mirror of
https://github.com/ArduPilot/ardupilot
synced 2025-01-10 01:48:29 -04:00
651 lines
24 KiB
C++
651 lines
24 KiB
C++
/*
|
|
This program is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include <stdlib.h>
|
|
#include <AP_HAL/AP_HAL.h>
|
|
#include "AP_MotorsHeli.h"
|
|
#include <GCS_MAVLink/GCS.h>
|
|
#include <AP_Logger/AP_Logger.h>
|
|
#include <AC_Autorotation/RSC_Autorotation.h>
|
|
|
|
extern const AP_HAL::HAL& hal;
|
|
|
|
const AP_Param::GroupInfo AP_MotorsHeli::var_info[] = {
|
|
|
|
// 1 was ROL_MAX which has been replaced by CYC_MAX
|
|
|
|
// 2 was PIT_MAX which has been replaced by CYC_MAX
|
|
|
|
// @Param: COL_MIN
|
|
// @DisplayName: Minimum Collective Pitch
|
|
// @Description: Lowest possible servo position in PWM microseconds for the swashplate
|
|
// @Range: 1000 2000
|
|
// @Units: PWM
|
|
// @Increment: 1
|
|
// @User: Standard
|
|
AP_GROUPINFO("COL_MIN", 3, AP_MotorsHeli, _collective_min, AP_MOTORS_HELI_COLLECTIVE_MIN),
|
|
|
|
// @Param: COL_MAX
|
|
// @DisplayName: Maximum Collective Pitch
|
|
// @Description: Highest possible servo position in PWM microseconds for the swashplate
|
|
// @Range: 1000 2000
|
|
// @Units: PWM
|
|
// @Increment: 1
|
|
// @User: Standard
|
|
AP_GROUPINFO("COL_MAX", 4, AP_MotorsHeli, _collective_max, AP_MOTORS_HELI_COLLECTIVE_MAX),
|
|
|
|
// index 5 was COL_MID. Do not use this index in the future.
|
|
|
|
// @Param: SV_MAN
|
|
// @DisplayName: Manual Servo Mode
|
|
// @Description: Manual servo override for swash set-up. Must be 0 (Disabled) for flight!
|
|
// @Values: 0:Disabled,1:Passthrough,2:Max collective,3:Zero thrust collective,4:Min collective
|
|
// @User: Standard
|
|
AP_GROUPINFO("SV_MAN", 6, AP_MotorsHeli, _servo_mode, SERVO_CONTROL_MODE_AUTOMATED),
|
|
|
|
// indices 7 and 8 were RSC parameters which were moved to RSC library. Do not use these indices in the future.
|
|
|
|
// index 9 was LAND_COL_MIN. Do not use this index in the future.
|
|
|
|
// indices 10-13 were RSC parameters which were moved to RSC library. Do not use these indices in the future.
|
|
|
|
// index 14 was RSC_POWER_LOW. Do not use this index in the future.
|
|
|
|
// index 15 was RSC_POWER_HIGH. Do not use this index in the future.
|
|
|
|
// @Param: CYC_MAX
|
|
// @DisplayName: Maximum Cyclic Pitch Angle
|
|
// @Description: Maximum cyclic pitch angle of the swash plate. There are no units to this parameter. This should be adjusted to get the desired cyclic blade pitch for the pitch and roll axes. Typically this should be 6-7 deg (measured blade pitch angle difference between stick centered and stick max deflection.
|
|
// @Range: 0 4500
|
|
// @Increment: 100
|
|
// @User: Standard
|
|
AP_GROUPINFO("CYC_MAX", 16, AP_MotorsHeli, _cyclic_max, AP_MOTORS_HELI_SWASH_CYCLIC_MAX),
|
|
|
|
// @Param: SV_TEST
|
|
// @DisplayName: Boot-up Servo Test Cycles
|
|
// @Description: Number of cycles to run servo test on boot-up
|
|
// @Range: 0 10
|
|
// @Increment: 1
|
|
// @User: Standard
|
|
AP_GROUPINFO("SV_TEST", 17, AP_MotorsHeli, _servo_test, 0),
|
|
|
|
// index 18 was RSC_POWER_NEGC. Do not use this index in the future.
