated direction to fly.
|
|
// deg * 100 : 0 to 360
|
|
static long nav_bearing;
|
|
// This is the direction to the next waypoint or loiter center
|
|
// deg * 100 : 0 to 360
|
|
static long target_bearing;
|
|
//This is the direction from the last waypoint to the next waypoint
|
|
// deg * 100 : 0 to 360
|
|
static long crosstrack_bearing;
|
|
// A gain scaler to account for ground speed/headwind/tailwind
|
|
static float nav_gain_scaler = 1;
|
|
// Direction held during phases of takeoff and landing
|
|
// deg * 100 dir of plane, A value of -1 indicates the course has not been set/is not in use
|
|
static long hold_course = -1; // deg * 100 dir of plane
|
|
|
|
// There may be two active commands in Auto mode.
|
|
// This indicates the active navigation command by index number
|
|
static byte nav_command_index;
|
|
// This indicates the active non-navigation command by index number
|
|
static byte non_nav_command_index;
|
|
// This is the command type (eg navigate to waypoint) of the active navigation command
|
|
static byte nav_command_ID = NO_COMMAND;
|
|
static byte non_nav_command_ID = NO_COMMAND;
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Airspeed
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// The current airspeed estimate/measurement in centimeters per second
|
|
static int airspeed;
|
|
// The calculated airspeed to use in FBW-B. Also used in higher modes for insuring min ground speed is met.
|
|
// Also used for flap deployment criteria. Centimeters per second.static long target_airspeed;
|
|
static long target_airspeed;
|
|
// The difference between current and desired airspeed. Used in the pitch controller. Centimeters per second.
|
|
static float airspeed_error;
|
|
// The calculated total energy error (kinetic (altitude) plus potential (airspeed)).
|
|
// Used by the throttle controller
|
|
static long energy_error;
|
|
// kinetic portion of energy error (m^2/s^2)
|
|
static long airspeed_energy_error;
|
|
// An amount that the airspeed should be increased in auto modes based on the user positioning the
|
|
// throttle stick in the top half of the range. Centimeters per second.
|
|
static int airspeed_nudge;
|
|
// Similar to airspeed_nudge, but used when no airspeed sensor.
|
|
// 0-(throttle_max - throttle_cruise) : throttle nudge in Auto mode using top 1/2 of throttle stick travel
|
|
static int throttle_nudge = 0;
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Ground speed
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// The amount current ground speed is below min ground speed. Centimeters per second
|
|
static long groundspeed_undershoot = 0;
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Location Errors
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Difference between current bearing and desired bearing. Hundredths of a degree
|
|
static long bearing_error;
|
|
// Difference between current altitude and desired altitude. Centimeters
|
|
static long altitude_error;
|
|
// Distance perpandicular to the course line that we are off trackline. Meters
|
|
static float crosstrack_error;
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Battery Sensors
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Battery pack 1 voltage. Initialized above the low voltage threshold to pre-load the filter and prevent low voltage events at startup.
|
|
static float battery_voltage1 = LOW_VOLTAGE * 1.05;
|
|
// Battery pack 1 instantaneous currrent draw. Amperes
|
|
static float current_amps1;
|
|
// Totalized current (Amp-hours) from battery 1
|
|
static float current_total1;
|
|
|
|
// To Do - Add support for second battery pack
|
|
//static float battery_voltage2 = LOW_VOLTAGE * 1.05; // Battery 2 Voltage, initialized above threshold for filter
|
|
//static float current_amps2; // Current (Amperes) draw from battery 2
|
|
//static float current_total2; // Totalized current (Amp-hours) from battery 2
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Airspeed Sensors
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Raw differential pressure measurement (filtered). ADC units
|
|
static float airspeed_raw;
|
|
// Raw differential pressure less the zero pressure offset. ADC units
|
|
static float airspeed_pressure;
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Altitude Sensor variables
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Raw absolute pressure measurement (filtered). ADC units
|
|
static unsigned long abs_pressure;
|
|
// Altitude from the sonar sensor. Meters. Not yet implemented.
|
|
static int sonar_alt;
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// flight mode specific
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Flag for using gps ground course instead of IMU yaw. Set false when takeoff command in process.
