ardupilot/libraries/AP_Mount/AP_Mount_Siyi.cpp

628 lines
23 KiB
C++

#include "AP_Mount_Siyi.h"
#if HAL_MOUNT_SIYI_ENABLED
#include <AP_HAL/AP_HAL.h>
#include <AP_AHRS/AP_AHRS.h>
#include <GCS_MAVLink/GCS.h>
#include <GCS_MAVLink/include/mavlink/v2.0/checksum.h>
#include <AP_SerialManager/AP_SerialManager.h>
extern const AP_HAL::HAL& hal;
#define AP_MOUNT_SIYI_HEADER1 0x55 // first header byte
#define AP_MOUNT_SIYI_HEADER2 0x66 // second header byte
#define AP_MOUNT_SIYI_PACKETLEN_MIN 10 // minimum number of bytes in a packet. this is a packet with no data bytes
#define AP_MOUNT_SIYI_DATALEN_MAX (AP_MOUNT_SIYI_PACKETLEN_MAX-AP_MOUNT_SIYI_PACKETLEN_MIN) // max bytes for data portion of packet
#define AP_MOUNT_SIYI_SERIAL_RESEND_MS 1000 // resend angle targets to gimbal once per second
#define AP_MOUNT_SIYI_MSG_BUF_DATA_START 8 // data starts at this byte in _msg_buf
#define AP_MOUNT_SIYI_RATE_MAX_RADS radians(90) // maximum physical rotation rate of gimbal in radans/sec
#define AP_MOUNT_SIYI_PITCH_P 1.50 // pitch controller P gain (converts pitch angle error to target rate)
#define AP_MOUNT_SIYI_YAW_P 1.50 // yaw controller P gain (converts yaw angle error to target rate)
#define AP_MOUNT_SIYI_LOCK_RESEND_COUNT 5 // lock value is resent to gimbal every 5 iterations
#define AP_MOUNT_SIYI_DEBUG 0
#define debug(fmt, args ...) do { if (AP_MOUNT_SIYI_DEBUG) { GCS_SEND_TEXT(MAV_SEVERITY_INFO, "Siyi: " fmt, ## args); } } while (0)
// init - performs any required initialisation for this instance
void AP_Mount_Siyi::init()
{
const AP_SerialManager& serial_manager = AP::serialmanager();
_uart = serial_manager.find_serial(AP_SerialManager::SerialProtocol_SToRM32, 0);
if (_uart != nullptr) {
_initialised = true;
set_mode((enum MAV_MOUNT_MODE)_params.default_mode.get());
}
}
// update mount position - should be called periodically
void AP_Mount_Siyi::update()
{
// exit immediately if not initialised
if (!_initialised) {
return;
}
// reading incoming packets from gimbal
read_incoming_packets();
// request firmware version at 1hz
uint32_t now_ms = AP_HAL::millis();
if (!_got_firmware_version) {
if ((now_ms - _last_send_ms) >= 1000) {
request_firmware_version();
_last_send_ms = now_ms;
}
return;
}
// request attitude at regular intervals
if ((now_ms - _last_req_current_angle_rad_ms) >= 50) {
request_gimbal_attitude();
_last_req_current_angle_rad_ms = now_ms;
}
// update based on mount mode
switch (get_mode()) {
// move mount to a "retracted" position. To-Do: remove support and replace with a relaxed mode?