|
|
|
|
// index 19 was RSC_SLEWRATE and was moved to RSC library. Do not use this index in the future.
|
|
|
|
// indices 20 to 24 was throttle curve. Do not use this index in the future.
|
|
|
|
// @Group: RSC_
|
|
// @Path: AP_MotorsHeli_RSC.cpp
|
|
AP_SUBGROUPINFO(_main_rotor, "RSC_", 25, AP_MotorsHeli, AP_MotorsHeli_RSC),
|
|
|
|
// @Param: COL_HOVER
|
|
// @DisplayName: Collective Hover Value
|
|
// @Description: Collective needed to hover expressed as a number from 0 to 1 where 0 is H_COL_MIN and 1 is H_COL_MAX
|
|
// @Range: 0.3 0.8
|
|
// @User: Advanced
|
|
AP_GROUPINFO("COL_HOVER", 26, AP_MotorsHeli, _collective_hover, AP_MOTORS_HELI_COLLECTIVE_HOVER_DEFAULT),
|
|
|
|
// @Param: HOVER_LEARN
|
|
// @DisplayName: Hover Value Learning
|
|
// @Description: Enable/Disable automatic learning of hover collective
|
|
// @Values: 0:Disabled, 1:Learn, 2:Learn and Save
|
|
// @User: Advanced
|
|
AP_GROUPINFO("HOVER_LEARN", 27, AP_MotorsHeli, _collective_hover_learn, HOVER_LEARN_AND_SAVE),
|
|
|
|
// @Param: OPTIONS
|
|
// @DisplayName: Heli_Options
|
|
// @Description: Bitmask of heli options. Bit 0 changes how the pitch, roll, and yaw axis integrator term is managed for low speed and takeoff/landing. In AC 4.0 and earlier, scheme uses a leaky integrator for ground speeds less than 5 m/s and won't let the steady state integrator build above ILMI. The integrator is allowed to build to the ILMI value when it is landed. The other integrator management scheme bases integrator limiting on takeoff and landing. Whenever the aircraft is landed the integrator is set to zero. When the aicraft is airborne, the integrator is only limited by IMAX.
|
|
// @Bitmask: 0:Use Leaky I
|
|
// @User: Standard
|
|
AP_GROUPINFO("OPTIONS", 28, AP_MotorsHeli, _heli_options, (uint8_t)HeliOption::USE_LEAKY_I),
|
|
|
|
// @Param: COL_ANG_MIN
|
|
// @DisplayName: Collective Blade Pitch Angle Minimum
|
|
// @Description: Minimum collective blade pitch angle in deg that corresponds to the PWM set for minimum collective pitch (H_COL_MIN).
|
|
// @Range: -20 0
|
|
// @Units: deg
|
|
// @Increment: 0.1
|
|
// @User: Standard
|
|
AP_GROUPINFO("COL_ANG_MIN", 29, AP_MotorsHeli, _collective_min_deg, AP_MOTORS_HELI_COLLECTIVE_MIN_DEG),
|
|
|
|
// @Param: COL_ANG_MAX
|
|
// @DisplayName: Collective Blade Pitch Angle Maximum
|
|
// @Description: Maximum collective blade pitch angle in deg that corresponds to the PWM set for maximum collective pitch (H_COL_MAX).
|
|
// @Range: 5 20
|
|
// @Units: deg
|
|
// @Increment: 0.1
|
|
// @User: Standard
|
|
AP_GROUPINFO("COL_ANG_MAX", 30, AP_MotorsHeli, _collective_max_deg, AP_MOTORS_HELI_COLLECTIVE_MAX_DEG),
|
|
|
|
// @Param: COL_ZERO_THRST
|
|
// @DisplayName: Collective Blade Pitch at Zero Thrust
|
|
// @Description: Collective blade pitch angle at zero thrust in degrees. For symetric airfoil blades this value is zero deg. For chambered airfoil blades this value is typically negative.
