ardupilot/libraries/AP_NavEKF2/AP_NavEKF2_Logging.cpp

331 lines
11 KiB
C++

#include "AP_NavEKF2.h"
#include "AP_NavEKF2_core.h"
#include <AP_Logger/AP_Logger.h>
#include <AP_DAL/AP_DAL.h>
void NavEKF2_core::Log_Write_NKF1(uint64_t time_us) const
{
// Write first EKF packet
Vector3f euler;
Vector2f posNE;
float posD;
Vector3f velNED;
Vector3f gyroBias;
float posDownDeriv;
Location originLLH;
getEulerAngles(euler);
getVelNED(velNED);
getPosNE(posNE);
getPosD(posD);
getGyroBias(gyroBias);
posDownDeriv = getPosDownDerivative();
if (!getOriginLLH(originLLH)) {
originLLH.alt = 0;
}
const struct log_NKF1 pkt{
LOG_PACKET_HEADER_INIT(LOG_NKF1_MSG),
time_us : time_us,
core : DAL_CORE(core_index),
roll : (int16_t)(100*degrees(euler.x)), // roll angle (centi-deg, displayed as deg due to format string)
pitch : (int16_t)(100*degrees(euler.y)), // pitch angle (centi-deg, displayed as deg due to format string)
yaw : (uint16_t)wrap_360_cd(100*degrees(euler.z)), // yaw angle (centi-deg, displayed as deg due to format string)
velN : (float)(velNED.x), // velocity North (m/s)
velE : (float)(velNED.y), // velocity East (m/s)
velD : (float)(velNED.z), // velocity Down (m/s)
posD_dot : (float)(posDownDeriv), // first derivative of down position
posN : (float)(posNE.x), // metres North
posE : (float)(posNE.y), // metres East
posD : (float)(posD), // metres Down
gyrX : (int16_t)(100*degrees(gyroBias.x)), // cd/sec, displayed as deg/sec due to format string
gyrY : (int16_t)(100*degrees(gyroBias.y)), // cd/sec, displayed as deg/sec due to format string
gyrZ : (int16_t)(100*degrees(gyroBias.z)), // cd/sec, displayed as deg/sec due to format string
originHgt : originLLH.alt // WGS-84 altitude of EKF origin in cm
};
AP::logger().WriteBlock(&pkt, sizeof(pkt));
}
void NavEKF2_core::Log_Write_NKF2(uint64_t time_us) const
{
// Write second EKF packet
float azbias = 0;
Vector3f wind;
Vector3f magNED;
Vector3f magXYZ;
Vector3f gyroScaleFactor;
getAccelZBias(azbias);
getWind(wind);
getMagNED(magNED);
getMagXYZ(magXYZ);
getGyroScaleErrorPercentage(gyroScaleFactor);
const struct log_NKF2 pkt2{
LOG_PACKET_HEADER_INIT(LOG_NKF2_MSG),
time_us : time_us,
core : DAL_CORE(core_index),
AZbias : (int8_t)(100*azbias),
scaleX : (int16_t)(100*gyroScaleFactor.x),
scaleY : (int16_t)(100*gyroScaleFactor.y),
scaleZ : (int16_t)(100*gyroScaleFactor.z),
windN : (int16_t)(100*wind.x),
windE : (int16_t)(100*wind.y),
magN : (int16_t)(magNED.x),
magE : (int16_t)(magNED.y),
magD : (int16_t)(magNED.z),
magX : (int16_t)(magXYZ.x),
magY : (int16_t)(magXYZ.y),
magZ : (int16_t)(magXYZ.z),
index : magSelectIndex
};
AP::logger().WriteBlock(&pkt2, sizeof(pkt2));
}
void NavEKF2_core::Log_Write_NKF3(uint64_t time_us) const
{
// Write third EKF packet
Vector3f velInnov;
Vector3f posInnov;
Vector3f magInnov;
float tasInnov = 0;
float yawInnov = 0;
getInnovations(velInnov, posInnov, magInnov, tasInnov, yawInnov);
const struct log_NKF3 pkt3{
LOG_PACKET_HEADER_INIT(LOG_NKF3_MSG),
time_us : time_us,
core : DAL_CORE(core_index),
innovVN : (int16_t)(100*velInnov.x),
innovVE : (int16_t)(100*velInnov.y),
innovVD : (int16_t)(100*velInnov.z),
innovPN : (int16_t)(100*posInnov.x),
innovPE : (int16_t)(100*posInnov.y),
innovPD : (int16_t)(100*posInnov.z),