case MAV_MOUNT_MODE_RETRACT: {
const Vector3f &angle_bf_target = _params.retract_angles.get();
send_target_angles(ToRad(angle_bf_target.y), ToRad(angle_bf_target.z), false);
break;
}
// move mount to a neutral position, typically pointing forward
case MAV_MOUNT_MODE_NEUTRAL: {
const Vector3f &angle_bf_target = _params.neutral_angles.get();
send_target_angles(ToRad(angle_bf_target.y), ToRad(angle_bf_target.z), false);
break;
}
// point to the angles given by a mavlink message
case MAV_MOUNT_MODE_MAVLINK_TARGETING:
switch (mavt_target.target_type) {
case MountTargetType::ANGLE:
send_target_angles(mavt_target.angle_rad.pitch, mavt_target.angle_rad.yaw, mavt_target.angle_rad.yaw_is_ef);
break;
case MountTargetType::RATE:
send_target_rates(mavt_target.rate_rads.pitch, mavt_target.rate_rads.yaw, mavt_target.rate_rads.yaw_is_ef);
break;
}
break;
// RC radio manual angle control, but with stabilization from the AHRS
case MAV_MOUNT_MODE_RC_TARGETING: {
// update targets using pilot's rc inputs
MountTarget rc_target {};
if (get_rc_rate_target(rc_target)) {
send_target_rates(rc_target.pitch, rc_target.yaw, rc_target.yaw_is_ef);
} else if (get_rc_angle_target(rc_target)) {
send_target_angles(rc_target.pitch, rc_target.yaw, rc_target.yaw_is_ef);
}
break;
}
// point mount to a GPS point given by the mission planner
case MAV_MOUNT_MODE_GPS_POINT: {
MountTarget angle_target_rad {};
if (get_angle_target_to_roi(angle_target_rad)) {
send_target_angles(angle_target_rad.pitch, angle_target_rad.yaw, angle_target_rad.yaw_is_ef);
}
break;
}
case MAV_MOUNT_MODE_HOME_LOCATION: {
MountTarget angle_target_rad {};
if (get_angle_target_to_home(angle_target_rad)) {
send_target_angles(angle_target_rad.pitch, angle_target_rad.yaw, angle_target_rad.yaw_is_ef);
}
break;
}
case MAV_MOUNT_MODE_SYSID_TARGET:{
MountTarget angle_target_rad {};
if (get_angle_target_to_sysid(angle_target_rad)) {
send_target_angles(angle_target_rad.pitch, angle_target_rad.yaw, angle_target_rad.yaw_is_ef);
}
break;
}
default:
// we do not know this mode so raise internal error
INTERNAL_ERROR(AP_InternalError::error_t::flow_of_control);
break;
}
}
// return true if healthy
bool AP_Mount_Siyi::healthy() const
{
// unhealthy until gimbal has been found and replied with firmware version info
if (!_initialised || !_got_firmware_version) {
return false;
}
// unhealthy if attitude information NOT received recently
if (AP_HAL::millis() - _last_current_angle_rad_ms > 1000) {
return false;
}
// if we get this far return healthy
return true;
}
// get attitude as a quaternion. returns true on success
bool AP_Mount_Siyi::get_attitude_quaternion(Quaternion& att_quat)
{
att_quat.from_euler(_current_angle_rad.x, _current_angle_rad.y, _current_angle_rad.z);
return true;
}
// reading incoming packets from gimbal and confirm they are of the correct format
// results are held in the _parsed_msg structure
void AP_Mount_Siyi::read_incoming_packets()
{
// check for bytes on the serial port
int16_t nbytes = MIN(_uart->available(), 1024U);
if (nbytes <= 0 ) {
return;
}
// flag to allow cases below to reset parser state
bool reset_parser = false;
// process bytes received
for (int16_t i = 0; i < nbytes; i++) {
const int16_t b = _uart->read();
// sanity check byte
if ((b < 0) || (b > 0xFF)) {
continue;
}
_msg_buff[_msg_buff_len++] = b;
// protect against overly long messages
if (_msg_buff_len >= AP_MOUNT_SIYI_PACKETLEN_MAX) {
reset_parser = true;
}
