mirror of
https://github.com/ArduPilot/ardupilot
synced 2025-01-14 20:58:30 -04:00
633bb159bf
Fixed some typos found in the code.
314 lines
9.5 KiB
C++
314 lines
9.5 KiB
C++
/*
|
|
* This file is free software: you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License as published by the
|
|
* Free Software Foundation, either version 3 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This file is distributed in the hope that it will be useful, but
|
|
* WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
|
|
* See the GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License along
|
|
* with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include "AP_Compass_MMC5xx3.h"
|
|
|
|
#if AP_COMPASS_MMC5XX3_ENABLED
|
|
|
|
#include <AP_HAL/AP_HAL.h>
|
|
#include <stdio.h>
|
|
|
|
extern const AP_HAL::HAL &hal;
|
|
|
|
#define REG_PRODUCT_ID 0x2F
|
|
#define REG_XOUT_L 0x00
|
|
#define REG_STATUS 0x08
|
|
#define REG_CONTROL0 0x09
|
|
#define REG_CONTROL1 0x0A
|
|
#define REG_CONTROL2 0x0B
|
|
|
|
// bits in REG_CONTROL0
|
|
#define REG_CONTROL0_RESET 0x10 // Set coil for measuring offset
|
|
#define REG_CONTROL0_SET 0x08 // Reset coil for measuring offset
|
|
#define REG_CONTROL0_TMM 0x01 // Take Measurement for Magnetic field
|
|
#define REG_CONTROL0_TMT 0x02 // Take Measurement for Temperature
|
|
|
|
// bits in REG_CONTROL1
|
|
#define REG_CONTROL1_SW_RST 0x80 // Software reset
|
|
#define REG_CONTROL1_BW0 0x01
|
|
#define REG_CONTROL1_BW1 0x02
|
|
|
|
#define MMC5983_ID 0x30
|
|
|
|
AP_Compass_Backend *AP_Compass_MMC5XX3::probe(AP_HAL::OwnPtr<AP_HAL::Device> dev,
|
|
bool force_external,
|
|
enum Rotation rotation)
|
|
{
|
|
if (!dev) {
|
|
return nullptr;
|
|
}
|
|
AP_Compass_MMC5XX3 *sensor = new AP_Compass_MMC5XX3(std::move(dev), force_external, rotation);
|
|
if (!sensor || !sensor->init()) {
|
|
delete sensor;
|
|
return nullptr;
|
|
}
|
|
|
|
return sensor;
|
|
}
|
|
|
|
AP_Compass_MMC5XX3::AP_Compass_MMC5XX3(AP_HAL::OwnPtr<AP_HAL::Device> _dev,
|
|
bool _force_external,
|
|
enum Rotation _rotation)
|
|
: dev(std::move(_dev))
|
|
, force_external(_force_external)
|
|
, rotation(_rotation)
|
|
, have_initial_offset(false)
|
|
{
|
|
}
|
|
|
|
bool AP_Compass_MMC5XX3::init()
|
|
{
|
|
// take i2c bus semaphore
|
|
WITH_SEMAPHORE(dev->get_semaphore());
|
|
|
|
dev->set_retries(10);
|
|
|
|
// setup to allow reads on SPI
|
|
if (dev->bus_type() == AP_HAL::Device::BUS_TYPE_SPI) {
|
|
dev->set_read_flag(0x80);
|
|
}
|
|
|
|
// Reading REG_PRODUCT_ID fails sometimes on SPI, so we retry up to 10 times
|
|
uint8_t whoami = 0;
|
|
uint8_t tries = 10;
|
|
while (whoami == 0 && tries > 0) {
|
|
tries--;
|
|
dev->read_registers(REG_PRODUCT_ID, &whoami, 1);
|
|
hal.scheduler->delay(5);
|
|
}
|
|
|
|
if (whoami != MMC5983_ID) {
|
|
printf("MMC5983 got unexpected product id: %d, expected: %d\n", whoami, MMC5983_ID);
|
|
// not a MMC5983
|
|
return false;
|
|
}
|
|
|
|
// reset sensor
|
|
dev->write_register(REG_CONTROL1, REG_CONTROL1_SW_RST);
|
|
|
|
// 10ms minimum startup time
|
