mirror of
https://github.com/ArduPilot/ardupilot
synced 2025-01-15 13:18:28 -04:00
c0d88e2673
Fixes bug that prevents the vertical velocity being reset to the GPS if the position aiding has already timed out and improves sensitivity of the bad IMU data check.
746 lines
35 KiB
C++
746 lines
35 KiB
C++
#include <AP_HAL/AP_HAL.h>
|
|
|
|
#include "AP_NavEKF3.h"
|
|
#include "AP_NavEKF3_core.h"
|
|
#include <GCS_MAVLink/GCS.h>
|
|
|
|
/********************************************************
|
|
* RESET FUNCTIONS *
|
|
********************************************************/
|
|
|
|
/********************************************************
|
|
* FUSE MEASURED_DATA *
|
|
********************************************************/
|
|
|
|
// select fusion of optical flow measurements
|
|
void NavEKF3_core::SelectFlowFusion()
|
|
{
|
|
// Check if the magnetometer has been fused on that time step and the filter is running at faster than 200 Hz
|
|
// If so, don't fuse measurements on this time step to reduce frame over-runs
|
|
// Only allow one time slip to prevent high rate magnetometer data preventing fusion of other measurements
|
|
if (magFusePerformed && dtIMUavg < 0.005f && !optFlowFusionDelayed) {
|
|
optFlowFusionDelayed = true;
|
|
return;
|
|
} else {
|
|
optFlowFusionDelayed = false;
|
|
}
|
|
|
|
of_elements ofDataDelayed; // OF data at the fusion time horizon
|
|
|
|
// Check for data at the fusion time horizon
|
|
const bool flowDataToFuse = storedOF.recall(ofDataDelayed, imuDataDelayed.time_ms);
|
|
|
|
// Perform Data Checks
|
|
// Check if the optical flow data is still valid
|
|
flowDataValid = ((imuSampleTime_ms - flowValidMeaTime_ms) < 1000);
|
|
// check is the terrain offset estimate is still valid - if we are using range finder as the main height reference, the ground is assumed to be at 0
|
|
gndOffsetValid = ((imuSampleTime_ms - gndHgtValidTime_ms) < 5000) || (activeHgtSource == AP_NavEKF_Source::SourceZ::RANGEFINDER);
|
|
// Perform tilt check
|
|
bool tiltOK = (prevTnb.c.z > frontend->DCM33FlowMin);
|
|
// Constrain measurements to zero if takeoff is not detected and the height above ground
|
|
// is insuffient to achieve acceptable focus. This allows the vehicle to be picked up
|
|
// and carried to test optical flow operation
|
|
if (!takeOffDetected && ((terrainState - stateStruct.position.z) < 0.5f)) {
|
|
ofDataDelayed.flowRadXYcomp.zero();
|
|
ofDataDelayed.flowRadXY.zero();
|
|
flowDataValid = true;
|
|
}
|
|
|
|
// if have valid flow or range measurements, fuse data into a 1-state EKF to estimate terrain height
|
|
if (((flowDataToFuse && (frontend->_flowUse == FLOW_USE_TERRAIN)) || rangeDataToFuse) && tiltOK) {
|
|
// Estimate the terrain offset (runs a one state EKF)
|
|
EstimateTerrainOffset(ofDataDelayed);
|
|
}
|
|
|
|
// Fuse optical flow data into the main filter
|
|
if (flowDataToFuse && tiltOK) {
|
|
const bool fuse_optflow = (frontend->_flowUse == FLOW_USE_NAV) && frontend->sources.useVelXYSource(AP_NavEKF_Source::SourceXY::OPTFLOW);
|
|
// Set the flow noise used by the fusion processes
|
|
R_LOS = sq(MAX(frontend->_flowNoise, 0.05f));
|
|
// Fuse the optical flow X and Y axis data into the main filter sequentially
|
|
FuseOptFlow(ofDataDelayed, fuse_optflow);
|
|
}
|
|
}
|
|
|
|
/*
|
|
Estimation of terrain offset using a single state EKF
|
|
The filter can fuse motion compensated optical flow rates and range finder measurements
|
|
Equations generated using https://github.com/PX4/ecl/tree/master/EKF/matlab/scripts/Terrain%20Estimator
|
|
*/
|
|
void NavEKF3_core::EstimateTerrainOffset(const of_elements &ofDataDelayed)
|
|
{
|
|
// horizontal velocity squared
|
|
ftype velHorizSq = sq(stateStruct.velocity.x) + sq(stateStruct.velocity.y);
|
|
|
|
// don't fuse flow data if LOS rate is misaligned, without GPS, or insufficient velocity, as it is poorly observable
|
|
// don't fuse flow data if it exceeds validity limits
|
|