// process byte depending upon current state
switch (_parsed_msg.state) {
case ParseState::WAITING_FOR_HEADER_LOW:
if (b == AP_MOUNT_SIYI_HEADER1) {
_parsed_msg.state = ParseState::WAITING_FOR_HEADER_HIGH;
} else {
reset_parser = true;
}
break;
case ParseState::WAITING_FOR_HEADER_HIGH:
if (b == AP_MOUNT_SIYI_HEADER2) {
_parsed_msg.state = ParseState::WAITING_FOR_CTRL;
} else {
reset_parser = true;
}
break;
case ParseState::WAITING_FOR_CTRL:
_parsed_msg.state = ParseState::WAITING_FOR_DATALEN_LOW;
break;
case ParseState::WAITING_FOR_DATALEN_LOW:
_parsed_msg.data_len = b;
_parsed_msg.state = ParseState::WAITING_FOR_DATALEN_HIGH;
break;
case ParseState::WAITING_FOR_DATALEN_HIGH:
_parsed_msg.data_len |= ((uint16_t)b << 8);
// sanity check data length
if (_parsed_msg.data_len <= AP_MOUNT_SIYI_DATALEN_MAX) {
_parsed_msg.state = ParseState::WAITING_FOR_SEQ_LOW;
} else {
reset_parser = true;
debug("data len too large:%u (>%u)", (unsigned)_parsed_msg.data_len, (unsigned)AP_MOUNT_SIYI_DATALEN_MAX);
}
break;
case ParseState::WAITING_FOR_SEQ_LOW:
_parsed_msg.state = ParseState::WAITING_FOR_SEQ_HIGH;
break;
case ParseState::WAITING_FOR_SEQ_HIGH:
_parsed_msg.state = ParseState::WAITING_FOR_CMDID;
break;
case ParseState::WAITING_FOR_CMDID:
_parsed_msg.command_id = b;
_parsed_msg.data_bytes_received = 0;
if (_parsed_msg.data_len > 0) {
_parsed_msg.state = ParseState::WAITING_FOR_DATA;
} else {
_parsed_msg.state = ParseState::WAITING_FOR_CRC_LOW;
}
break;
case ParseState::WAITING_FOR_DATA:
_parsed_msg.data_bytes_received++;
if (_parsed_msg.data_bytes_received >= _parsed_msg.data_len) {
_parsed_msg.state = ParseState::WAITING_FOR_CRC_LOW;
}
break;
case ParseState::WAITING_FOR_CRC_LOW:
_parsed_msg.crc16 = b;
_parsed_msg.state = ParseState::WAITING_FOR_CRC_HIGH;
break;
case ParseState::WAITING_FOR_CRC_HIGH:
_parsed_msg.crc16 |= ((uint16_t)b << 8);
// check crc
const uint16_t expected_crc = crc16_ccitt(_msg_buff, _msg_buff_len-2, 0);
if (expected_crc == _parsed_msg.crc16) {
// successfully received a message, do something with it
process_packet();
} else {
debug("crc expected:%x got:%x", (unsigned)expected_crc, (unsigned)_parsed_msg.crc16);
}
reset_parser = true;
break;
}
// handle reset of parser
if (reset_parser) {
_parsed_msg.state = ParseState::WAITING_FOR_HEADER_LOW;
_msg_buff_len = 0;
}
}
}
// process successfully decoded packets held in the _parsed_msg structure
void AP_Mount_Siyi::process_packet()
{
// flag to warn of unexpected data buffer length
bool unexpected_len = false;
// process packet depending upon command id
switch ((SiyiCommandId)_parsed_msg.command_id) {
case SiyiCommandId::ACQUIRE_FIRMWARE_VERSION: {
if (_parsed_msg.data_bytes_received != 12) {
unexpected_len = true;
break;
}
_got_firmware_version = true;
// display camera firmware version
debug("Mount: SiyiCam fw:%u.%u.%u",
(unsigned)_msg_buff[_msg_buff_data_start+1], // firmware major version
(unsigned)_msg_buff[_msg_buff_data_start+2], // firmware minor version
(unsigned)_msg_buff[_msg_buff_data_start+3]); // firmware revision
// display gimbal info to user
gcs().send_text(MAV_SEVERITY_INFO, "Mount: Siyi fw:%u.%u.%u",
(unsigned)_msg_buff[_msg_buff_data_start+5], // firmware major version
(unsigned)_msg_buff[_msg_buff_data_start+6], // firmware minor version
(unsigned)_msg_buff[_msg_buff_data_start+7]); // firmware revision
// display zoom firmware version
debug("Mount: SiyiZoom fw:%u.%u.%u",
(unsigned)_msg_buff[_msg_buff_data_start+9], // firmware major version