|
hal.scheduler->delay(15);
|
|
|
|
// setup for 100Hz output
|
|
if (!dev->write_register(REG_CONTROL1, 0)) {
|
|
return false;
|
|
}
|
|
|
|
|
|
/* register the compass instance in the frontend */
|
|
dev->set_device_type(DEVTYPE_MMC5983);
|
|
if (!register_compass(dev->get_bus_id(), compass_instance)) {
|
|
return false;
|
|
}
|
|
|
|
set_dev_id(compass_instance, dev->get_bus_id());
|
|
|
|
printf("Found a MMC5983 on 0x%x as compass %u\n", dev->get_bus_id(), compass_instance);
|
|
|
|
set_rotation(compass_instance, rotation);
|
|
|
|
if (force_external) {
|
|
set_external(compass_instance, true);
|
|
}
|
|
|
|
dev->set_retries(1);
|
|
|
|
// call timer() at 100Hz
|
|
dev->register_periodic_callback(10000U,
|
|
FUNCTOR_BIND_MEMBER(&AP_Compass_MMC5XX3::timer, void));
|
|
|
|
return true;
|
|
}
|
|
|
|
void AP_Compass_MMC5XX3::timer()
|
|
{
|
|
// recalculate the offset with set/reset operation every measure_count_limit measurements
|
|
// sensor is read at about 100Hz, so about every 10 seconds
|
|
const uint16_t measure_count_limit = 1000U;
|
|
const uint16_t zero_offset = 32768U; // 16 bit mode
|
|
const uint16_t sensitivity = 4096U; // counts per Gauss, 16 bit mode
|
|
constexpr float counts_to_milliGauss = 1.0e3f / sensitivity;
|
|
|
|
/*
|
|
we use the SET/RESET method to remove bridge offset every
|
|
measure_count_limit measurements. This involves a fairly complex
|
|
state machine, but means we are much less sensitive to
|
|
temperature changes
|
|
*/
|
|
switch (state) {
|
|
|
|
// perform a set operation
|
|
case MMCState::STATE_SET: {
|
|
if (!dev->write_register(REG_CONTROL0, REG_CONTROL0_SET)) {
|
|
break;
|
|
}
|
|
// minimum time to wait after set/reset before take measurement request is 1ms
|
|
state = MMCState::STATE_SET_MEASURE;
|
|
break;
|
|
}
|
|
|
|
// request a measurement for field and offset calculation after set operation
|
|
case MMCState::STATE_SET_MEASURE: {
|
|
if (!dev->write_register(REG_CONTROL0, REG_CONTROL0_TMM)) {
|
|
break;
|
|
}
|
|
state = MMCState::STATE_SET_WAIT;
|
|
break;
|
|
}
|
|
|
|
// wait for measurement to be ready after set operation, then read the
|
|
// measurement data and request a reset operation
|
|
case MMCState::STATE_SET_WAIT: {
|
|
uint8_t status;
|
|
if (!dev->read_registers(REG_STATUS, &status, 1)) {
|
|
state = MMCState::STATE_SET;
|
|
break;
|
|
}
|
|
|
|
// check if measurement is ready
|
|
if (!(status & 1)) {
|
|
break;
|
|
}
|
|
|
|
// read measurement
|
|
if (!dev->read_registers(REG_XOUT_L, (uint8_t *)&data0[0], 6)) {
|
|
state = MMCState::STATE_SET;
|
|
break;
|
|
}
|
|
|
|
// request set operation
|
|
if (!dev->write_register(REG_CONTROL0, REG_CONTROL0_RESET)) {
|
|
break;
|
|
}
|
|
// minimum time to wait after set/reset before take measurement request is 1ms
|
|
state = MMCState::STATE_RESET_MEASURE;
|
|
break;
|
|
}
|
|
|
|
// request a measurement for field and offset calculation after reset operation
|
|
case MMCState::STATE_RESET_MEASURE: {
|
|
// take measurement request
|
|
if (!dev->write_register(REG_CONTROL0, REG_CONTROL0_TMM)) {