// don't update terrain offset if ground is being used as the zero height datum in the main filter
|
|
bool cantFuseFlowData = ((frontend->_flowUse != FLOW_USE_TERRAIN)
|
|
|| !gpsIsInUse
|
|
|| PV_AidingMode == AID_RELATIVE
|
|
|| velHorizSq < 25.0f
|
|
|| (MAX(ofDataDelayed.flowRadXY[0],ofDataDelayed.flowRadXY[1]) > frontend->_maxFlowRate));
|
|
|
|
if ((!rangeDataToFuse && cantFuseFlowData) || (activeHgtSource == AP_NavEKF_Source::SourceZ::RANGEFINDER)) {
|
|
// skip update
|
|
inhibitGndState = true;
|
|
} else {
|
|
inhibitGndState = false;
|
|
// record the time we last updated the terrain offset state
|
|
gndHgtValidTime_ms = imuSampleTime_ms;
|
|
|
|
// propagate ground position state noise each time this is called using the difference in position since the last observations and an RMS gradient assumption
|
|
// limit distance to prevent intialisation afer bad gps causing bad numerical conditioning
|
|
ftype distanceTravelledSq = sq(stateStruct.position[0] - prevPosN) + sq(stateStruct.position[1] - prevPosE);
|
|
distanceTravelledSq = MIN(distanceTravelledSq, 100.0f);
|
|
prevPosN = stateStruct.position[0];
|
|
prevPosE = stateStruct.position[1];
|
|
|
|
// in addition to a terrain gradient error model, we also have the growth in uncertainty due to the copters vertical velocity
|
|
ftype timeLapsed = MIN(0.001f * (imuSampleTime_ms - timeAtLastAuxEKF_ms), 1.0f);
|
|
ftype Pincrement = (distanceTravelledSq * sq(frontend->_terrGradMax)) + sq(timeLapsed)*P[6][6];
|
|
Popt += Pincrement;
|
|
timeAtLastAuxEKF_ms = imuSampleTime_ms;
|
|
|
|
// fuse range finder data
|
|
if (rangeDataToFuse) {
|
|
// predict range
|
|
ftype predRngMeas = MAX((terrainState - stateStruct.position[2]),rngOnGnd) / prevTnb.c.z;
|
|
|
|
// Copy required states to local variable names
|
|
ftype q0 = stateStruct.quat[0]; // quaternion at optical flow measurement time
|
|
ftype q1 = stateStruct.quat[1]; // quaternion at optical flow measurement time
|
|
ftype q2 = stateStruct.quat[2]; // quaternion at optical flow measurement time
|
|
ftype q3 = stateStruct.quat[3]; // quaternion at optical flow measurement time
|
|
|
|
// Set range finder measurement noise variance. TODO make this a function of range and tilt to allow for sensor, alignment and AHRS errors
|
|
ftype R_RNG = frontend->_rngNoise;
|
|
|
|
// calculate Kalman gain
|
|
ftype SK_RNG = sq(q0) - sq(q1) - sq(q2) + sq(q3);
|
|
ftype K_RNG = Popt/(SK_RNG*(R_RNG + Popt/sq(SK_RNG)));
|
|
|
|
// Calculate the innovation variance for data logging
|
|
varInnovRng = (R_RNG + Popt/sq(SK_RNG));
|
|
|
|
// constrain terrain height to be below the vehicle
|
|
terrainState = MAX(terrainState, stateStruct.position[2] + rngOnGnd);
|
|
|
|
// Calculate the measurement innovation
|
|
innovRng = predRngMeas - rangeDataDelayed.rng;
|
|
|
|
// calculate the innovation consistency test ratio
|
|
auxRngTestRatio = sq(innovRng) / (sq(MAX(0.01f * (ftype)frontend->_rngInnovGate, 1.0f)) * varInnovRng);
|
|
|
|
// Check the innovation test ratio and don't fuse if too large
|
|
if (auxRngTestRatio < 1.0f) {
|
|
// correct the state
|
|
terrainState -= K_RNG * innovRng;
|
|
|
|
// constrain the state
|
|
terrainState = MAX(terrainState, stateStruct.position[2] + rngOnGnd);
|
|
|
|
// correct the covariance
|
|
Popt = Popt - sq(Popt)/(SK_RNG*(R_RNG + Popt/sq(SK_RNG))*(sq(q0) - sq(q1) - sq(q2) + sq(q3)));
|
|
|
|
// prevent the state variance from becoming negative
|
|
Popt = MAX(Popt,0.0f);
|
|
|
|
}
|
|
}
|
|
|
|
if (!cantFuseFlowData) {
|
|
|
|
Vector3F relVelSensor; // velocity of sensor relative to ground in sensor axes
|
|
Vector2F losPred; // predicted optical flow angular rate measurement
|
|
ftype q0 = stateStruct.quat[0]; // quaternion at optical flow measurement time
|
|
ftype q1 = stateStruct.quat[1]; // quaternion at optical flow measurement time
|
|
ftype q2 = stateStruct.quat[2]; // quaternion at optical flow measurement time
|
|
ftype q3 = stateStruct.quat[3]; // quaternion at optical flow measurement time