innovMX : (int16_t)(magInnov.x),
innovMY : (int16_t)(magInnov.y),
innovMZ : (int16_t)(magInnov.z),
innovYaw : (int16_t)(100*degrees(yawInnov)),
innovVT : (int16_t)(100*tasInnov),
rerr : 0, // TODO : Relative Error based Lane-Switching like EK3
errorScore : 0 // TODO : Relative Error based Lane-Switching like EK3
};
AP::logger().WriteBlock(&pkt3, sizeof(pkt3));
}
void NavEKF2_core::Log_Write_NKF4(uint64_t time_us) const
{
// Write fourth EKF packet
float velVar = 0;
float posVar = 0;
float hgtVar = 0;
Vector3f magVar;
float tasVar = 0;
Vector2f offset;
uint16_t _faultStatus=0;
const uint8_t timeoutStatus =
posTimeout<<0 |
velTimeout<<1 |
hgtTimeout<<2 |
magTimeout<<3 |
tasTimeout<<4;
nav_filter_status solutionStatus {};
nav_gps_status gpsStatus {};
getVariances(velVar, posVar, hgtVar, magVar, tasVar, offset);
ftype tempVar = fmaxF(fmaxF(magVar.x,magVar.y),magVar.z);
getFilterFaults(_faultStatus);
getFilterStatus(solutionStatus);
getFilterGpsStatus(gpsStatus);
const struct log_NKF4 pkt4{
LOG_PACKET_HEADER_INIT(LOG_NKF4_MSG),
time_us : time_us,
core : DAL_CORE(core_index),
sqrtvarV : (int16_t)(100*velVar),
sqrtvarP : (int16_t)(100*posVar),
sqrtvarH : (int16_t)(100*hgtVar),
sqrtvarM : (int16_t)(100*tempVar),
sqrtvarVT : (int16_t)(100*tasVar),
tiltErr : float(tiltErrFilt), // tilt error convergence metric
offsetNorth : offset.x,
offsetEast : offset.y,
faults : _faultStatus,
timeouts : (uint8_t)(timeoutStatus),
solution : (uint32_t)(solutionStatus.value),
gps : (uint16_t)(gpsStatus.value),
primary : frontend->getPrimaryCoreIndex()
};
AP::logger().WriteBlock(&pkt4, sizeof(pkt4));
}
void NavEKF2_core::Log_Write_NKF5(uint64_t time_us) const
{
if (core_index != frontend->primary) {
// log only primary instance for now
return;
}
// Write fifth EKF packet
const struct log_NKF5 pkt5{
LOG_PACKET_HEADER_INIT(LOG_NKF5_MSG),
time_us : time_us,
core : DAL_CORE(core_index),
normInnov : (uint8_t)(MIN(100*MAX(flowTestRatio[0],flowTestRatio[1]),255)), // normalised innovation variance ratio for optical flow observations fused by the main nav filter
FIX : (int16_t)(1000*innovOptFlow[0]), // optical flow LOS rate vector innovations from the main nav filter
FIY : (int16_t)(1000*innovOptFlow[1]), // optical flow LOS rate vector innovations from the main nav filter
AFI : (int16_t)(1000 * auxFlowObsInnov.length()), // optical flow LOS rate innovation from terrain offset estimator
HAGL : (int16_t)(100*(terrainState - stateStruct.position.z)), // height above ground level
offset : (int16_t)(100*terrainState), // // estimated vertical position of the terrain relative to the nav filter zero datum
RI : (int16_t)(100*innovRng), // range finder innovations
meaRng : (uint16_t)(100*rangeDataDelayed.rng), // measured range
errHAGL : (uint16_t)(100*sqrtF(Popt)), // filter ground offset state error
angErr : float(outputTrackError.x),
velErr : float(outputTrackError.y),
posErr : float(outputTrackError.z)
};
AP::logger().WriteBlock(&pkt5, sizeof(pkt5));
}
void NavEKF2_core::Log_Write_Quaternion(uint64_t time_us) const
{
// log quaternion
Quaternion quat;
getQuaternion(quat);
const struct log_NKQ pktq1{
LOG_PACKET_HEADER_INIT(LOG_NKQ_MSG),
time_us : time_us,
core : DAL_CORE(core_index),
q1 : quat.q1,
q2 : quat.q2,
