ardupilot/libraries/AP_EFI/AP_EFI_Serial_Lutan.cpp
Andrew Tridgell ee41132483 AP_EFI: added fuel usage integration for Lutan EFI
allows for EFI_COEF1 and EFI_COEF2 to be set to get fuel consumption
on GCS
2022-05-28 16:08:17 +09:00

108 lines
4.1 KiB
C++

/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <AP_HAL/AP_HAL.h>
#include "AP_EFI_Serial_Lutan.h"
#include <AP_HAL/utility/sparse-endian.h>
#include <stdio.h>
#if HAL_EFI_ENABLED
#include <AP_SerialManager/AP_SerialManager.h>
// RPM Threshold for fuel consumption estimator
#define RPM_THRESHOLD 100
extern const AP_HAL::HAL &hal;
AP_EFI_Serial_Lutan::AP_EFI_Serial_Lutan(AP_EFI &_frontend):
AP_EFI_Backend(_frontend)
{
port = AP::serialmanager().find_serial(AP_SerialManager::SerialProtocol_EFI, 0);
}
void AP_EFI_Serial_Lutan::update()
{
if (port == nullptr) {
return;
}
const uint32_t now = AP_HAL::millis();
if (pkt_nbytes > 0 && now - last_recv_ms > 100) {
pkt_nbytes = 0;
}
const uint32_t n = MIN(sizeof(pkt), port->available());
if (n > 0) {
last_recv_ms = now;
}
if (n + pkt_nbytes > sizeof(pkt)) {
pkt_nbytes = 0;
}
const ssize_t nread = port->read(&pkt[pkt_nbytes], n);
if (nread <= 0) {
return;
}
pkt_nbytes += nread;
if (pkt_nbytes > 2) {
const uint16_t length = be16toh(data.length);
if (length+6 == pkt_nbytes) {
// got a pkt of right length
const uint32_t crc = be32toh_ptr(&pkt[length+2]);
const uint32_t crc2 = ~crc_crc32(~0U, &pkt[2], length);
if (crc == crc2) {
// valid data
internal_state.spark_dwell_time_ms = int16_t(be16toh(data.dwell))*0.1;
internal_state.cylinder_status[0].injection_time_ms = be16toh(data.pulseWidth1)*0.00666;
internal_state.engine_speed_rpm = be16toh(data.rpm);
internal_state.atmospheric_pressure_kpa = int16_t(be16toh(data.barometer))*0.1;
internal_state.intake_manifold_pressure_kpa = int16_t(be16toh(data.map))*0.1;
internal_state.intake_manifold_temperature = degF_to_Kelvin(int16_t(be16toh(data.mat))*0.1);
internal_state.coolant_temperature = degF_to_Kelvin(int16_t(be16toh(data.coolant))*0.1);
// CHT is in coolant field
internal_state.cylinder_status[0].cylinder_head_temperature = internal_state.coolant_temperature;
internal_state.throttle_position_percent = int16_t(be16toh(data.tps))*0.1;
// integrate fuel consumption
if (internal_state.engine_speed_rpm > RPM_THRESHOLD) {
const float duty_cycle = (internal_state.cylinder_status[0].injection_time_ms * internal_state.engine_speed_rpm)/600.0f;
internal_state.fuel_consumption_rate_cm3pm = duty_cycle*get_coef1() - get_coef2();
internal_state.estimated_consumed_fuel_volume_cm3 += internal_state.fuel_consumption_rate_cm3pm * (now - internal_state.last_updated_ms)/60000.0f;
} else {
internal_state.fuel_consumption_rate_cm3pm = 0;
}
internal_state.last_updated_ms = now;
copy_to_frontend();
}
pkt_nbytes = 0;
}
}
if (n == 0 || now - last_request_ms > 200) {
last_request_ms = now;
port->discard_input();
send_request();
}
}
void AP_EFI_Serial_Lutan::send_request(void)
{
static const uint8_t d[] = { 0, 1, 0x41 };
const uint32_t crc = ~crc_crc32(~0U, &d[2], sizeof(d)-2);
const uint32_t crc2 = htobe32(crc);
port->write(d, sizeof(d));
port->write((const uint8_t *)&crc2, sizeof(crc2));
}
#endif // HAL_EFI_ENABLED