|
|
ftype K_OPT;
|
|
ftype H_OPT;
|
|
Vector2F auxFlowObsInnovVar;
|
|
|
|
// predict range to centre of image
|
|
ftype flowRngPred = MAX((terrainState - stateStruct.position.z),rngOnGnd) / prevTnb.c.z;
|
|
|
|
// constrain terrain height to be below the vehicle
|
|
terrainState = MAX(terrainState, stateStruct.position.z + rngOnGnd);
|
|
|
|
// calculate relative velocity in sensor frame
|
|
relVelSensor = prevTnb*stateStruct.velocity;
|
|
|
|
// divide velocity by range, subtract body rates and apply scale factor to
|
|
// get predicted sensed angular optical rates relative to X and Y sensor axes
|
|
losPred.x = relVelSensor.y / flowRngPred;
|
|
losPred.y = - relVelSensor.x / flowRngPred;
|
|
|
|
// calculate innovations
|
|
auxFlowObsInnov = losPred - ofDataDelayed.flowRadXYcomp;
|
|
|
|
// calculate observation jacobians
|
|
ftype t2 = q0*q0;
|
|
ftype t3 = q1*q1;
|
|
ftype t4 = q2*q2;
|
|
ftype t5 = q3*q3;
|
|
ftype t6 = stateStruct.position.z - terrainState;
|
|
ftype t7 = 1.0f / (t6*t6);
|
|
ftype t8 = q0*q3*2.0f;
|
|
ftype t9 = t2-t3-t4+t5;
|
|
|
|
// prevent the state variances from becoming badly conditioned
|
|
Popt = MAX(Popt,1E-6f);
|
|
|
|
// calculate observation noise variance from parameter
|
|
ftype flow_noise_variance = sq(MAX(frontend->_flowNoise, 0.05f));
|
|
|
|
// Fuse Y axis data
|
|
|
|
// Calculate observation partial derivative
|
|
H_OPT = t7*t9*(-stateStruct.velocity.z*(q0*q2*2.0-q1*q3*2.0)+stateStruct.velocity.x*(t2+t3-t4-t5)+stateStruct.velocity.y*(t8+q1*q2*2.0));
|
|
|
|
// calculate innovation variance
|
|
auxFlowObsInnovVar.y = H_OPT * Popt * H_OPT + flow_noise_variance;
|
|
|
|
// calculate Kalman gain
|
|
K_OPT = Popt * H_OPT / auxFlowObsInnovVar.y;
|
|
|
|
// calculate the innovation consistency test ratio
|
|
auxFlowTestRatio.y = sq(auxFlowObsInnov.y) / (sq(MAX(0.01f * (ftype)frontend->_flowInnovGate, 1.0f)) * auxFlowObsInnovVar.y);
|
|
|
|
// don't fuse if optical flow data is outside valid range
|
|
if (auxFlowTestRatio.y < 1.0f) {
|
|
|
|
// correct the state
|
|
terrainState -= K_OPT * auxFlowObsInnov.y;
|
|
|
|
// constrain the state
|
|
terrainState = MAX(terrainState, stateStruct.position.z + rngOnGnd);
|
|
|
|
// update intermediate variables used when fusing the X axis
|
|
t6 = stateStruct.position.z - terrainState;
|
|
t7 = 1.0f / (t6*t6);
|
|
|
|
// correct the covariance
|
|
Popt = Popt - K_OPT * H_OPT * Popt;
|
|
|
|
// prevent the state variances from becoming badly conditioned
|
|
Popt = MAX(Popt,1E-6f);
|
|
}
|
|
|
|
// fuse X axis data
|
|
H_OPT = -t7*t9*(stateStruct.velocity.z*(q0*q1*2.0+q2*q3*2.0)+stateStruct.velocity.y*(t2-t3+t4-t5)-stateStruct.velocity.x*(t8-q1*q2*2.0));
|
|
|
|
// calculate innovation variances
|
|
auxFlowObsInnovVar.x = H_OPT * Popt * H_OPT + flow_noise_variance;
|
|
|
|
// calculate Kalman gain
|
|
K_OPT = Popt * H_OPT / auxFlowObsInnovVar.x;
|
|
|
|
// calculate the innovation consistency test ratio
|
|
auxFlowTestRatio.x = sq(auxFlowObsInnov.x) / (sq(MAX(0.01f * (ftype)frontend->_flowInnovGate, 1.0f)) * auxFlowObsInnovVar.x);
|
|
|
|
// don't fuse if optical flow data is outside valid range
|
|
if (auxFlowTestRatio.x < 1.0f) {
|
|
|
|
// correct the state
|
|
terrainState -= K_OPT * auxFlowObsInnov.x;
|
|
|
|
// constrain the state
|
|
terrainState = MAX(terrainState, stateStruct.position.z + rngOnGnd);
|
|
|
|
// correct the covariance
|
|
Popt = Popt - K_OPT * H_OPT * Popt;
|
|
|
|
// prevent the state variances from becoming badly conditioned
|
|
Popt = MAX(Popt,1E-6f);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Fuse angular motion compensated optical flow rates using explicit algebraic equations generated with Matlab symbolic toolbox.
|
|
* The script file used to generate these and other equations in this filter can be found here:
|
|
* https://github.com/PX4/ecl/blob/master/matlab/scripts/Inertial%20Nav%20EKF/GenerateNavFilterEquations.m
|
|
* Requires a valid terrain height estimate.
|
|
*
|
|
