mirror of https://github.com/ArduPilot/ardupilot
136 lines
3.8 KiB
C++
136 lines
3.8 KiB
C++
/*
|
|
AP_Compass_HIL.cpp - Arduino Library for HIL model of HMC5843 I2C Magnetometer
|
|
Code by James Goppert. DIYDrones.com
|
|
|
|
This library is free software; you can redistribute it and / or
|
|
modify it under the terms of the GNU Lesser General Public
|
|
License as published by the Free Software Foundation; either
|
|
version 2.1 of the License, or (at your option) any later version.
|
|
*/
|
|
|
|
|
|
#include "AP_Compass_HIL.h"
|
|
|
|
// Constructors ////////////////////////////////////////////////////////////////
|
|
AP_Compass_HIL::AP_Compass_HIL() : orientation(0), declination(0.0)
|
|
{
|
|
// mag x y z offset initialisation
|
|
memset(offset, 0, sizeof(offset));
|
|
|
|
// initialise orientation matrix
|
|
orientation_matrix = ROTATION_NONE;
|
|
}
|
|
|
|
// Public Methods //////////////////////////////////////////////////////////////
|
|
bool AP_Compass_HIL::init(int initialise_wire_lib)
|
|
{
|
|
unsigned long currentTime = millis(); // record current time
|
|
int numAttempts = 0;
|
|
int success = 0;
|
|
|
|
// calibration initialisation
|
|
calibration[0] = 1.0;
|
|
calibration[1] = 1.0;
|
|
calibration[2] = 1.0;
|
|
|
|
while( success == 0 && numAttempts < 5 )
|
|
{
|
|
// record number of attempts at initialisation
|
|
numAttempts++;
|
|
|
|
// read values from the compass
|
|
read();
|
|
delay(10);
|
|
|
|
// calibrate
|
|
if( abs(mag_x) > 500 && abs(mag_x) < 1000 && abs(mag_y) > 500 && abs(mag_y) < 1000 && abs(mag_z) > 500 && abs(mag_z) < 1000)
|
|
{
|
|
calibration[0] = fabs(715.0 / mag_x);
|
|
calibration[1] = fabs(715.0 / mag_y);
|
|
calibration[2] = fabs(715.0 / mag_z);
|
|
|
|
// mark success
|
|
success = 1;
|
|
}
|
|
}
|
|
return(success);
|
|
}
|
|
|
|
// Read Sensor data
|
|
void AP_Compass_HIL::read()
|
|
{
|
|
// values set by setHIL function
|
|
}
|
|
|
|
void AP_Compass_HIL::calculate(float roll, float pitch)
|
|
{
|
|
float headX;
|
|
float headY;
|
|
float cos_roll;
|
|
float sin_roll;
|
|
float cos_pitch;
|
|
float sin_pitch;
|
|
Vector3f rotMagVec;
|
|
|
|
cos_roll = cos(roll); // Optimizacion, se puede sacar esto de la matriz DCM?
|
|
sin_roll = sin(roll);
|
|
cos_pitch = cos(pitch);
|
|
sin_pitch = sin(pitch);
|
|
|
|
// rotate the magnetometer values depending upon orientation
|
|
if( orientation == 0 )
|
|
rotMagVec = Vector3f(mag_x+offset[0],mag_y+offset[1],mag_z+offset[2]);
|
|
else
|
|
rotMagVec = orientation_matrix*Vector3f(mag_x+offset[0],mag_y+offset[1],mag_z+offset[2]);
|
|
|
|
// Tilt compensated Magnetic field X component:
|
|
headX = rotMagVec.x*cos_pitch+rotMagVec.y*sin_roll*sin_pitch+rotMagVec.z*cos_roll*sin_pitch;
|
|
// Tilt compensated Magnetic field Y component:
|
|
headY = rotMagVec.y*cos_roll-rotMagVec.z*sin_roll;
|
|
// Magnetic heading
|
|
heading = atan2(-headY,headX);
|
|
|
|
// Declination correction (if supplied)
|
|
if( declination != 0.0 )
|
|
{
|
|
heading = heading + declination;
|
|
if (heading > M_PI) // Angle normalization (-180 deg, 180 deg)
|
|
heading -= (2.0 * M_PI);
|
|
else if (heading < -M_PI)
|
|
heading += (2.0 * M_PI);
|
|
}
|
|
|
|
// Optimization for external DCM use. Calculate normalized components
|
|
heading_x = cos(heading);
|
|
heading_y = sin(heading);
|
|
}
|
|
|
|
void AP_Compass_HIL::set_orientation(const Matrix3f &rotation_matrix)
|
|
{
|
|
orientation_matrix = rotation_matrix;
|
|
if( orientation_matrix == ROTATION_NONE )
|
|
orientation = 0;
|
|
else
|
|
orientation = 1;
|
|
}
|
|
|
|
void AP_Compass_HIL::set_offsets(int x, int y, int z)
|
|
{
|
|
offset[0] = x;
|
|
offset[1] = y;
|
|
offset[2] = z;
|
|
}
|
|
|
|
void AP_Compass_HIL::set_declination(float radians)
|
|
{
|
|
declination = radians;
|
|
}
|
|
|
|
void AP_Compass_HIL::setHIL(float _mag_x, float _mag_y, float _mag_z)
|
|
{
|
|
// TODO: map floats to raw
|
|
mag_x = _mag_x;
|
|
mag_y = _mag_y;
|
|
mag_z = _mag_z;
|
|
}
|