(unsigned)_msg_buff[_msg_buff_data_start+10], // firmware minor version
(unsigned)_msg_buff[_msg_buff_data_start+11]); // firmware revision
break;
}
case SiyiCommandId::HARDWARE_ID:
// unsupported
break;
case SiyiCommandId::AUTO_FOCUS:
#if AP_MOUNT_SIYI_DEBUG
if (_parsed_msg.data_bytes_received != 1) {
unexpected_len = true;
break;
}
debug("AutoFocus:%u", (unsigned)_msg_buff[_msg_buff_data_start]);
#endif
break;
case SiyiCommandId::MANUAL_ZOOM_AND_AUTO_FOCUS: {
if (_parsed_msg.data_bytes_received != 2) {
unexpected_len = true;
break;
}
const float zoom_mult = UINT16_VALUE(_msg_buff[_msg_buff_data_start+1], _msg_buff[_msg_buff_data_start]) * 0.1;
debug("ZoomMult:%4.1f", (double)zoom_mult);
break;
}
case SiyiCommandId::MANUAL_FOCUS:
#if AP_MOUNT_SIYI_DEBUG
if (_parsed_msg.data_bytes_received != 1) {
unexpected_len = true;
break;
}
debug("ManualFocus:%u", (unsigned)_msg_buff[_msg_buff_data_start]);
#endif
break;
case SiyiCommandId::GIMBAL_ROTATION:
#if AP_MOUNT_SIYI_DEBUG
if (_parsed_msg.data_bytes_received != 1) {
unexpected_len = true;
break;
}
debug("GimbRot:%u", (unsigned)_msg_buff[_msg_buff_data_start]);
#endif
break;
case SiyiCommandId::CENTER:
#if AP_MOUNT_SIYI_DEBUG
if (_parsed_msg.data_bytes_received != 1) {
unexpected_len = true;
break;
}
debug("Center:%u", (unsigned)_msg_buff[_msg_buff_data_start]);
#endif
break;
case SiyiCommandId::ACQUIRE_GIMBAL_CONFIG_INFO: {
if (_parsed_msg.data_bytes_received != 5) {
unexpected_len = true;
break;
}
// update recording state and warn user of mismatch
const bool recording = _msg_buff[_msg_buff_data_start+3] > 0;
if (recording != _last_record_video) {
gcs().send_text(MAV_SEVERITY_ERROR, "Siyi: recording %s", recording ? "ON" : "OFF");
}
_last_record_video = recording;
debug("GimConf hdr:%u rec:%u foll:%u", (unsigned)_msg_buff[_msg_buff_data_start+1],
(unsigned)_msg_buff[_msg_buff_data_start+3],
(unsigned)_msg_buff[_msg_buff_data_start+4]);
break;
}
case SiyiCommandId::FUNCTION_FEEDBACK_INFO: {
if (_parsed_msg.data_bytes_received != 1) {
unexpected_len = true;
break;
}
const uint8_t func_feedback_info = _msg_buff[_msg_buff_data_start];
const char* err_prefix = "Mount: Siyi";
switch ((FunctionFeedbackInfo)func_feedback_info) {
case FunctionFeedbackInfo::SUCCESS:
debug("FnFeedB success");
break;
case FunctionFeedbackInfo::FAILED_TO_TAKE_PHOTO:
gcs().send_text(MAV_SEVERITY_ERROR, "%s failed to take picture", err_prefix);
break;
case FunctionFeedbackInfo::HDR_ON:
debug("HDR on");
break;
case FunctionFeedbackInfo::HDR_OFF:
debug("HDR off");
break;
case FunctionFeedbackInfo::FAILED_TO_RECORD_VIDEO:
gcs().send_text(MAV_SEVERITY_ERROR, "%s failed to record video", err_prefix);
break;
default:
debug("FnFeedB unexpected val:%u", (unsigned)func_feedback_info);
}
break;
}
case SiyiCommandId::PHOTO:
// no ack should ever be sent by the gimbal
break;
case SiyiCommandId::ACQUIRE_GIMBAL_ATTITUDE: {
if (_parsed_msg.data_bytes_received != 12) {
unexpected_len = true;
break;
}
_last_current_angle_rad_ms = AP_HAL::millis();
_current_angle_rad.z = -radians((int16_t)UINT16_VALUE(_msg_buff[_msg_buff_data_start+1], _msg_buff[_msg_buff_data_start]) * 0.1); // yaw angle
_current_angle_rad.y = radians((int16_t)UINT16_VALUE(_msg_buff[_msg_buff_data_start+3], _msg_buff[_msg_buff_data_start+2]) * 0.1); // pitch angle
_current_angle_rad.x = radians((int16_t)UINT16_VALUE(_msg_buff[_msg_buff_data_start+5], _msg_buff[_msg_buff_data_start+4]) * 0.1); // roll angle