|
|
// @Range: -5 0
|
|
// @Units: deg
|
|
// @Increment: 0.1
|
|
// @User: Standard
|
|
AP_GROUPINFO("COL_ZERO_THRST", 31, AP_MotorsHeli, _collective_zero_thrust_deg, 0.0f),
|
|
|
|
// @Param: COL_LAND_MIN
|
|
// @DisplayName: Collective Blade Pitch Minimum when Landed
|
|
// @Description: Minimum collective blade pitch angle when landed in degrees for non-manual collective modes (i.e. modes that use altitude hold).
|
|
// @Range: -5 0
|
|
// @Units: deg
|
|
// @Increment: 0.1
|
|
// @User: Standard
|
|
AP_GROUPINFO("COL_LAND_MIN", 32, AP_MotorsHeli, _collective_land_min_deg, AP_MOTORS_HELI_COLLECTIVE_LAND_MIN),
|
|
|
|
// @Group: RSC_AROT_
|
|
// @Path: ../AC_Autorotation/RSC_Autorotation.cpp
|
|
AP_SUBGROUPINFO(_main_rotor.autorotation, "RSC_AROT_", 33, AP_MotorsHeli, RSC_Autorotation),
|
|
|
|
AP_GROUPEND
|
|
};
|
|
|
|
//
|
|
// public methods
|
|
//
|
|
|
|
// init
|
|
void AP_MotorsHeli::init(motor_frame_class frame_class, motor_frame_type frame_type)
|
|
{
|
|
// remember frame class and type
|
|
_frame_type = frame_type;
|
|
_frame_class = frame_class;
|
|
|
|
// set update rate
|
|
set_update_rate(_speed_hz);
|
|
|
|
// load boot-up servo test cycles into counter to be consumed
|
|
_servo_test_cycle_counter = _servo_test;
|
|
|
|
// ensure inputs are not passed through to servos on start-up
|
|
_servo_mode.set(SERVO_CONTROL_MODE_AUTOMATED);
|
|
|
|
// initialise radio passthrough for collective to middle
|
|
_throttle_radio_passthrough = 0.5f;
|
|
|
|
// initialise Servo/PWM ranges and endpoints
|
|
init_outputs();
|
|
|
|
// calculate all scalars
|
|
calculate_scalars();
|
|
|
|
// set flag to true so targets are initialized once aircraft is armed for first time
|
|
_heliflags.init_targets_on_arming = true;
|
|
|
|
_mav_type = MAV_TYPE_HELICOPTER;
|
|
}
|
|
|
|
// output_min - sets servos to neutral point with motors stopped
|
|
void AP_MotorsHeli::output_min()
|
|
{
|
|
// move swash to mid
|
|
move_actuators(0.0f,0.0f,0.5f,0.0f);
|
|
|
|
update_motor_control(AP_MotorsHeli_RSC::RotorControlState::STOP);
|
|
|
|
// override limits flags
|
|
set_limit_flag_pitch_roll_yaw(true);
|
|
limit.throttle_lower = true;
|
|
limit.throttle_upper = false;
|
|
}
|
|
|
|
// output - sends commands to the servos
|
|
void AP_MotorsHeli::output()
|
|
{
|
|
// update throttle filter
|
|
update_throttle_filter();
|
|
|
|
// run spool logic
|
|
output_logic();
|
|
|
|
if (armed()) {
|
|
// block servo_test from happening at disarm
|
|
_servo_test_cycle_counter = 0;
|
|
calculate_armed_scalars();
|
|
output_armed_stabilizing();
|
|
} else {
|
|
output_disarmed();
|
|
}
|
|
|
|
update_turbine_start();
|
|
|
|
output_to_motors();
|
|
|
|
};
|
|
|
|
// sends commands to the motors
|
|
void AP_MotorsHeli::output_armed_stabilizing()
|
|
{
|
|
// if manual override active after arming, deactivate it and reinitialize servos