* really_fuse should be true to actually fuse into the main filter, false to only calculate variances
|
|
*/
|
|
void NavEKF3_core::FuseOptFlow(const of_elements &ofDataDelayed, bool really_fuse)
|
|
{
|
|
Vector24 H_LOS;
|
|
Vector3F relVelSensor;
|
|
Vector2 losPred;
|
|
|
|
// Copy required states to local variable names
|
|
ftype q0 = stateStruct.quat[0];
|
|
ftype q1 = stateStruct.quat[1];
|
|
ftype q2 = stateStruct.quat[2];
|
|
ftype q3 = stateStruct.quat[3];
|
|
ftype vn = stateStruct.velocity.x;
|
|
ftype ve = stateStruct.velocity.y;
|
|
ftype vd = stateStruct.velocity.z;
|
|
ftype pd = stateStruct.position.z;
|
|
|
|
// constrain height above ground to be above range measured on ground
|
|
ftype heightAboveGndEst = MAX((terrainState - pd), rngOnGnd);
|
|
|
|
// Fuse X and Y axis measurements sequentially assuming observation errors are uncorrelated
|
|
for (uint8_t obsIndex=0; obsIndex<=1; obsIndex++) { // fuse X axis data first
|
|
// calculate range from ground plain to centre of sensor fov assuming flat earth
|
|
ftype range = constrain_ftype((heightAboveGndEst/prevTnb.c.z),rngOnGnd,1000.0f);
|
|
|
|
// correct range for flow sensor offset body frame position offset
|
|
// the corrected value is the predicted range from the sensor focal point to the
|
|
// centre of the image on the ground assuming flat terrain
|
|
Vector3F posOffsetBody = ofDataDelayed.body_offset - accelPosOffset;
|
|
if (!posOffsetBody.is_zero()) {
|
|
Vector3F posOffsetEarth = prevTnb.mul_transpose(posOffsetBody);
|
|
range -= posOffsetEarth.z / prevTnb.c.z;
|
|
}
|
|
|
|
// calculate relative velocity in sensor frame including the relative motion due to rotation
|
|
relVelSensor = (prevTnb * stateStruct.velocity) + (ofDataDelayed.bodyRadXYZ % posOffsetBody);
|
|
|
|
// divide velocity by range to get predicted angular LOS rates relative to X and Y axes
|
|
losPred[0] = relVelSensor.y/range;
|
|
losPred[1] = -relVelSensor.x/range;
|
|
|
|
// calculate observation jacobians and Kalman gains
|
|
memset(&H_LOS[0], 0, sizeof(H_LOS));
|
|
if (obsIndex == 0) {
|
|
// calculate X axis observation Jacobian
|
|
ftype t2 = 1.0f / range;
|
|
H_LOS[0] = t2*(q1*vd*2.0f+q0*ve*2.0f-q3*vn*2.0f);
|
|
H_LOS[1] = t2*(q0*vd*2.0f-q1*ve*2.0f+q2*vn*2.0f);
|
|
H_LOS[2] = t2*(q3*vd*2.0f+q2*ve*2.0f+q1*vn*2.0f);
|
|
H_LOS[3] = -t2*(q2*vd*-2.0f+q3*ve*2.0f+q0*vn*2.0f);
|
|
H_LOS[4] = -t2*(q0*q3*2.0f-q1*q2*2.0f);
|
|
H_LOS[5] = t2*(q0*q0-q1*q1+q2*q2-q3*q3);
|
|
H_LOS[6] = t2*(q0*q1*2.0f+q2*q3*2.0f);
|
|
|
|
// calculate intermediate variables for the X observation innovation variance and Kalman gains
|
|
ftype t3 = q1*vd*2.0f;
|
|
ftype t4 = q0*ve*2.0f;
|
|
ftype t11 = q3*vn*2.0f;
|
|
ftype t5 = t3+t4-t11;
|
|
ftype t6 = q0*q3*2.0f;
|
|
ftype t29 = q1*q2*2.0f;
|
|
ftype t7 = t6-t29;
|
|
ftype t8 = q0*q1*2.0f;
|
|
ftype t9 = q2*q3*2.0f;
|
|
ftype t10 = t8+t9;
|
|
ftype t12 = P[0][0]*t2*t5;
|
|
ftype t13 = q0*vd*2.0f;
|
|
ftype t14 = q2*vn*2.0f;
|
|
ftype t28 = q1*ve*2.0f;
|
|
ftype t15 = t13+t14-t28;
|
|
ftype t16 = q3*vd*2.0f;
|
|
ftype t17 = q2*ve*2.0f;
|
|
ftype t18 = q1*vn*2.0f;
|
|
ftype t19 = t16+t17+t18;
|
|
ftype t20 = q3*ve*2.0f;
|
|
ftype t21 = q0*vn*2.0f;
|
|
ftype t30 = q2*vd*2.0f;
|
|
ftype t22 = t20+t21-t30;
|
|
ftype t23 = q0*q0;
|
|
ftype t24 = q1*q1;
|
|
ftype t25 = q2*q2;
|
|
ftype t26 = q3*q3;
|
|
ftype t27 = t23-t24+t25-t26;
|
|
ftype t31 = P[1][1]*t2*t15;
|
|
ftype t32 = P[6][0]*t2*t10;
|
|
ftype t33 = P[1][0]*t2*t15;
|
|
ftype t34 = P[2][0]*t2*t19;
|
|
ftype t35 = P[5][0]*t2*t27;
|
|
ftype t79 = P[4][0]*t2*t7;
|
|
ftype t80 = P[3][0]*t2*t22;
|
|
ftype t36 = t12+t32+t33+t34+t35-t79-t80;
|
|
ftype t37 = t2*t5*t36;
|
|
ftype t38 = P[6][1]*t2*t10;
|
|
ftype t39 = P[0][1]*t2*t5;
|
|
ftype t40 = P[2][1]*t2*t19;
|
|
ftype t41 = P[5][1]*t2*t27;
|
|
ftype t81 = P[4][1]*t2*t7;
|
|
ftype t82 = P[3][1]*t2*t22;
|
|
ftype t42 = t31+t38+t39+t40+t41-t81-t82;
|
|
ftype t43 = t2*t15*t42;
|
|
ftype t44 = P[6][2]*t2*t10;
|
|
ftype t45 = P[0][2]*t2*t5;