|
|
static bool takeoff_complete = true;
|
|
// Flag to indicate if we have landed.
|
|
//Set land_complete if we are within 2 seconds distance or within 3 meters altitude of touchdown
|
|
static bool land_complete;
|
|
// Altitude threshold to complete a takeoff command in autonomous modes. Centimeters
|
|
static long takeoff_altitude;
|
|
// Pitch to hold during landing command in the no airspeed sensor case. Hundredths of a degree
|
|
static int landing_pitch;
|
|
// Minimum pitch to hold during takeoff command execution. Hundredths of a degree
|
|
static int takeoff_pitch;
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Loiter management
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Previous target bearing. Used to calculate loiter rotations. Hundredths of a degree
|
|
static long old_target_bearing;
|
|
// Total desired rotation in a loiter. Used for Loiter Turns commands. Degrees
|
|
static int loiter_total;
|
|
// The amount in degrees we have turned since recording old_target_bearing
|
|
static int loiter_delta;
|
|
// Total rotation in a loiter. Used for Loiter Turns commands and to check for missed waypoints. Degrees
|
|
static int loiter_sum;
|
|
// The amount of time we have been in a Loiter. Used for the Loiter Time command. Milliseconds.
|
|
static long loiter_time;
|
|
// The amount of time we should stay in a loiter for the Loiter Time command. Milliseconds.
|
|
static int loiter_time_max;
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Navigation control variables
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// The instantaneous desired bank angle. Hundredths of a degree
|
|
static long nav_roll;
|
|
// The instantaneous desired pitch angle. Hundredths of a degree
|
|
static long nav_pitch;
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Waypoint distances
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Distance between plane and next waypoint. Meters
|
|
static long wp_distance;
|
|
// Distance between previous and next waypoint. Meters
|
|
static long wp_totalDistance;
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// repeating event control
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Flag indicating current event type
|
|
static byte event_id;
|
|
// when the event was started in ms
|
|
static long event_timer;
|
|
// how long to delay the next firing of event in millis
|
|
static uint16_t event_delay;
|
|
// how many times to cycle : -1 (or -2) = forever, 2 = do one cycle, 4 = do two cycles
|
|
static int event_repeat = 0;
|
|
// per command value, such as PWM for servos
|
|
static int event_value;
|
|
// the value used to cycle events (alternate value to event_value)
|
|
static int event_undo_value;
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Conditional command
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// A value used in condition commands (eg delay, change alt, etc.)
|
|
// For example in a change altitude command, it is the altitude to change to.
|
|
static long condition_value;
|
|
// A starting value used to check the status of a conditional command.
|
|
// For example in a delay command the condition_start records that start time for the delay
|
|
static long condition_start;
|
|
// A value used in condition commands. For example the rate at which to change altitude.
|
|
static int condition_rate;
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// 3D Location vectors
|
|
// Location structure defined in AP_Common
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// The home location used for RTL. The location is set when we first get stable GPS lock
|
|
static struct Location home;
|
|
// Flag for if we have g_gps lock and have set the home location
|
|
static bool home_is_set;
|
|
// The location of the previous waypoint. Used for track following and altitude ramp calculations
|
|
static struct Location prev_WP;
|
|
// The plane's current location
|
|
static struct Location current_loc;
|
|
// The location of the current/active waypoint. Used for altitude ramp, track following and loiter calculations.
|
|
static struct Location next_WP;
|
|
// The location of the active waypoint in Guided mode.
|
|
static struct Location guided_WP;
|
|
// The location structure information from the Nav command being processed
|
|
static struct Location next_nav_command;
|
|
// The location structure information from the Non-Nav command being processed
|
|
static struct Location next_nonnav_command;
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Altitude / Climb rate control
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// The current desired altitude. Altitude is linearly ramped between waypoints. Centimeters
|
|
static long target_altitude;
|
|
// Altitude difference between previous and current waypoint. Centimeters
|
|
static long offset_altitude;
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// IMU variables
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// The main loop execution time. Seconds
|
|
//This is the time between calls to the DCM algorithm and is the Integration time for the gyros.