|
|
if (_servo_mode != SERVO_CONTROL_MODE_AUTOMATED) {
|
|
reset_flight_controls();
|
|
}
|
|
|
|
move_actuators(_roll_in, _pitch_in, get_throttle(), _yaw_in);
|
|
}
|
|
|
|
// output_disarmed - sends commands to the motors
|
|
void AP_MotorsHeli::output_disarmed()
|
|
{
|
|
if (_servo_test_cycle_counter > 0){
|
|
// set servo_test_flag
|
|
_heliflags.servo_test_running = true;
|
|
// perform boot-up servo test cycle if enabled
|
|
servo_test();
|
|
} else {
|
|
// set servo_test flag
|
|
_heliflags.servo_test_running = false;
|
|
// manual override (i.e. when setting up swash)
|
|
switch (_servo_mode) {
|
|
case SERVO_CONTROL_MODE_MANUAL_PASSTHROUGH:
|
|
// pass pilot commands straight through to swash
|
|
_roll_in = _roll_radio_passthrough;
|
|
_pitch_in = _pitch_radio_passthrough;
|
|
_throttle_filter.reset(_throttle_radio_passthrough);
|
|
_yaw_in = _yaw_radio_passthrough;
|
|
break;
|
|
case SERVO_CONTROL_MODE_MANUAL_CENTER:
|
|
// fixate mid collective
|
|
_roll_in = 0.0f;
|
|
_pitch_in = 0.0f;
|
|
_throttle_filter.reset(_collective_zero_thrust_pct);
|
|
_yaw_in = 0.0f;
|
|
break;
|
|
case SERVO_CONTROL_MODE_MANUAL_MAX:
|
|
// fixate max collective
|
|
_roll_in = 0.0f;
|
|
_pitch_in = 0.0f;
|
|
_throttle_filter.reset(1.0f);
|
|
if (_frame_class == MOTOR_FRAME_HELI_DUAL ||
|
|
_frame_class == MOTOR_FRAME_HELI_QUAD) {
|
|
_yaw_in = 0;
|
|
} else {
|
|
_yaw_in = 1;
|
|
}
|
|
break;
|
|
case SERVO_CONTROL_MODE_MANUAL_MIN:
|
|
// fixate min collective
|
|
_roll_in = 0.0f;
|
|
_pitch_in = 0.0f;
|
|
_throttle_filter.reset(0.0f);
|
|
if (_frame_class == MOTOR_FRAME_HELI_DUAL ||
|
|
_frame_class == MOTOR_FRAME_HELI_QUAD) {
|
|
_yaw_in = 0;
|
|
} else {
|
|
_yaw_in = -1;
|
|
}
|
|
break;
|
|
case SERVO_CONTROL_MODE_MANUAL_OSCILLATE:
|
|
// use servo_test function from child classes
|
|
servo_test();
|
|
break;
|
|
default:
|
|
// no manual override
|
|
break;
|
|
}
|
|
}
|
|
|
|
// ensure swash servo endpoints haven't been moved
|
|
init_outputs();
|
|
|
|
// continuously recalculate scalars to allow setup
|
|
calculate_scalars();
|
|
|
|
// helicopters always run stabilizing flight controls
|
|
move_actuators(_roll_in, _pitch_in, get_throttle(), _yaw_in);
|
|
}
|
|
|
|
// run spool logic
|
|
void AP_MotorsHeli::output_logic()
|
|
{
|
|
// force desired and current spool mode if disarmed and armed with interlock enabled
|
|
if (armed()) {
|
|
if (!get_interlock()) {
|
|
_spool_desired = DesiredSpoolState::GROUND_IDLE;
|
|
} else {
|
|
_heliflags.init_targets_on_arming = false;
|
|
}
|
|
} else {
|
|
_heliflags.init_targets_on_arming = true;
|
|
_spool_desired = DesiredSpoolState::SHUT_DOWN;
|
|
_spool_state = SpoolState::SHUT_DOWN;
|
|
}
|
|
|
|
switch (_spool_state) {
|
|
case SpoolState::SHUT_DOWN:
|
|
// Motors should be stationary.