|
|
ftype t46 = P[1][2]*t2*t15;
|
|
ftype t47 = P[2][2]*t2*t19;
|
|
ftype t48 = P[5][2]*t2*t27;
|
|
ftype t83 = P[4][2]*t2*t7;
|
|
ftype t84 = P[3][2]*t2*t22;
|
|
ftype t49 = t44+t45+t46+t47+t48-t83-t84;
|
|
ftype t50 = t2*t19*t49;
|
|
ftype t51 = P[6][3]*t2*t10;
|
|
ftype t52 = P[0][3]*t2*t5;
|
|
ftype t53 = P[1][3]*t2*t15;
|
|
ftype t54 = P[2][3]*t2*t19;
|
|
ftype t55 = P[5][3]*t2*t27;
|
|
ftype t85 = P[4][3]*t2*t7;
|
|
ftype t86 = P[3][3]*t2*t22;
|
|
ftype t56 = t51+t52+t53+t54+t55-t85-t86;
|
|
ftype t57 = P[6][5]*t2*t10;
|
|
ftype t58 = P[0][5]*t2*t5;
|
|
ftype t59 = P[1][5]*t2*t15;
|
|
ftype t60 = P[2][5]*t2*t19;
|
|
ftype t61 = P[5][5]*t2*t27;
|
|
ftype t88 = P[4][5]*t2*t7;
|
|
ftype t89 = P[3][5]*t2*t22;
|
|
ftype t62 = t57+t58+t59+t60+t61-t88-t89;
|
|
ftype t63 = t2*t27*t62;
|
|
ftype t64 = P[6][4]*t2*t10;
|
|
ftype t65 = P[0][4]*t2*t5;
|
|
ftype t66 = P[1][4]*t2*t15;
|
|
ftype t67 = P[2][4]*t2*t19;
|
|
ftype t68 = P[5][4]*t2*t27;
|
|
ftype t90 = P[4][4]*t2*t7;
|
|
ftype t91 = P[3][4]*t2*t22;
|
|
ftype t69 = t64+t65+t66+t67+t68-t90-t91;
|
|
ftype t70 = P[6][6]*t2*t10;
|
|
ftype t71 = P[0][6]*t2*t5;
|
|
ftype t72 = P[1][6]*t2*t15;
|
|
ftype t73 = P[2][6]*t2*t19;
|
|
ftype t74 = P[5][6]*t2*t27;
|
|
ftype t93 = P[4][6]*t2*t7;
|
|
ftype t94 = P[3][6]*t2*t22;
|
|
ftype t75 = t70+t71+t72+t73+t74-t93-t94;
|
|
ftype t76 = t2*t10*t75;
|
|
ftype t87 = t2*t22*t56;
|
|
ftype t92 = t2*t7*t69;
|
|
ftype t77 = R_LOS+t37+t43+t50+t63+t76-t87-t92;
|
|
ftype t78;
|
|
|
|
// calculate innovation variance for X axis observation and protect against a badly conditioned calculation
|
|
if (t77 > R_LOS) {
|
|
t78 = 1.0f/t77;
|
|
faultStatus.bad_xflow = false;
|
|
} else {
|
|
t77 = R_LOS;
|
|
t78 = 1.0f/R_LOS;
|
|
faultStatus.bad_xflow = true;
|
|
return;
|
|
}
|
|
flowVarInnov[0] = t77;
|
|
|
|
// calculate innovation for X axis observation
|
|
// flowInnovTime_ms will be updated when Y-axis innovations are calculated
|
|
flowInnov[0] = losPred[0] - ofDataDelayed.flowRadXYcomp.x;
|
|
|
|
// calculate Kalman gains for X-axis observation
|
|
Kfusion[0] = t78*(t12-P[0][4]*t2*t7+P[0][1]*t2*t15+P[0][6]*t2*t10+P[0][2]*t2*t19-P[0][3]*t2*t22+P[0][5]*t2*t27);
|
|
Kfusion[1] = t78*(t31+P[1][0]*t2*t5-P[1][4]*t2*t7+P[1][6]*t2*t10+P[1][2]*t2*t19-P[1][3]*t2*t22+P[1][5]*t2*t27);
|
|
Kfusion[2] = t78*(t47+P[2][0]*t2*t5-P[2][4]*t2*t7+P[2][1]*t2*t15+P[2][6]*t2*t10-P[2][3]*t2*t22+P[2][5]*t2*t27);
|
|
Kfusion[3] = t78*(-t86+P[3][0]*t2*t5-P[3][4]*t2*t7+P[3][1]*t2*t15+P[3][6]*t2*t10+P[3][2]*t2*t19+P[3][5]*t2*t27);
|
|
Kfusion[4] = t78*(-t90+P[4][0]*t2*t5+P[4][1]*t2*t15+P[4][6]*t2*t10+P[4][2]*t2*t19-P[4][3]*t2*t22+P[4][5]*t2*t27);
|
|
Kfusion[5] = t78*(t61+P[5][0]*t2*t5-P[5][4]*t2*t7+P[5][1]*t2*t15+P[5][6]*t2*t10+P[5][2]*t2*t19-P[5][3]*t2*t22);
|
|
Kfusion[6] = t78*(t70+P[6][0]*t2*t5-P[6][4]*t2*t7+P[6][1]*t2*t15+P[6][2]*t2*t19-P[6][3]*t2*t22+P[6][5]*t2*t27);
|
|
Kfusion[7] = t78*(P[7][0]*t2*t5-P[7][4]*t2*t7+P[7][1]*t2*t15+P[7][6]*t2*t10+P[7][2]*t2*t19-P[7][3]*t2*t22+P[7][5]*t2*t27);
|
|
Kfusion[8] = t78*(P[8][0]*t2*t5-P[8][4]*t2*t7+P[8][1]*t2*t15+P[8][6]*t2*t10+P[8][2]*t2*t19-P[8][3]*t2*t22+P[8][5]*t2*t27);
|
|
Kfusion[9] = t78*(P[9][0]*t2*t5-P[9][4]*t2*t7+P[9][1]*t2*t15+P[9][6]*t2*t10+P[9][2]*t2*t19-P[9][3]*t2*t22+P[9][5]*t2*t27);
|
|
|
|
if (!inhibitDelAngBiasStates) {
|
|
Kfusion[10] = t78*(P[10][0]*t2*t5-P[10][4]*t2*t7+P[10][1]*t2*t15+P[10][6]*t2*t10+P[10][2]*t2*t19-P[10][3]*t2*t22+P[10][5]*t2*t27);
|
|
Kfusion[11] = t78*(P[11][0]*t2*t5-P[11][4]*t2*t7+P[11][1]*t2*t15+P[11][6]*t2*t10+P[11][2]*t2*t19-P[11][3]*t2*t22+P[11][5]*t2*t27);
|
|
Kfusion[12] = t78*(P[12][0]*t2*t5-P[12][4]*t2*t7+P[12][1]*t2*t15+P[12][6]*t2*t10+P[12][2]*t2*t19-P[12][3]*t2*t22+P[12][5]*t2*t27);
|
|
} else {
|
|
// zero indexes 10 to 12
|
|
zero_range(&Kfusion[0], 10, 12);
|
|
}
|
|
|
|
if (!inhibitDelVelBiasStates && !badIMUdata) {
|
|
for (uint8_t index = 0; index < 3; index++) {
|
|
const uint8_t stateIndex = index + 13;
|
|
if (!dvelBiasAxisInhibit[index]) {