q3 : quat.q3,
q4 : quat.q4
};
AP::logger().WriteBlock(&pktq1, sizeof(pktq1));
}
void NavEKF2_core::Log_Write_Beacon(uint64_t time_us)
{
if (core_index != frontend->primary) {
// log only primary instance for now
return;
}
if (AP::beacon() == nullptr) {
return;
}
if (!statesInitialised || N_beacons == 0) {
return;
}
// Ensure that beacons are not skipped due to calling this
// function at a rate lower than the updates
if (rngBcnFuseDataReportIndex >= N_beacons) {
rngBcnFuseDataReportIndex = 0;
}
const rngBcnFusionReport_t &report = rngBcnFusionReport[rngBcnFuseDataReportIndex];
if (report.rng <= 0.0f) {
rngBcnFuseDataReportIndex++;
return;
}
struct log_NKF0 pkt0 = {
LOG_PACKET_HEADER_INIT(LOG_NKF0_MSG),
time_us : time_us,
core : DAL_CORE(core_index),
ID : rngBcnFuseDataReportIndex,
rng : (int16_t)(100*report.rng),
innov : (int16_t)(100*report.innov),
sqrtInnovVar : (uint16_t)(100*safe_sqrt(report.innovVar)),
testRatio : (uint16_t)(100*constrain_ftype(report.testRatio,0.0f,650.0f)),
beaconPosN : (int16_t)(100*report.beaconPosNED.x),
beaconPosE : (int16_t)(100*report.beaconPosNED.y),
beaconPosD : (int16_t)(100*report.beaconPosNED.z),
offsetHigh : (int16_t)(100*bcnPosOffsetMax),
offsetLow : (int16_t)(100*bcnPosOffsetMin),
posN : 0,
posE : 0,
posD : 0
};
AP::logger().WriteBlock(&pkt0, sizeof(pkt0));
rngBcnFuseDataReportIndex++;
}
void NavEKF2_core::Log_Write_Timing(uint64_t time_us)
{
// log EKF timing statistics every 5s
static uint32_t lastTimingLogTime_ms = 0;
if (AP::dal().millis() - lastTimingLogTime_ms <= 5000) {
return;
}
lastTimingLogTime_ms = AP::dal().millis();
const struct log_NKT nkt{
LOG_PACKET_HEADER_INIT(LOG_NKT_MSG),
time_us : time_us,
core : core_index,
timing_count : timing.count,
dtIMUavg_min : timing.dtIMUavg_min,
dtIMUavg_max : timing.dtIMUavg_max,
dtEKFavg_min : timing.dtEKFavg_min,
dtEKFavg_max : timing.dtEKFavg_max,
delAngDT_min : timing.delAngDT_min,
delAngDT_max : timing.delAngDT_max,
delVelDT_min : timing.delVelDT_min,
delVelDT_max : timing.delVelDT_max,
};
memset(&timing, 0, sizeof(timing));
AP::logger().WriteBlock(&nkt, sizeof(nkt));
}
void NavEKF2::Log_Write()
{
// only log if enabled
if (activeCores() <= 0) {
return;
}
if (lastLogWrite_us == imuSampleTime_us) {
// vehicle is doubling up on logging
return;
}
lastLogWrite_us = imuSampleTime_us;
const uint64_t time_us = AP::dal().micros64();
// note that several of these functions exit-early if they're not
// attempting to log the primary core.
for (uint8_t i=0; i<activeCores(); i++) {
core[i].Log_Write(time_us);
}
AP::dal().start_frame(AP_DAL::FrameType::LogWriteEKF2);
}
void NavEKF2_core::Log_Write(uint64_t time_us)
{
// note that several of these functions exit-early if they're not
// attempting to log the primary core.
Log_Write_NKF1(time_us);
Log_Write_NKF2(time_us);
Log_Write_NKF3(time_us);
Log_Write_NKF4(time_us);
Log_Write_NKF5(time_us);
Log_Write_Quaternion(time_us);
Log_Write_GSF(time_us);
// write range beacon fusion debug packet if the range value is non-zero
Log_Write_Beacon(time_us);
Log_Write_Timing(time_us);
}
void NavEKF2_core::Log_Write_GSF(uint64_t time_us) const
{
if (yawEstimator == nullptr) {
return;
}
yawEstimator->Log_Write(time_us, LOG_NKY0_MSG, LOG_NKY1_MSG, DAL_CORE(core_index));
}