|
|
// Servos set to their trim values or in a test condition.
|
|
|
|
// set limits flags
|
|
if (!using_leaky_integrator()) {
|
|
set_limit_flag_pitch_roll_yaw(true);
|
|
} else {
|
|
set_limit_flag_pitch_roll_yaw(false);
|
|
}
|
|
|
|
// make sure the motors are spooling in the correct direction
|
|
if (_spool_desired != DesiredSpoolState::SHUT_DOWN) {
|
|
_spool_state = SpoolState::GROUND_IDLE;
|
|
break;
|
|
}
|
|
|
|
break;
|
|
|
|
case SpoolState::GROUND_IDLE: {
|
|
// Motors should be stationary or at ground idle.
|
|
// set limits flags
|
|
if (_heliflags.land_complete && !using_leaky_integrator()) {
|
|
set_limit_flag_pitch_roll_yaw(true);
|
|
} else {
|
|
set_limit_flag_pitch_roll_yaw(false);
|
|
}
|
|
|
|
// Servos should be moving to correct the current attitude.
|
|
if (_spool_desired == DesiredSpoolState::SHUT_DOWN){
|
|
_spool_state = SpoolState::SHUT_DOWN;
|
|
} else if(_spool_desired == DesiredSpoolState::THROTTLE_UNLIMITED) {
|
|
_spool_state = SpoolState::SPOOLING_UP;
|
|
} else { // _spool_desired == GROUND_IDLE
|
|
|
|
}
|
|
|
|
break;
|
|
}
|
|
case SpoolState::SPOOLING_UP:
|
|
// Maximum throttle should move from minimum to maximum.
|
|
// Servos should exhibit normal flight behavior.
|
|
|
|
// set limits flags
|
|
if (_heliflags.land_complete && !using_leaky_integrator()) {
|
|
set_limit_flag_pitch_roll_yaw(true);
|
|
} else {
|
|
set_limit_flag_pitch_roll_yaw(false);
|
|
}
|
|
|
|
// make sure the motors are spooling in the correct direction
|
|
if (_spool_desired != DesiredSpoolState::THROTTLE_UNLIMITED ){
|
|
_spool_state = SpoolState::SPOOLING_DOWN;
|
|
break;
|
|
}
|
|
|
|
if (_heliflags.rotor_runup_complete){
|
|
_spool_state = SpoolState::THROTTLE_UNLIMITED;
|
|
}
|
|
break;
|
|
|
|
case SpoolState::THROTTLE_UNLIMITED:
|
|
// Throttle should exhibit normal flight behavior.
|
|
// Servos should exhibit normal flight behavior.
|
|
|
|
// set limits flags
|
|
if (_heliflags.land_complete && !using_leaky_integrator()) {
|
|
set_limit_flag_pitch_roll_yaw(true);
|
|
} else {
|
|
set_limit_flag_pitch_roll_yaw(false);
|
|
}
|
|
|
|
// make sure the motors are spooling in the correct direction
|
|
if (_spool_desired != DesiredSpoolState::THROTTLE_UNLIMITED) {
|
|
_spool_state = SpoolState::SPOOLING_DOWN;
|
|
break;
|
|
}
|
|
|
|
|
|
break;
|
|
|
|
case SpoolState::SPOOLING_DOWN:
|
|
// Maximum throttle should move from maximum to minimum.
|
|
// Servos should exhibit normal flight behavior.