|
|
static float G_Dt = 0.02;
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Performance monitoring
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Timer used to accrue data and trigger recording of the performanc monitoring log message
|
|
static long perf_mon_timer;
|
|
// The maximum main loop execution time recorded in the current performance monitoring interval
|
|
static int G_Dt_max = 0;
|
|
// The number of gps fixes recorded in the current performance monitoring interval
|
|
static int gps_fix_count = 0;
|
|
// A variable used by developers to track performanc metrics.
|
|
// Currently used to record the number of GCS heartbeat messages received
|
|
static int pmTest1 = 0;
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// System Timers
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Time in miliseconds of start of main control loop. Milliseconds
|
|
static unsigned long fast_loopTimer;
|
|
// Time Stamp when fast loop was complete. Milliseconds
|
|
static unsigned long fast_loopTimeStamp;
|
|
// Number of milliseconds used in last main loop cycle
|
|
static uint8_t delta_ms_fast_loop;
|
|
// Counter of main loop executions. Used for performance monitoring and failsafe processing
|
|
static uint16_t mainLoop_count;
|
|
|
|
// Time in miliseconds of start of medium control loop. Milliseconds
|
|
static unsigned long medium_loopTimer;
|
|
// Counters for branching from main control loop to slower loops
|
|
static byte medium_loopCounter;
|
|
// Number of milliseconds used in last medium loop cycle
|
|
static uint8_t delta_ms_medium_loop;
|
|
|
|
// Counters for branching from medium control loop to slower loops
|
|
static byte slow_loopCounter;
|
|
// Counter to trigger execution of very low rate processes
|
|
static byte superslow_loopCounter;
|
|
// Counter to trigger execution of 1 Hz processes
|
|
static byte counter_one_herz;
|
|
|
|
// used to track the elapsed time for navigation PID integral terms
|
|
static unsigned long nav_loopTimer;
|
|
// Elapsed time since last call to navigation pid functions
|
|
static unsigned long dTnav;
|
|
// % MCU cycles used
|
|
static float load;
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Top-level logic
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
void setup() {
|
|
memcheck_init();
|
|
init_ardupilot();
|
|
}
|
|
|
|
void loop()
|
|
{
|
|
// We want this to execute at 50Hz if possible
|
|
// -------------------------------------------
|
|
if (millis()-fast_loopTimer > 19) {
|
|
delta_ms_fast_loop = millis() - fast_loopTimer;
|
|
load = (float)(fast_loopTimeStamp - fast_loopTimer)/delta_ms_fast_loop;
|
|
G_Dt = (float)delta_ms_fast_loop / 1000.f;
|
|
fast_loopTimer = millis();
|
|
|
|
mainLoop_count++;
|
|
|
|
// Execute the fast loop
|
|
// ---------------------
|
|
fast_loop();
|
|
|
|
// Execute the medium loop
|
|
// -----------------------
|
|
medium_loop();
|
|
|
|
counter_one_herz++;
|
|
if(counter_one_herz == 50){
|
|
one_second_loop();
|
|
counter_one_herz = 0;
|
|
}
|
|
|
|
if (millis() - perf_mon_timer > 20000) {
|
|
if (mainLoop_count != 0) {
|
|
if (g.log_bitmask & MASK_LOG_PM)
|
|
#if HIL_MODE != HIL_MODE_ATTITUDE
|
|
Log_Write_Performance();
|
|
#endif
|
|
|
|
resetPerfData();
|
|
}