//const float yaw_rate_degs = -(int16_t)UINT16_VALUE(_msg_buff[_msg_buff_data_start+7], _msg_buff[_msg_buff_data_start+6]) * 0.1; // yaw rate
//const float pitch_rate_deg = (int16_t)UINT16_VALUE(_msg_buff[_msg_buff_data_start+9], _msg_buff[_msg_buff_data_start+8]) * 0.1; // pitch rate
//const float roll_rate_deg = (int16_t)UINT16_VALUE(_msg_buff[_msg_buff_data_start+11], _msg_buff[_msg_buff_data_start+10]) * 0.1; // roll rate
break;
}
default:
debug("Unhandled CmdId:%u", (unsigned)_parsed_msg.command_id);
break;
}
// handle unexpected data buffer lenth
if (unexpected_len) {
debug("CmdId:%u unexpected len:%u", (unsigned)_parsed_msg.command_id, (unsigned)_parsed_msg.data_bytes_received);
}
}
// methods to send commands to gimbal
// returns true on success, false if outgoing serial buffer is full
bool AP_Mount_Siyi::send_packet(SiyiCommandId cmd_id, const uint8_t* databuff, uint8_t databuff_len)
{
// calculate and sanity check packet size
const uint16_t packet_size = AP_MOUNT_SIYI_PACKETLEN_MIN + databuff_len;
if (packet_size > AP_MOUNT_SIYI_PACKETLEN_MAX) {
debug("send_packet data buff too large");
return false;
}
// check for sufficient space in outgoing buffer
if (_uart->txspace() < packet_size) {
return false;
}
// buffer for holding outgoing packet
uint8_t send_buff[packet_size];
uint8_t send_buff_ofs = 0;
// packet header
send_buff[send_buff_ofs++] = AP_MOUNT_SIYI_HEADER1;
send_buff[send_buff_ofs++] = AP_MOUNT_SIYI_HEADER2;
// CTRL. Always request ACK
send_buff[send_buff_ofs++] = 1;
// Data_len. protocol supports uint16_t but messages are never longer than 22 bytes
send_buff[send_buff_ofs++] = databuff_len;
send_buff[send_buff_ofs++] = 0;
// SEQ (sequence)
send_buff[send_buff_ofs++] = LOWBYTE(_last_seq);
send_buff[send_buff_ofs++] = HIGHBYTE(_last_seq++);
// CMD_ID
send_buff[send_buff_ofs++] = (uint8_t)cmd_id;
// DATA
if (databuff_len != 0) {
memcpy(&send_buff[send_buff_ofs], databuff, databuff_len);
send_buff_ofs += databuff_len;
}
// CRC16
const uint16_t crc = crc16_ccitt(send_buff, send_buff_ofs, 0);
send_buff[send_buff_ofs++] = LOWBYTE(crc);
send_buff[send_buff_ofs++] = HIGHBYTE(crc);
// send packet
_uart->write(send_buff, send_buff_ofs);
return true;
}
// send a packet with a single data byte to gimbal
// returns true on success, false if outgoing serial buffer is full
bool AP_Mount_Siyi::send_1byte_packet(SiyiCommandId cmd_id, uint8_t data_byte)
{
return send_packet(cmd_id, &data_byte, 1);
}
// rotate gimbal. pitch_rate and yaw_rate are scalars in the range -100 ~ +100
// yaw_is_ef should be true if gimbal should maintain an earth-frame target (aka lock)
void AP_Mount_Siyi::rotate_gimbal(int8_t pitch_scalar, int8_t yaw_scalar, bool yaw_is_ef)
{
// send lock/follow value if it has changed
if ((yaw_is_ef != _last_lock) || (_lock_send_counter >= AP_MOUNT_SIYI_LOCK_RESEND_COUNT)) {
set_lock(yaw_is_ef);
_lock_send_counter = 0;
_last_lock = yaw_is_ef;
} else {
_lock_send_counter++;
}
const uint8_t yaw_and_pitch_rates[] {(uint8_t)yaw_scalar, (uint8_t)pitch_scalar};
send_packet(SiyiCommandId::GIMBAL_ROTATION, yaw_and_pitch_rates, ARRAY_SIZE(yaw_and_pitch_rates));
}
// center gimbal
void AP_Mount_Siyi::center_gimbal()
{
send_1byte_packet(SiyiCommandId::CENTER, 1);
}
// set gimbal's lock vs follow mode
// lock should be true if gimbal should maintain an earth-frame target
// lock is false to follow / maintain a body-frame target
void AP_Mount_Siyi::set_lock(bool lock)
{