|
|
|
|
// set limits flags
|
|
if (_heliflags.land_complete && !using_leaky_integrator()) {
|
|
set_limit_flag_pitch_roll_yaw(true);
|
|
} else {
|
|
set_limit_flag_pitch_roll_yaw(false);
|
|
}
|
|
|
|
// make sure the motors are spooling in the correct direction
|
|
if (_spool_desired == DesiredSpoolState::THROTTLE_UNLIMITED) {
|
|
_spool_state = SpoolState::SPOOLING_UP;
|
|
break;
|
|
}
|
|
if (_heliflags.rotor_spooldown_complete){
|
|
_spool_state = SpoolState::GROUND_IDLE;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
// update the throttle input filter
|
|
void AP_MotorsHeli::update_throttle_filter()
|
|
{
|
|
_throttle_filter.apply(_throttle_in, _dt);
|
|
|
|
// constrain filtered throttle
|
|
if (_throttle_filter.get() < 0.0f) {
|
|
_throttle_filter.reset(0.0f);
|
|
}
|
|
if (_throttle_filter.get() > 1.0f) {
|
|
_throttle_filter.reset(1.0f);
|
|
}
|
|
}
|
|
|
|
// reset_flight_controls - resets all controls and scalars to flight status
|
|
void AP_MotorsHeli::reset_flight_controls()
|
|
{
|
|
_servo_mode.set(SERVO_CONTROL_MODE_AUTOMATED);
|
|
init_outputs();
|
|
calculate_scalars();
|
|
}
|
|
|
|
// update the collective input filter. should be called at 100hz
|
|
void AP_MotorsHeli::update_throttle_hover(float dt)
|
|
{
|
|
if (_collective_hover_learn != HOVER_LEARN_DISABLED) {
|
|
|
|
// Don't let _collective_hover go below H_COLL_ZERO_THRST
|
|
float curr_collective = get_throttle();
|
|
if (curr_collective < _collective_zero_thrust_pct) {
|
|
curr_collective = _collective_zero_thrust_pct;
|
|
}
|
|
|
|
// we have chosen to constrain the hover collective to be within the range reachable by the third order expo polynomial.
|
|
_collective_hover.set(constrain_float(_collective_hover + (dt / (dt + AP_MOTORS_HELI_COLLECTIVE_HOVER_TC)) * (curr_collective - _collective_hover), AP_MOTORS_HELI_COLLECTIVE_HOVER_MIN, AP_MOTORS_HELI_COLLECTIVE_HOVER_MAX));
|
|
}
|
|
}
|
|
|
|
// save parameters as part of disarming
|
|
void AP_MotorsHeli::save_params_on_disarm()
|
|
{
|
|
// save hover throttle
|
|
if (_collective_hover_learn == HOVER_LEARN_AND_SAVE) {
|
|
_collective_hover.save();
|
|
}
|
|
}
|
|
|
|
// updates the takeoff collective flag
|
|
void AP_MotorsHeli::update_takeoff_collective_flag(float coll_out)
|
|
{
|
|
if (coll_out > _collective_zero_thrust_pct + 0.5f * (_collective_hover - _collective_zero_thrust_pct)) {
|
|
_heliflags.takeoff_collective = true;
|
|
} else {
|
|
_heliflags.takeoff_collective = false;
|
|
}
|
|
}
|
|
|
|
// Determines if _heli_options bit is set
|
|
bool AP_MotorsHeli::heli_option(HeliOption opt) const
|
|
{
|
|
return (_heli_options & (uint8_t)opt);
|
|
}
|
|
|
|
// updates the turbine start flag
|
|
void AP_MotorsHeli::update_turbine_start()
|
|
{
|
|
if (_heliflags.start_engine) {
|
|
_main_rotor.set_turbine_start(true);
|
|
} else {
|
|
_main_rotor.set_turbine_start(false);
|
|
}
|
|
}
|
|
|
|
// Run arming checks
|
|
bool AP_MotorsHeli::arming_checks(size_t buflen, char *buffer) const
|
|
{
|
|