|
|
}
|
|
|
|
fast_loopTimeStamp = millis();
|
|
}
|
|
}
|
|
|
|
// Main loop 50Hz
|
|
static void fast_loop()
|
|
{
|
|
// This is the fast loop - we want it to execute at 50Hz if possible
|
|
// -----------------------------------------------------------------
|
|
if (delta_ms_fast_loop > G_Dt_max)
|
|
G_Dt_max = delta_ms_fast_loop;
|
|
|
|
// Read radio
|
|
// ----------
|
|
read_radio();
|
|
|
|
// try to send any deferred messages if the serial port now has
|
|
// some space available
|
|
gcs_send_message(MSG_RETRY_DEFERRED);
|
|
|
|
// check for loss of control signal failsafe condition
|
|
// ------------------------------------
|
|
check_short_failsafe();
|
|
|
|
// Read Airspeed
|
|
// -------------
|
|
if (g.airspeed_enabled == true) {
|
|
#if HIL_MODE != HIL_MODE_ATTITUDE
|
|
read_airspeed();
|
|
#else
|
|
calc_airspeed_errors();
|
|
#endif
|
|
}
|
|
|
|
#if HIL_MODE == HIL_MODE_SENSORS
|
|
// update hil before dcm update
|
|
gcs_update();
|
|
#endif
|
|
|
|
dcm.update_DCM();
|
|
|
|
// uses the yaw from the DCM to give more accurate turns
|
|
calc_bearing_error();
|
|
|
|
# if HIL_MODE == HIL_MODE_DISABLED
|
|
if (g.log_bitmask & MASK_LOG_ATTITUDE_FAST)
|
|
Log_Write_Attitude((int)dcm.roll_sensor, (int)dcm.pitch_sensor, (uint16_t)dcm.yaw_sensor);
|
|
|
|
if (g.log_bitmask & MASK_LOG_RAW)
|
|
Log_Write_Raw();
|
|
#endif
|
|
|
|
// inertial navigation
|
|
// ------------------
|
|
#if INERTIAL_NAVIGATION == ENABLED
|
|
// TODO: implement inertial nav function
|
|
inertialNavigation();
|
|
#endif
|
|
|
|
// custom code/exceptions for flight modes
|
|
// ---------------------------------------
|
|
update_current_flight_mode();
|
|
|
|
// apply desired roll, pitch and yaw to the plane
|
|
// ----------------------------------------------
|
|
if (control_mode > MANUAL)
|
|
stabilize();
|
|
|
|
// write out the servo PWM values
|
|
// ------------------------------
|
|
set_servos();
|
|
|
|
|
|
// XXX is it appropriate to be doing the comms below on the fast loop?
|
|
|
|
gcs_update();
|
|
gcs_data_stream_send(45,1000);
|
|
}
|
|
|
|
static void medium_loop()
|
|
{
|
|
#if MOUNT == ENABLED
|
|
camera_mount.update_mount_position();
|
|
#endif
|
|
|
|
// This is the start of the medium (10 Hz) loop pieces
|
|
// -----------------------------------------
|
|
switch(medium_loopCounter) {
|
|
|
|
// This case deals with the GPS
|
|
//-------------------------------
|
|
case 0:
|
|
medium_loopCounter++;
|
|
if(GPS_enabled){
|
|
update_GPS();
|
|
calc_gndspeed_undershoot();
|
|
}
|
|
|
|
#if HIL_MODE != HIL_MODE_ATTITUDE
|
|
if (g.compass_enabled && compass.read()) {
|
|
compass.calculate(dcm.get_dcm_matrix()); // Calculate heading
|
|
compass.null_offsets(dcm.get_dcm_matrix());
|
|
}
|
|
#endif
|
|
/*{
|
|
Serial.print(dcm.roll_sensor, DEC); Serial.printf_P(PSTR("\t"));
|
|
Serial.print(dcm.pitch_sensor, DEC); Serial.printf_P(PSTR("\t"));
|
|
Serial.print(dcm.yaw_sensor, DEC); Serial.printf_P(PSTR("\t"));
|
|
Vector3f tempaccel = imu.get_accel();
|
|
Serial.print(tempaccel.x, DEC); Serial.printf_P(PSTR("\t"));
|
|
Serial.print(tempaccel.y, DEC); Serial.printf_P(PSTR("\t"));
|
|
Serial.println(tempaccel.z, DEC);
|
|
}*/
|
|
|
|
break;
|
|
|
|
// This case performs some navigation computations