send_1byte_packet(SiyiCommandId::PHOTO, lock ? (uint8_t)PhotoFunction::LOCK_MODE : (uint8_t)PhotoFunction::FOLLOW_MODE);
}
// send target pitch and yaw rates to gimbal
// yaw_is_ef should be true if yaw_rads target is an earth frame rate, false if body_frame
void AP_Mount_Siyi::send_target_rates(float pitch_rads, float yaw_rads, bool yaw_is_ef)
{
const float pitch_rate_scalar = constrain_float(100.0 * pitch_rads / AP_MOUNT_SIYI_RATE_MAX_RADS, -100, 100);
const float yaw_rate_scalar = constrain_float(100.0 * yaw_rads / AP_MOUNT_SIYI_RATE_MAX_RADS, -100, 100);
rotate_gimbal(pitch_rate_scalar, yaw_rate_scalar, yaw_is_ef);
}
// send target pitch and yaw angles to gimbal
// yaw_is_ef should be true if yaw_rad target is an earth frame angle, false if body_frame
void AP_Mount_Siyi::send_target_angles(float pitch_rad, float yaw_rad, bool yaw_is_ef)
{
// stop gimbal if no recent actual angles
uint32_t now_ms = AP_HAL::millis();
if (now_ms - _last_current_angle_rad_ms >= 200) {
rotate_gimbal(0, 0, false);
return;
}
// use simple P controller to convert pitch angle error (in radians) to a target rate scalar (-100 to +100)
const float pitch_err_rad = (pitch_rad - _current_angle_rad.y);
const float pitch_rate_scalar = constrain_float(100.0 * pitch_err_rad * AP_MOUNT_SIYI_PITCH_P / AP_MOUNT_SIYI_RATE_MAX_RADS, -100, 100);
// convert yaw angle to body-frame the use simple P controller to convert yaw angle error to a target rate scalar (-100 to +100)
const float yaw_bf_rad = yaw_is_ef ? wrap_PI(yaw_rad - AP::ahrs().yaw) : yaw_rad;
const float yaw_err_rad = (yaw_bf_rad - _current_angle_rad.z);
const float yaw_rate_scalar = constrain_float(100.0 * yaw_err_rad * AP_MOUNT_SIYI_YAW_P / AP_MOUNT_SIYI_RATE_MAX_RADS, -100, 100);
// rotate gimbal. pitch_rate and yaw_rate are scalars in the range -100 ~ +100
rotate_gimbal(pitch_rate_scalar, yaw_rate_scalar, yaw_is_ef);
}
// take a picture. returns true on success
bool AP_Mount_Siyi::take_picture()
{
return send_1byte_packet(SiyiCommandId::PHOTO, (uint8_t)PhotoFunction::TAKE_PICTURE);
}
// start or stop video recording. returns true on success
// set start_recording = true to start record, false to stop recording
bool AP_Mount_Siyi::record_video(bool start_recording)
{
// exit immediately if not initialised to reduce mismatch
// between internal and actual state of recording
if (!_initialised) {
return false;
}
// check desired recording state has changed
bool ret = true;
if (_last_record_video != start_recording) {
_last_record_video = start_recording;
// request recording start or stop (sadly the same message is used)
const uint8_t func_type = (uint8_t)PhotoFunction::RECORD_VIDEO_TOGGLE;
ret = send_packet(SiyiCommandId::PHOTO, &func_type, 1);
}
// request recording state update from gimbal
request_configuration();
return ret;
}
// set camera zoom step. returns true on success
// zoom out = -1, hold = 0, zoom in = 1
bool AP_Mount_Siyi::set_zoom_step(int8_t zoom_step)
{
return send_1byte_packet(SiyiCommandId::MANUAL_ZOOM_AND_AUTO_FOCUS, (uint8_t)zoom_step);
}
// set focus in, out or hold. returns true on success
// focus in = -1, focus hold = 0, focus out = 1
bool AP_Mount_Siyi::set_manual_focus_step(int8_t focus_step)
{
return send_1byte_packet(SiyiCommandId::MANUAL_FOCUS, (uint8_t)focus_step);
}
// auto focus. returns true on success
bool AP_Mount_Siyi::set_auto_focus()
{
return send_1byte_packet(SiyiCommandId::AUTO_FOCUS, 1);
}
#endif // HAL_MOUNT_SIYI_ENABLED