// run base class checks
|
|
if (!AP_Motors::arming_checks(buflen, buffer)) {
|
|
return false;
|
|
}
|
|
|
|
if (_heliflags.servo_test_running) {
|
|
hal.util->snprintf(buffer, buflen, "Servo Test is still running");
|
|
return false;
|
|
}
|
|
|
|
// returns false if RSC Mode is not set to a valid control mode
|
|
if (_main_rotor._rsc_mode.get() <= (int8_t)ROTOR_CONTROL_MODE_DISABLED || _main_rotor._rsc_mode.get() > (int8_t)ROTOR_CONTROL_MODE_AUTOTHROTTLE) {
|
|
hal.util->snprintf(buffer, buflen, "H_RSC_MODE invalid");
|
|
return false;
|
|
}
|
|
|
|
// returns false if rsc_setpoint is out of range
|
|
if ( _main_rotor._rsc_setpoint.get() > 100 || _main_rotor._rsc_setpoint.get() < 10){
|
|
hal.util->snprintf(buffer, buflen, "H_RSC_SETPOINT out of range");
|
|
return false;
|
|
}
|
|
|
|
// returns false if idle output is out of range
|
|
if ( _main_rotor._idle_output.get() > 100 || _main_rotor._idle_output.get() < 0){
|
|
hal.util->snprintf(buffer, buflen, "H_RSC_IDLE out of range");
|
|
return false;
|
|
}
|
|
|
|
// returns false if _rsc_critical is not between 0 and 100
|
|
if (_main_rotor._critical_speed.get() > 100 || _main_rotor._critical_speed.get() < 0) {
|
|
hal.util->snprintf(buffer, buflen, "H_RSC_CRITICAL out of range");
|
|
return false;
|
|
}
|
|
|
|
// returns false if RSC Runup Time is less than Ramp time as this could cause undesired behaviour of rotor speed estimate
|
|
if (_main_rotor._runup_time.get() <= _main_rotor._ramp_time.get()){
|
|
hal.util->snprintf(buffer, buflen, "H_RUNUP_TIME too small");
|
|
return false;
|
|
}
|
|
|
|
// returns false if _collective_min_deg is not default value which indicates users set parameter
|
|
if (is_equal((float)_collective_min_deg, (float)AP_MOTORS_HELI_COLLECTIVE_MIN_DEG)) {
|
|
hal.util->snprintf(buffer, buflen, "Set H_COL_ANG_MIN to measured min blade pitch in deg");
|
|
return false;
|
|
}
|
|
|
|
// returns false if _collective_max_deg is not default value which indicates users set parameter
|
|
if (is_equal((float)_collective_max_deg, (float)AP_MOTORS_HELI_COLLECTIVE_MAX_DEG)) {
|
|
hal.util->snprintf(buffer, buflen, "Set H_COL_ANG_MAX to measured max blade pitch in deg");
|
|
return false;
|
|
}
|
|
|
|
if (!_main_rotor.autorotation.arming_checks(buflen, buffer)) {
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
// Tell user motor test is disabled on heli
|
|
bool AP_MotorsHeli::motor_test_checks(size_t buflen, char *buffer) const
|
|
{
|
|
hal.util->snprintf(buffer, buflen, "Disabled on heli");
|
|
return false;
|
|
}
|
|
|
|
// get_motor_mask - returns a bitmask of which outputs are being used for motors or servos (1 means being used)
|
|
// this can be used to ensure other pwm outputs (i.e. for servos) do not conflict
|
|
uint32_t AP_MotorsHeli::get_motor_mask()
|
|
{
|
|
return _main_rotor.get_output_mask();
|
|
}
|
|
|
|
// set_desired_rotor_speed
|
|
void AP_MotorsHeli::set_desired_rotor_speed(float desired_speed)
|
|
{
|
|
_main_rotor.set_desired_speed(desired_speed);
|
|
}