|
|
Kfusion[stateIndex] = t78*(P[stateIndex][0]*t2*t5-P[stateIndex][4]*t2*t7+P[stateIndex][1]*t2*t15+P[stateIndex][6]*t2*t10+P[stateIndex][2]*t2*t19-P[stateIndex][3]*t2*t22+P[stateIndex][5]*t2*t27);
|
|
} else {
|
|
Kfusion[stateIndex] = 0.0f;
|
|
}
|
|
}
|
|
} else {
|
|
// zero indexes 13 to 15
|
|
zero_range(&Kfusion[0], 13, 15);
|
|
}
|
|
|
|
if (!inhibitMagStates) {
|
|
Kfusion[16] = t78*(P[16][0]*t2*t5-P[16][4]*t2*t7+P[16][1]*t2*t15+P[16][6]*t2*t10+P[16][2]*t2*t19-P[16][3]*t2*t22+P[16][5]*t2*t27);
|
|
Kfusion[17] = t78*(P[17][0]*t2*t5-P[17][4]*t2*t7+P[17][1]*t2*t15+P[17][6]*t2*t10+P[17][2]*t2*t19-P[17][3]*t2*t22+P[17][5]*t2*t27);
|
|
Kfusion[18] = t78*(P[18][0]*t2*t5-P[18][4]*t2*t7+P[18][1]*t2*t15+P[18][6]*t2*t10+P[18][2]*t2*t19-P[18][3]*t2*t22+P[18][5]*t2*t27);
|
|
Kfusion[19] = t78*(P[19][0]*t2*t5-P[19][4]*t2*t7+P[19][1]*t2*t15+P[19][6]*t2*t10+P[19][2]*t2*t19-P[19][3]*t2*t22+P[19][5]*t2*t27);
|
|
Kfusion[20] = t78*(P[20][0]*t2*t5-P[20][4]*t2*t7+P[20][1]*t2*t15+P[20][6]*t2*t10+P[20][2]*t2*t19-P[20][3]*t2*t22+P[20][5]*t2*t27);
|
|
Kfusion[21] = t78*(P[21][0]*t2*t5-P[21][4]*t2*t7+P[21][1]*t2*t15+P[21][6]*t2*t10+P[21][2]*t2*t19-P[21][3]*t2*t22+P[21][5]*t2*t27);
|
|
} else {
|
|
// zero indexes 16 to 21
|
|
zero_range(&Kfusion[0], 16, 21);
|
|
}
|
|
|
|
if (!inhibitWindStates) {
|
|
Kfusion[22] = t78*(P[22][0]*t2*t5-P[22][4]*t2*t7+P[22][1]*t2*t15+P[22][6]*t2*t10+P[22][2]*t2*t19-P[22][3]*t2*t22+P[22][5]*t2*t27);
|
|
Kfusion[23] = t78*(P[23][0]*t2*t5-P[23][4]*t2*t7+P[23][1]*t2*t15+P[23][6]*t2*t10+P[23][2]*t2*t19-P[23][3]*t2*t22+P[23][5]*t2*t27);
|
|
} else {
|
|
// zero indexes 22 to 23
|
|
zero_range(&Kfusion[0], 22, 23);
|
|
}
|
|
|
|
} else {
|
|
|
|
// calculate Y axis observation Jacobian
|
|
ftype t2 = 1.0f / range;
|
|
H_LOS[0] = -t2*(q2*vd*-2.0f+q3*ve*2.0f+q0*vn*2.0f);
|
|
H_LOS[1] = -t2*(q3*vd*2.0f+q2*ve*2.0f+q1*vn*2.0f);
|
|
H_LOS[2] = t2*(q0*vd*2.0f-q1*ve*2.0f+q2*vn*2.0f);
|
|
H_LOS[3] = -t2*(q1*vd*2.0f+q0*ve*2.0f-q3*vn*2.0f);
|
|
H_LOS[4] = -t2*(q0*q0+q1*q1-q2*q2-q3*q3);
|
|
H_LOS[5] = -t2*(q0*q3*2.0f+q1*q2*2.0f);
|
|
H_LOS[6] = t2*(q0*q2*2.0f-q1*q3*2.0f);
|
|
|
|
// calculate intermediate variables for the Y observation innovation variance and Kalman gains
|
|
ftype t3 = q3*ve*2.0f;
|
|
ftype t4 = q0*vn*2.0f;
|
|
ftype t11 = q2*vd*2.0f;
|
|
ftype t5 = t3+t4-t11;
|
|
ftype t6 = q0*q3*2.0f;
|
|
ftype t7 = q1*q2*2.0f;
|
|
ftype t8 = t6+t7;
|
|
ftype t9 = q0*q2*2.0f;
|
|
ftype t28 = q1*q3*2.0f;
|
|
ftype t10 = t9-t28;
|
|
ftype t12 = P[0][0]*t2*t5;
|
|
ftype t13 = q3*vd*2.0f;
|
|
ftype t14 = q2*ve*2.0f;
|
|
ftype t15 = q1*vn*2.0f;
|
|
ftype t16 = t13+t14+t15;
|
|
ftype t17 = q0*vd*2.0f;
|
|
ftype t18 = q2*vn*2.0f;
|
|
ftype t29 = q1*ve*2.0f;
|
|
ftype t19 = t17+t18-t29;
|
|
ftype t20 = q1*vd*2.0f;
|
|
ftype t21 = q0*ve*2.0f;
|
|
ftype t30 = q3*vn*2.0f;
|
|
ftype t22 = t20+t21-t30;
|
|
ftype t23 = q0*q0;
|
|
ftype t24 = q1*q1;
|
|
ftype t25 = q2*q2;
|
|
ftype t26 = q3*q3;
|
|
ftype t27 = t23+t24-t25-t26;
|
|
ftype t31 = P[1][1]*t2*t16;
|
|
ftype t32 = P[5][0]*t2*t8;
|
|
ftype t33 = P[1][0]*t2*t16;
|
|
ftype t34 = P[3][0]*t2*t22;
|
|
ftype t35 = P[4][0]*t2*t27;
|
|
ftype t80 = P[6][0]*t2*t10;
|
|
ftype t81 = P[2][0]*t2*t19;
|
|
ftype t36 = t12+t32+t33+t34+t35-t80-t81;
|
|
ftype t37 = t2*t5*t36;
|
|
ftype t38 = P[5][1]*t2*t8;
|
|
ftype t39 = P[0][1]*t2*t5;
|
|
ftype t40 = P[3][1]*t2*t22;
|
|
ftype t41 = P[4][1]*t2*t27;
|
|
ftype t82 = P[6][1]*t2*t10;
|
|
ftype t83 = P[2][1]*t2*t19;
|
|
ftype t42 = t31+t38+t39+t40+t41-t82-t83;
|
|
ftype t43 = t2*t16*t42;
|
|
ftype t44 = P[5][2]*t2*t8;
|
|
ftype t45 = P[0][2]*t2*t5;
|
|
ftype t46 = P[1][2]*t2*t16;
|
|
ftype t47 = P[3][2]*t2*t22;
|
|
ftype t48 = P[4][2]*t2*t27;
|
|
ftype t79 = P[2][2]*t2*t19;
|
|
ftype t84 = P[6][2]*t2*t10;
|
|
ftype t49 = t44+t45+t46+t47+t48-t79-t84;
|
|
ftype t50 = P[5][3]*t2*t8;
|
|
ftype t51 = P[0][3]*t2*t5;
|
|
ftype t52 = P[1][3]*t2*t16;
|
|
ftype t53 = P[3][3]*t2*t22;
|
|
ftype t54 = P[4][3]*t2*t27;
|