|
|
state = MMCState::STATE_SET;
|
|
break;
|
|
}
|
|
|
|
state = MMCState::STATE_RESET_WAIT;
|
|
break;
|
|
}
|
|
|
|
// wait for measurement to be ready after reset operation,
|
|
// then read the measurement data, calculate the field and offset,
|
|
// and begin requesting field measurements
|
|
case MMCState::STATE_RESET_WAIT: {
|
|
uint8_t status;
|
|
if (!dev->read_registers(REG_STATUS, &status, 1)) {
|
|
state = MMCState::STATE_SET;
|
|
break;
|
|
}
|
|
// check if measurement is ready
|
|
if (!(status & 1)) {
|
|
break;
|
|
}
|
|
|
|
uint8_t data1[6];
|
|
if (!dev->read_registers(REG_XOUT_L, (uint8_t *)&data1[0], 6)) {
|
|
state = MMCState::STATE_SET;
|
|
break;
|
|
}
|
|
|
|
/*
|
|
calculate field and offset
|
|
*/
|
|
Vector3f f1 {float((data0[0] << 8) + data0[1]) - zero_offset,
|
|
float((data0[2] << 8) + data0[3]) - zero_offset,
|
|
float((data0[4] << 8) + data0[5]) - zero_offset};
|
|
Vector3f f2 {float((data1[0] << 8) + data1[1]) - zero_offset,
|
|
float((data1[2] << 8) + data1[3]) - zero_offset,
|
|
float((data1[4] << 8) + data1[5]) - zero_offset};
|
|
|
|
Vector3f field {(f2 - f1) * counts_to_milliGauss * 0.5f};
|
|
Vector3f new_offset {(f1 + f2) * counts_to_milliGauss * 0.5f};
|
|
|
|
if (!have_initial_offset) {
|
|
offset = new_offset;
|
|
have_initial_offset = true;
|
|
} else {
|
|
// low pass changes to the offset
|
|
offset = offset * 0.5f + new_offset * 0.5f;
|
|
}
|
|
|
|
accumulate_sample(field, compass_instance);
|
|
|
|
if (!dev->write_register(REG_CONTROL0, REG_CONTROL0_TMM)) {
|
|
printf("failed to initiate measurement\n");
|
|
state = MMCState::STATE_SET;
|
|
} else {
|
|
state = MMCState::STATE_MEASURE;
|
|
}
|
|
|
|
break;
|
|
}
|
|
|
|
// take repeated field measurements, set/reset is performed again after
|
|
// measure_count_limit measurements
|
|
case MMCState::STATE_MEASURE: {
|
|
uint8_t status;
|
|
if (!dev->read_registers(REG_STATUS, &status, 1)) {
|
|
state = MMCState::STATE_SET;
|
|
break;
|
|
}
|
|
|
|
// check if measurement is ready
|
|
if (!(status & 1)) {
|
|
break;
|
|
}
|
|
|
|
uint8_t data1[6];
|
|
if (!dev->read_registers(REG_XOUT_L, (uint8_t *)&data1[0], 6)) {
|
|
printf("cant read data\n");
|
|
state = MMCState::STATE_SET;
|
|
break;
|
|
}
|
|
|
|
Vector3f field {float((data1[0] << 8) + data1[1]) - zero_offset,
|
|
float((data1[2] << 8) + data1[3]) - zero_offset,
|
|
float((data1[4] << 8) + data1[5]) - zero_offset};
|
|
field *= counts_to_milliGauss;
|
|
field -= offset;
|
|
accumulate_sample(field, compass_instance);
|
|
|
|
// we stay in STATE_MEASURE for measure_count_limit cycles
|
|
if (measure_count++ >= measure_count_limit) {
|
|
measure_count = 0;
|
|
state = MMCState::STATE_SET;
|
|
} else {
|
|
if (!dev->write_register(REG_CONTROL0, REG_CONTROL0_TMM)) { // Take Measurement
|
|
state = MMCState::STATE_SET;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
void AP_Compass_MMC5XX3::read()
|
|
{
|
|
drain_accumulated_samples(compass_instance);
|
|
}
|
|
|
|
#endif // AP_COMPASS_MMC5XX3_ENABLED
|
|
|