|
|
|
|
// Converts AP_Motors::SpoolState from _spool_state variable to AP_MotorsHeli_RSC::RotorControlState
|
|
AP_MotorsHeli_RSC::RotorControlState AP_MotorsHeli::get_rotor_control_state() const
|
|
{
|
|
switch (_spool_state) {
|
|
case SpoolState::SHUT_DOWN:
|
|
// sends minimum values out to the motors
|
|
return AP_MotorsHeli_RSC::RotorControlState::STOP;
|
|
case SpoolState::GROUND_IDLE:
|
|
// sends idle output to motors when armed. rotor could be static or turning (autorotation)
|
|
return AP_MotorsHeli_RSC::RotorControlState::IDLE;
|
|
case SpoolState::SPOOLING_UP:
|
|
case SpoolState::THROTTLE_UNLIMITED:
|
|
// set motor output based on thrust requests
|
|
return AP_MotorsHeli_RSC::RotorControlState::ACTIVE;
|
|
case SpoolState::SPOOLING_DOWN:
|
|
// sends idle output to motors and wait for rotor to stop
|
|
return AP_MotorsHeli_RSC::RotorControlState::IDLE;
|
|
}
|
|
|
|
// Should be unreachable, but needed to keep the compiler happy
|
|
return AP_MotorsHeli_RSC::RotorControlState::STOP;
|
|
}
|
|
|
|
// Update _heliflags.rotor_runup_complete value writing log event on state change
|
|
void AP_MotorsHeli::set_rotor_runup_complete(bool new_value)
|
|
{
|
|
#if HAL_LOGGING_ENABLED
|
|
if (!_heliflags.rotor_runup_complete && new_value) {
|
|
LOGGER_WRITE_EVENT(LogEvent::ROTOR_RUNUP_COMPLETE);
|
|
} else if (_heliflags.rotor_runup_complete && !new_value && !_main_rotor.in_autorotation()) {
|
|
LOGGER_WRITE_EVENT(LogEvent::ROTOR_SPEED_BELOW_CRITICAL);
|
|
}
|
|
#endif
|
|
_heliflags.rotor_runup_complete = new_value;
|
|
}
|
|
|
|
#if HAL_LOGGING_ENABLED
|
|
// Returns the scaling value required to convert the collective angle parameters into the cyclic-output-to-angle conversion
|
|
float AP_MotorsHeli::get_cyclic_angle_scaler(void) const {
|
|
// We want to use the collective min-max to angle relationship to calculate the cyclic input to angle relationship
|
|
// First we scale the collective angle range by it's min-max output. Recall that we assume that the maximum possible
|
|
// collective range is 1000, hence the *1e-3.
|
|
// The factor 2.0 accounts for the fact that we scale the servo outputs from 0 ~ 1 to -1 ~ 1
|
|
return ((float)(_collective_max-_collective_min))*1e-3 * (_collective_max_deg.get() - _collective_min_deg.get()) * 2.0;
|
|
}
|
|
#endif
|
|
|
|
// Helper function for param conversions to be done in motors class
|
|
void AP_MotorsHeli::heli_motors_param_conversions(void)
|
|
{
|
|
// PARAMETER_CONVERSION - Added: Sep-2024
|
|
// move autorotation related parameters within the RSC into their own class
|
|
const AP_Param::ConversionInfo rsc_arot_conversion_info[] = {
|
|
{ 90, 108096, AP_PARAM_INT8, "H_RSC_AROT_ENBL" },
|
|
{ 90, 104000, AP_PARAM_INT8, "H_RSC_AROT_RAMP" },
|
|
{ 90, 112192, AP_PARAM_INT16, "H_RSC_AROT_IDLE" },
|
|
};
|
|
uint8_t table_size = ARRAY_SIZE(rsc_arot_conversion_info);
|
|
for (uint8_t i=0; i<table_size; i++) {
|
|
AP_Param::convert_old_parameter(&rsc_arot_conversion_info[i], 1.0);
|
|
}
|
|
}
|