|
ftype t86 = P[6][3]*t2*t10;
|
|
ftype t87 = P[2][3]*t2*t19;
|
|
ftype t55 = t50+t51+t52+t53+t54-t86-t87;
|
|
ftype t56 = t2*t22*t55;
|
|
ftype t57 = P[5][4]*t2*t8;
|
|
ftype t58 = P[0][4]*t2*t5;
|
|
ftype t59 = P[1][4]*t2*t16;
|
|
ftype t60 = P[3][4]*t2*t22;
|
|
ftype t61 = P[4][4]*t2*t27;
|
|
ftype t88 = P[6][4]*t2*t10;
|
|
ftype t89 = P[2][4]*t2*t19;
|
|
ftype t62 = t57+t58+t59+t60+t61-t88-t89;
|
|
ftype t63 = t2*t27*t62;
|
|
ftype t64 = P[5][5]*t2*t8;
|
|
ftype t65 = P[0][5]*t2*t5;
|
|
ftype t66 = P[1][5]*t2*t16;
|
|
ftype t67 = P[3][5]*t2*t22;
|
|
ftype t68 = P[4][5]*t2*t27;
|
|
ftype t90 = P[6][5]*t2*t10;
|
|
ftype t91 = P[2][5]*t2*t19;
|
|
ftype t69 = t64+t65+t66+t67+t68-t90-t91;
|
|
ftype t70 = t2*t8*t69;
|
|
ftype t71 = P[5][6]*t2*t8;
|
|
ftype t72 = P[0][6]*t2*t5;
|
|
ftype t73 = P[1][6]*t2*t16;
|
|
ftype t74 = P[3][6]*t2*t22;
|
|
ftype t75 = P[4][6]*t2*t27;
|
|
ftype t92 = P[6][6]*t2*t10;
|
|
ftype t93 = P[2][6]*t2*t19;
|
|
ftype t76 = t71+t72+t73+t74+t75-t92-t93;
|
|
ftype t85 = t2*t19*t49;
|
|
ftype t94 = t2*t10*t76;
|
|
ftype t77 = R_LOS+t37+t43+t56+t63+t70-t85-t94;
|
|
ftype t78;
|
|
|
|
// calculate innovation variance for Y axis observation and protect against a badly conditioned calculation
|
|
if (t77 > R_LOS) {
|
|
t78 = 1.0f/t77;
|
|
faultStatus.bad_yflow = false;
|
|
} else {
|
|
t77 = R_LOS;
|
|
t78 = 1.0f/R_LOS;
|
|
faultStatus.bad_yflow = true;
|
|
return;
|
|
}
|
|
flowVarInnov[1] = t77;
|
|
|
|
// calculate innovation for Y observation
|
|
flowInnov[1] = losPred[1] - ofDataDelayed.flowRadXYcomp.y;
|
|
flowInnovTime_ms = AP_HAL::millis();
|
|
|
|
// calculate Kalman gains for the Y-axis observation
|
|
Kfusion[0] = -t78*(t12+P[0][5]*t2*t8-P[0][6]*t2*t10+P[0][1]*t2*t16-P[0][2]*t2*t19+P[0][3]*t2*t22+P[0][4]*t2*t27);
|
|
Kfusion[1] = -t78*(t31+P[1][0]*t2*t5+P[1][5]*t2*t8-P[1][6]*t2*t10-P[1][2]*t2*t19+P[1][3]*t2*t22+P[1][4]*t2*t27);
|
|
Kfusion[2] = -t78*(-t79+P[2][0]*t2*t5+P[2][5]*t2*t8-P[2][6]*t2*t10+P[2][1]*t2*t16+P[2][3]*t2*t22+P[2][4]*t2*t27);
|
|
Kfusion[3] = -t78*(t53+P[3][0]*t2*t5+P[3][5]*t2*t8-P[3][6]*t2*t10+P[3][1]*t2*t16-P[3][2]*t2*t19+P[3][4]*t2*t27);
|
|
Kfusion[4] = -t78*(t61+P[4][0]*t2*t5+P[4][5]*t2*t8-P[4][6]*t2*t10+P[4][1]*t2*t16-P[4][2]*t2*t19+P[4][3]*t2*t22);
|
|
Kfusion[5] = -t78*(t64+P[5][0]*t2*t5-P[5][6]*t2*t10+P[5][1]*t2*t16-P[5][2]*t2*t19+P[5][3]*t2*t22+P[5][4]*t2*t27);
|
|
Kfusion[6] = -t78*(-t92+P[6][0]*t2*t5+P[6][5]*t2*t8+P[6][1]*t2*t16-P[6][2]*t2*t19+P[6][3]*t2*t22+P[6][4]*t2*t27);
|
|
Kfusion[7] = -t78*(P[7][0]*t2*t5+P[7][5]*t2*t8-P[7][6]*t2*t10+P[7][1]*t2*t16-P[7][2]*t2*t19+P[7][3]*t2*t22+P[7][4]*t2*t27);
|
|
Kfusion[8] = -t78*(P[8][0]*t2*t5+P[8][5]*t2*t8-P[8][6]*t2*t10+P[8][1]*t2*t16-P[8][2]*t2*t19+P[8][3]*t2*t22+P[8][4]*t2*t27);
|
|
Kfusion[9] = -t78*(P[9][0]*t2*t5+P[9][5]*t2*t8-P[9][6]*t2*t10+P[9][1]*t2*t16-P[9][2]*t2*t19+P[9][3]*t2*t22+P[9][4]*t2*t27);
|
|
|
|
if (!inhibitDelAngBiasStates) {
|
|
Kfusion[10] = -t78*(P[10][0]*t2*t5+P[10][5]*t2*t8-P[10][6]*t2*t10+P[10][1]*t2*t16-P[10][2]*t2*t19+P[10][3]*t2*t22+P[10][4]*t2*t27);
|
|
Kfusion[11] = -t78*(P[11][0]*t2*t5+P[11][5]*t2*t8-P[11][6]*t2*t10+P[11][1]*t2*t16-P[11][2]*t2*t19+P[11][3]*t2*t22+P[11][4]*t2*t27);
|
|
Kfusion[12] = -t78*(P[12][0]*t2*t5+P[12][5]*t2*t8-P[12][6]*t2*t10+P[12][1]*t2*t16-P[12][2]*t2*t19+P[12][3]*t2*t22+P[12][4]*t2*t27);
|
|
} else {
|
|
// zero indexes 10 to 12
|
|
zero_range(&Kfusion[0], 10, 12);
|
|
}
|
|
|
|
if (!inhibitDelVelBiasStates && !badIMUdata) {
|
|
for (uint8_t index = 0; index < 3; index++) {
|
|
const uint8_t stateIndex = index + 13;
|
|
if (!dvelBiasAxisInhibit[index]) {
|
|
Kfusion[stateIndex] = -t78*(P[stateIndex][0]*t2*t5+P[stateIndex][5]*t2*t8-P[stateIndex][6]*t2*t10+P[stateIndex][1]*t2*t16-P[stateIndex][2]*t2*t19+P[stateIndex][3]*t2*t22+P[stateIndex][4]*t2*t27);
|
|
} else {
|
|
Kfusion[stateIndex] = 0.0f;
|
|
}
|
|
}
|
|
} else {
|
|
// zero indexes 13 to 15
|
|
zero_range(&Kfusion[0], 13, 15);
|
|
}
|
|
|
|
if (!inhibitMagStates) {
|
|