|
|
//------------------------------------------------
|
|
case 1:
|
|
medium_loopCounter++;
|
|
|
|
|
|
if(g_gps->new_data){
|
|
g_gps->new_data = false;
|
|
dTnav = millis() - nav_loopTimer;
|
|
nav_loopTimer = millis();
|
|
|
|
// calculate the plane's desired bearing
|
|
// -------------------------------------
|
|
navigate();
|
|
}
|
|
|
|
break;
|
|
|
|
// command processing
|
|
//------------------------------
|
|
case 2:
|
|
medium_loopCounter++;
|
|
|
|
// Read altitude from sensors
|
|
// ------------------
|
|
update_alt();
|
|
if(g.sonar_enabled) sonar_alt = sonar.read();
|
|
|
|
// altitude smoothing
|
|
// ------------------
|
|
if (control_mode != FLY_BY_WIRE_B)
|
|
calc_altitude_error();
|
|
|
|
// perform next command
|
|
// --------------------
|
|
update_commands();
|
|
break;
|
|
|
|
// This case deals with sending high rate telemetry
|
|
//-------------------------------------------------
|
|
case 3:
|
|
medium_loopCounter++;
|
|
|
|
#if HIL_MODE != HIL_MODE_ATTITUDE
|
|
if ((g.log_bitmask & MASK_LOG_ATTITUDE_MED) && !(g.log_bitmask & MASK_LOG_ATTITUDE_FAST))
|
|
Log_Write_Attitude((int)dcm.roll_sensor, (int)dcm.pitch_sensor, (uint16_t)dcm.yaw_sensor);
|
|
|
|
if (g.log_bitmask & MASK_LOG_CTUN)
|
|
Log_Write_Control_Tuning();
|
|
#endif
|
|
|
|
if (g.log_bitmask & MASK_LOG_NTUN)
|
|
Log_Write_Nav_Tuning();
|
|
|
|
if (g.log_bitmask & MASK_LOG_GPS)
|
|
Log_Write_GPS(g_gps->time, current_loc.lat, current_loc.lng, g_gps->altitude, current_loc.alt, (long) g_gps->ground_speed, g_gps->ground_course, g_gps->fix, g_gps->num_sats);
|
|
|
|
// send all requested output streams with rates requested
|
|
// between 5 and 45 Hz
|
|
gcs_data_stream_send(5,45);
|
|
break;
|
|
|
|
// This case controls the slow loop
|
|
//---------------------------------
|
|
case 4:
|
|
medium_loopCounter = 0;
|
|
delta_ms_medium_loop = millis() - medium_loopTimer;
|
|
medium_loopTimer = millis();
|
|
|
|
if (g.battery_monitoring != 0){
|
|
read_battery();
|
|
}
|
|
|
|
slow_loop();
|
|
break;
|
|
}
|
|
}
|
|
|
|
static void slow_loop()
|
|
{
|
|
// This is the slow (3 1/3 Hz) loop pieces
|
|
//----------------------------------------
|
|
switch (slow_loopCounter){
|
|
case 0:
|
|
slow_loopCounter++;
|
|
check_long_failsafe();
|
|
superslow_loopCounter++;
|
|
if(superslow_loopCounter >=200) { // 200 = Execute every minute
|
|
#if HIL_MODE != HIL_MODE_ATTITUDE
|
|
if(g.compass_enabled) {
|
|
compass.save_offsets();
|
|
}
|
|
#endif
|
|
|
|
superslow_loopCounter = 0;
|
|
}
|
|
break;
|
|
|
|
case 1:
|
|
slow_loopCounter++;
|
|
|
|
// Read 3-position switch on radio
|
|
// -------------------------------
|
|
read_control_switch();
|
|
|
|
// Read Control Surfaces/Mix switches
|
|
// ----------------------------------
|
|
update_servo_switches();
|
|
|
|
update_aux_servo_function(&g.rc_5, &g.rc_6, &g.rc_7, &g.rc_8);
|
|
|
|
#if MOUNT == ENABLED
|
|
camera_mount.update_mount_type();
|
|
#endif
|
|
break;
|
|
|
|
case 2:
|
|
slow_loopCounter = 0;
|
|
update_events();
|
|
|
|
mavlink_system.sysid = g.sysid_this_mav; // This is just an ugly hack to keep mavlink_system.sysid sync'd with our parameter
|
|
gcs_data_stream_send(3,5);
|
|
|
|
#if USB_MUX_PIN > 0
|
|
check_usb_mux();
|
|
#endif
|
|
|
|
