mirror of
https://github.com/ArduPilot/ardupilot
synced 2025-01-22 00:28:30 -04:00
61 lines
1.6 KiB
Matlab
61 lines
1.6 KiB
Matlab
function P = PredictCovariance(deltaAngle, ...
|
|
deltaVelocity, ...
|
|
quat, ...
|
|
states,...
|
|
P, ... % Previous state covariance matrix
|
|
dt) ... % IMU and prediction time step
|
|
|
|
% Set filter state process noise other than IMU errors, which are already
|
|
% built into the derived covariance predition equations.
|
|
% This process noise determines the rate of estimation of IMU bias errors
|
|
dAngBiasSigma = dt*5E-6;
|
|
processNoise = [0*ones(1,6), dAngBiasSigma*[1 1 1]];
|
|
|
|
% Specify the estimated errors on the IMU delta angles and delta velocities
|
|
% Allow for 0.5 deg/sec of gyro error
|
|
daxNoise = (dt*0.5*pi/180)^2;
|
|
dayNoise = (dt*0.5*pi/180)^2;
|
|
dazNoise = (dt*0.5*pi/180)^2;
|
|
% Allow for 0.5 m/s/s of accelerometer error
|
|
dvxNoise = (dt*0.5)^2;
|
|
dvyNoise = (dt*0.5)^2;
|
|
dvzNoise = (dt*0.5)^2;
|
|
|
|
dvx = deltaVelocity(1);
|
|
dvy = deltaVelocity(2);
|
|
dvz = deltaVelocity(3);
|
|
dax = deltaAngle(1);
|
|
day = deltaAngle(2);
|
|
daz = deltaAngle(3);
|
|
|
|
q0 = quat(1);
|
|
q1 = quat(2);
|
|
q2 = quat(3);
|
|
q3 = quat(4);
|
|
|
|
dax_b = states(7);
|
|
day_b = states(8);
|
|
daz_b = states(9);
|
|
|
|
% Predicted covariance
|
|
F = calcF(dax,dax_b,day,day_b,daz,daz_b,dvx,dvy,dvz,q0,q1,q2,q3);
|
|
Q = calcQ(daxNoise,dayNoise,dazNoise,dvxNoise,dvyNoise,dvzNoise,q0,q1,q2,q3);
|
|
P = F*P*transpose(F) + Q;
|
|
|
|
% Add the general process noise
|
|
for i = 1:9
|
|
P(i,i) = P(i,i) + processNoise(i)^2;
|
|
end
|
|
|
|
% Force symmetry on the covariance matrix to prevent ill-conditioning
|
|
% of the matrix which would cause the filter to blow-up
|
|
P = 0.5*(P + transpose(P));
|
|
|
|
% ensure diagonals are positive
|
|
for i=1:9
|
|
if P(i,i) < 0
|
|
P(i,i) = 0;
|
|
end
|
|
end
|
|
|
|
end |