Kfusion[16] = -t78*(P[16][0]*t2*t5+P[16][5]*t2*t8-P[16][6]*t2*t10+P[16][1]*t2*t16-P[16][2]*t2*t19+P[16][3]*t2*t22+P[16][4]*t2*t27);
|
|
Kfusion[17] = -t78*(P[17][0]*t2*t5+P[17][5]*t2*t8-P[17][6]*t2*t10+P[17][1]*t2*t16-P[17][2]*t2*t19+P[17][3]*t2*t22+P[17][4]*t2*t27);
|
|
Kfusion[18] = -t78*(P[18][0]*t2*t5+P[18][5]*t2*t8-P[18][6]*t2*t10+P[18][1]*t2*t16-P[18][2]*t2*t19+P[18][3]*t2*t22+P[18][4]*t2*t27);
|
|
Kfusion[19] = -t78*(P[19][0]*t2*t5+P[19][5]*t2*t8-P[19][6]*t2*t10+P[19][1]*t2*t16-P[19][2]*t2*t19+P[19][3]*t2*t22+P[19][4]*t2*t27);
|
|
Kfusion[20] = -t78*(P[20][0]*t2*t5+P[20][5]*t2*t8-P[20][6]*t2*t10+P[20][1]*t2*t16-P[20][2]*t2*t19+P[20][3]*t2*t22+P[20][4]*t2*t27);
|
|
Kfusion[21] = -t78*(P[21][0]*t2*t5+P[21][5]*t2*t8-P[21][6]*t2*t10+P[21][1]*t2*t16-P[21][2]*t2*t19+P[21][3]*t2*t22+P[21][4]*t2*t27);
|
|
} else {
|
|
// zero indexes 16 to 21
|
|
zero_range(&Kfusion[0], 16, 21);
|
|
}
|
|
|
|
if (!inhibitWindStates) {
|
|
Kfusion[22] = -t78*(P[22][0]*t2*t5+P[22][5]*t2*t8-P[22][6]*t2*t10+P[22][1]*t2*t16-P[22][2]*t2*t19+P[22][3]*t2*t22+P[22][4]*t2*t27);
|
|
Kfusion[23] = -t78*(P[23][0]*t2*t5+P[23][5]*t2*t8-P[23][6]*t2*t10+P[23][1]*t2*t16-P[23][2]*t2*t19+P[23][3]*t2*t22+P[23][4]*t2*t27);
|
|
} else {
|
|
// zero indexes 22 to 23
|
|
zero_range(&Kfusion[0], 22, 23);
|
|
}
|
|
}
|
|
|
|
// calculate the innovation consistency test ratio
|
|
flowTestRatio[obsIndex] = sq(flowInnov[obsIndex]) / (sq(MAX(0.01f * (ftype)frontend->_flowInnovGate, 1.0f)) * flowVarInnov[obsIndex]);
|
|
|
|
// Check the innovation for consistency and don't fuse if out of bounds or flow is too fast to be reliable
|
|
if (really_fuse && (flowTestRatio[obsIndex]) < 1.0f && (ofDataDelayed.flowRadXY.x < frontend->_maxFlowRate) && (ofDataDelayed.flowRadXY.y < frontend->_maxFlowRate)) {
|
|
// record the last time observations were accepted for fusion
|
|
prevFlowFuseTime_ms = imuSampleTime_ms;
|
|
// notify first time only
|
|
if (!flowFusionActive) {
|
|
flowFusionActive = true;
|
|
GCS_SEND_TEXT(MAV_SEVERITY_INFO, "EKF3 IMU%u fusing optical flow",(unsigned)imu_index);
|
|
}
|
|
// correct the covariance P = (I - K*H)*P
|
|
// take advantage of the empty columns in KH to reduce the
|
|
// number of operations
|
|
for (uint8_t i = 0; i<=stateIndexLim; i++) {
|
|
for (uint8_t j = 0; j<=6; j++) {
|
|
KH[i][j] = Kfusion[i] * H_LOS[j];
|
|
}
|
|
for (uint8_t j = 7; j<=stateIndexLim; j++) {
|
|
KH[i][j] = 0.0f;
|
|
}
|
|
}
|
|
for (uint8_t j = 0; j<=stateIndexLim; j++) {
|
|
for (uint8_t i = 0; i<=stateIndexLim; i++) {
|
|
ftype res = 0;
|
|
res += KH[i][0] * P[0][j];
|
|
res += KH[i][1] * P[1][j];
|
|
res += KH[i][2] * P[2][j];
|
|
res += KH[i][3] * P[3][j];
|
|
res += KH[i][4] * P[4][j];
|
|
res += KH[i][5] * P[5][j];
|
|
res += KH[i][6] * P[6][j];
|
|
KHP[i][j] = res;
|
|
}
|
|
}
|
|
|
|
// Check that we are not going to drive any variances negative and skip the update if so
|
|
bool healthyFusion = true;
|
|
for (uint8_t i= 0; i<=stateIndexLim; i++) {
|
|
if (KHP[i][i] > P[i][i]) {
|
|
healthyFusion = false;
|
|
}
|
|
}
|
|
|
|
if (healthyFusion) {
|
|
// update the covariance matrix
|
|
for (uint8_t i= 0; i<=stateIndexLim; i++) {
|
|
for (uint8_t j= 0; j<=stateIndexLim; j++) {
|
|
P[i][j] = P[i][j] - KHP[i][j];
|
|
}
|
|
}
|
|
|
|
// force the covariance matrix to be symmetrical and limit the variances to prevent ill-conditioning.
|
|
ForceSymmetry();
|
|
ConstrainVariances();
|
|
|
|
// correct the state vector
|
|
for (uint8_t j= 0; j<=stateIndexLim; j++) {
|
|
statesArray[j] = statesArray[j] - Kfusion[j] * flowInnov[obsIndex];
|
|
}
|
|
stateStruct.quat.normalize();
|
|
|
|
} else {
|
|
// record bad axis
|
|
if (obsIndex == 0) {
|
|
faultStatus.bad_xflow = true;
|
|
} else if (obsIndex == 1) {
|
|
faultStatus.bad_yflow = true;
|
|
}
|
|
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/********************************************************
|
|
* MISC FUNCTIONS *
|
|
********************************************************/
|
|
|