break;
|
|
}
|
|
}
|
|
|
|
static void one_second_loop()
|
|
{
|
|
if (g.log_bitmask & MASK_LOG_CUR)
|
|
Log_Write_Current();
|
|
|
|
// send a heartbeat
|
|
gcs_send_message(MSG_HEARTBEAT);
|
|
gcs_data_stream_send(1,3);
|
|
}
|
|
|
|
static void update_GPS(void)
|
|
{
|
|
g_gps->update();
|
|
update_GPS_light();
|
|
|
|
if (g_gps->new_data && g_gps->fix) {
|
|
// for performance
|
|
// ---------------
|
|
gps_fix_count++;
|
|
|
|
if(ground_start_count > 1){
|
|
ground_start_count--;
|
|
ground_start_avg += g_gps->ground_speed;
|
|
|
|
} else if (ground_start_count == 1) {
|
|
// We countdown N number of good GPS fixes
|
|
// so that the altitude is more accurate
|
|
// -------------------------------------
|
|
if (current_loc.lat == 0) {
|
|
ground_start_count = 5;
|
|
|
|
} else {
|
|
if(ENABLE_AIR_START == 1 && (ground_start_avg / 5) < SPEEDFILT){
|
|
startup_ground();
|
|
|
|
if (g.log_bitmask & MASK_LOG_CMD)
|
|
Log_Write_Startup(TYPE_GROUNDSTART_MSG);
|
|
|
|
init_home();
|
|
} else if (ENABLE_AIR_START == 0) {
|
|
init_home();
|
|
}
|
|
|
|
ground_start_count = 0;
|
|
}
|
|
}
|
|
|
|
|
|
current_loc.lng = g_gps->longitude; // Lon * 10**7
|
|
current_loc.lat = g_gps->latitude; // Lat * 10**7
|
|
|
|
// see if we've breached the geo-fence
|
|
geofence_check(false);
|
|
}
|
|
}
|
|
|
|
static void update_current_flight_mode(void)
|
|
{
|
|
if(control_mode == AUTO){
|
|
crash_checker();
|
|
|
|
switch(nav_command_ID){
|
|
case MAV_CMD_NAV_TAKEOFF:
|
|
if (hold_course > -1) {
|
|
calc_nav_roll();
|
|
} else {
|
|
nav_roll = 0;
|
|
}
|
|
|
|
if (g.airspeed_enabled == true)
|
|
{
|
|
calc_nav_pitch();
|
|
if (nav_pitch < (long)takeoff_pitch) nav_pitch = (long)takeoff_pitch;
|
|
} else {
|
|
nav_pitch = (long)((float)g_gps->ground_speed / (float)g.airspeed_cruise * (float)takeoff_pitch * 0.5);
|
|
nav_pitch = constrain(nav_pitch, 500l, (long)takeoff_pitch);
|
|
}
|
|
|
|
g.channel_throttle.servo_out = g.throttle_max; //TODO: Replace with THROTTLE_TAKEOFF or other method of controlling throttle
|
|
// What is the case for doing something else? Why wouldn't you want max throttle for TO?
|
|
// ******************************
|
|
|
|
break;
|
|
|
|
case MAV_CMD_NAV_LAND:
|
|
calc_nav_roll();
|
|
|
|
if (g.airspeed_enabled == true){
|
|
calc_nav_pitch();
|
|
calc_throttle();
|
|
}else{
|
|
calc_nav_pitch(); // calculate nav_pitch just to use for calc_throttle
|
|
calc_throttle(); // throttle based on altitude error
|
|
nav_pitch = landing_pitch; // pitch held constant
|
|
}
|
|
|
|
if (land_complete){
|
|
g.channel_throttle.servo_out = 0;
|
|
}
|
|
break;
|
|
|
|
default:
|
|
hold_course = -1;
|
|
calc_nav_roll();
|
|
calc_nav_pitch();
|
|
calc_throttle();
|
|
break;
|
|
}
|
|
}else{
|
|
switch(control_mode){
|
|
case RTL:
|
|
case LOITER:
|
|
case GUIDED:
|
|
hold_course = -1;
|
|
crash_checker();
|
|
calc_nav_roll();
|
|
calc_nav_pitch();
|
|
calc_throttle();
|
|
break;
|
|
|
|
case FLY_BY_WIRE_A:
|
|
// set nav_roll and nav_pitch using sticks
|
|
nav_roll = g.channel_roll.norm_input() * g.roll_limit;
|
|
nav_pitch = g.channel_pitch.norm_input() * (-1) * g.pitch_limit_min;
|
|
// We use pitch_min above because it is usually greater magnitude then pitch_max. -1 is to compensate for its sign.
|
|
nav_pitch = constrain(nav_pitch, -3000, 3000); // trying to give more pitch authority
|
|
if (inverted_flight) nav_pitch = -nav_pitch;
|
|
break;
|
|
|
|
case FLY_BY_WIRE_B:
|
|
// Substitute stick inputs for Navigation control output
|
|
// We use g.pitch_limit_min because its magnitude is
|
|
// normally greater than g.pitch_limit_max
|
|
nav_roll = g.channel_roll.norm_input() * g.roll_limit;
|
|
altitude_error = g.channel_pitch.norm_input() * g.pitch_limit_min;
|
|
|
|
if ((current_loc.alt>=home.alt+g.FBWB_min_altitude) || (g.FBWB_min_altitude == 0)) {
|
|
altitude_error = g.channel_pitch.norm_input() * g.pitch_limit_min;
|
|
} else {
|
|
if (g.channel_pitch.norm_input()<0)
|
|
altitude_error =( (home.alt + g.FBWB_min_altitude) - current_loc.alt) + g.channel_pitch.norm_input() * g.pitch_limit_min ;
|
|
else altitude_error =( (home.alt + g.FBWB_min_altitude) - current_loc.alt) ;
|
|
}
|
|
calc_throttle();
|
|
calc_nav_pitch();
|
|
break;
|
|
|
|
case STABILIZE:
|
|
nav_roll = 0;
|
|
nav_pitch = 0;
|
|
// throttle is passthrough
|
|
break;
|
|
|
|
case CIRCLE:
|
|
// we have no GPS installed and have lost radio contact
|
|
// or we just want to fly around in a gentle circle w/o GPS
|
|
// ----------------------------------------------------
|
|
nav_roll = g.roll_limit / 3;
|
|
nav_pitch = 0;
|
|
|
|
if (failsafe != FAILSAFE_NONE){
|
|
g.channel_throttle.servo_out = g.throttle_cruise;
|
|
}
|
|
break;
|
|
|
|
case MANUAL:
|
|
// servo_out is for Sim control only
|
|
// ---------------------------------
|
|
g.channel_roll.servo_out = g.channel_roll.pwm_to_angle();
|
|
g.channel_pitch.servo_out = g.channel_pitch.pwm_to_angle();
|
|
g.channel_rudder.servo_out = g.channel_rudder.pwm_to_angle();
|
|
break;
|
|
//roll: -13788.000, pitch: -13698.000, thr: 0.000, rud: -13742.000
|
|
|
|
}
|
|
}
|
|
}
|
|
|
|
static void update_navigation()
|
|
{
|
|
// wp_distance is in ACTUAL meters, not the *100 meters we get from the GPS
|
|
// ------------------------------------------------------------------------
|
|
|
|
// distance and bearing calcs only
|
|
if(control_mode == AUTO){
|
|
verify_commands();
|
|
}else{
|
|
|
|
switch(control_mode){
|
|
case LOITER:
|
|
case RTL:
|
|
case GUIDED:
|
|
update_loiter();
|
|
calc_bearing_error();
|
|
break;
|
|
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
static void update_alt()
|
|
{
|
|
#if HIL_MODE == HIL_MODE_ATTITUDE
|
|
current_loc.alt = g_gps->altitude;
|
|
#else
|
|
// this function is in place to potentially add a sonar sensor in the future
|
|
//altitude_sensor = BARO;
|
|
|
|
if (barometer.healthy) {
|
|
current_loc.alt = (1 - g.altitude_mix) * g_gps->altitude; // alt_MSL centimeters (meters * 100)
|
|
current_loc.alt += g.altitude_mix * (read_barometer() + home.alt);
|
|
} else if (g_gps->fix) {
|
|
current_loc.alt = g_gps->altitude; // alt_MSL centimeters (meters * 100)
|
|
}
|
|
#endif
|
|
|
|
geofence_check(true);
|
|
|
|
// Calculate new climb rate
|
|
//if(medium_loopCounter == 0 && slow_loopCounter == 0)
|
|
// add_altitude_data(millis() / 100, g_gps->altitude / 10);
|
|
}
|