mirror of
https://github.com/ArduPilot/ardupilot
synced 2025-01-05 15:38:29 -04:00
1231 lines
50 KiB
C++
1231 lines
50 KiB
C++
/*
|
|
This program is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
/*
|
|
support for autotune of helicopters. Based on original autotune code from ArduCopter, written by Leonard Hall
|
|
Converted to a library by Andrew Tridgell, and rewritten to include helicopters by Bill Geyer
|
|
*/
|
|
|
|
#include "AC_AutoTune_Heli.h"
|
|
|
|
#define AUTOTUNE_HELI_TARGET_ANGLE_RLLPIT_CD 2000 // target roll/pitch angle during AUTOTUNE FeedForward rate test
|
|
#define AUTOTUNE_HELI_TARGET_RATE_RLLPIT_CDS 5000 // target roll/pitch rate during AUTOTUNE FeedForward rate test
|
|
#define AUTOTUNE_FFI_RATIO_FOR_TESTING 0.5f // I is set 2x smaller than VFF during testing
|
|
#define AUTOTUNE_FFI_RATIO_FINAL 0.5f // I is set 0.5x VFF after testing
|
|
#define AUTOTUNE_PI_RATIO_FINAL 1.0f // I is set 1x P after testing
|
|
#define AUTOTUNE_YAW_PI_RATIO_FINAL 0.1f // I is set 1x P after testing
|
|
#define AUTOTUNE_RD_STEP 0.0005f // minimum increment when increasing/decreasing Rate D term
|
|
#define AUTOTUNE_RP_STEP 0.005f // minimum increment when increasing/decreasing Rate P term
|
|
#define AUTOTUNE_SP_STEP 0.05f // minimum increment when increasing/decreasing Stab P term
|
|
#define AUTOTUNE_PI_RATIO_FOR_TESTING 0.1f // I is set 10x smaller than P during testing
|
|
#define AUTOTUNE_RD_MAX 0.020f // maximum Rate D value
|
|
#define AUTOTUNE_RLPF_MIN 1.0f // minimum Rate Yaw filter value
|
|
#define AUTOTUNE_RLPF_MAX 20.0f // maximum Rate Yaw filter value
|
|
#define AUTOTUNE_RP_MIN 0.001f // minimum Rate P value
|
|
#define AUTOTUNE_RP_MAX 0.3f // maximum Rate P value
|
|
#define AUTOTUNE_SP_MAX 10.0f // maximum Stab P value
|
|
#define AUTOTUNE_SP_MIN 3.0f // maximum Stab P value
|
|
#define AUTOTUNE_RFF_MAX 0.5f // maximum Stab P value
|
|
#define AUTOTUNE_RFF_MIN 0.025f // maximum Stab P value
|
|
#define AUTOTUNE_D_UP_DOWN_MARGIN 0.2f // The margin below the target that we tune D in
|
|
|
|
#define AUTOTUNE_SEQ_BITMASK_VFF 1
|
|
#define AUTOTUNE_SEQ_BITMASK_RATE_D 2
|
|
#define AUTOTUNE_SEQ_BITMASK_ANGLE_P 4
|
|
#define AUTOTUNE_SEQ_BITMASK_MAX_GAIN 8
|
|
|
|
const AP_Param::GroupInfo AC_AutoTune_Heli::var_info[] = {
|
|
AP_NESTEDGROUPINFO(AC_AutoTune, 0),
|
|
|
|
// @Param: SEQ
|
|
// @DisplayName: AutoTune Sequence Bitmask
|
|
// @Description: 2-byte bitmask to select what tuning should be performed. Max gain automatically performed if Rate D is selected. Values: 7:All,1:VFF Only,2:Rate D Only,4:Angle P Only,8:Max Gain Only,3:VFF and Rate D (incl max gain),5:VFF and Angle P,13:VFF max gain and angle P
|
|
// @Bitmask: 0:VFF,1:Rate D,2:Angle P,3:Max Gain Only
|
|
// @User: Standard
|
|
AP_GROUPINFO("SEQ", 1, AC_AutoTune_Heli, seq_bitmask, 5),
|
|
|
|
// @Param: MIN_FRQ
|
|
// @DisplayName: AutoTune minimum sweep frequency
|
|
// @Description: Defines the start frequency for sweeps and dwells
|
|
// @Range: 10 30
|
|
// @User: Standard
|
|
AP_GROUPINFO("MIN_FRQ", 2, AC_AutoTune_Heli, min_sweep_freq, 10.0f),
|
|
|
|
// @Param: MAX_FRQ
|
|
// @DisplayName: AutoTune maximum sweep frequency
|
|
// @Description: Defines the end frequency for sweeps and dwells
|
|
// @Range: 50 120
|
|
// @User: Standard
|
|
AP_GROUPINFO("MAX_FRQ", 3, AC_AutoTune_Heli, max_sweep_freq, 70.0f),
|
|
|
|
// @Param: MAX_GN
|
|
// @DisplayName: AutoTune maximum response gain
|
|
// @Description: Defines the response gain (output/input) to tune
|
|
// @Range: 1 2.5
|
|
// @User: Standard
|
|
AP_GROUPINFO("MAX_GN", 4, AC_AutoTune_Heli, max_resp_gain, 1.4f),
|
|
|
|
AP_GROUPEND
|
|
};
|
|
|
|
// constructor
|
|
AC_AutoTune_Heli::AC_AutoTune_Heli()
|
|
{
|
|
tune_seq[0] = TUNE_COMPLETE;
|
|
AP_Param::setup_object_defaults(this, var_info);
|
|
}
|
|
|
|
void AC_AutoTune_Heli::test_init()
|
|
{
|
|
if ((tune_type == RFF_UP) || (tune_type == RFF_DOWN)) {
|
|
rate_ff_test_init();
|
|
step_time_limit_ms = 10000;
|
|
} else if (tune_type == MAX_GAINS || tune_type == RP_UP || tune_type == RD_UP) {
|
|
// initialize start frequency and determine gain function when dwell test is used
|
|
if (is_zero(start_freq)) {
|
|
if (test_phase[12] > 160.0f && test_phase[12] < 180.0f && tune_type == RP_UP) {
|
|
freq_cnt = 12;
|
|
curr_test_freq = test_freq[12];
|
|
start_freq = curr_test_freq;
|
|
stop_freq = curr_test_freq;
|
|
} else if (method == 1 && tune_type == RP_UP) {
|
|
freq_cnt = 12;
|
|
test_freq[12] = sweep.maxgain_freq;
|
|
curr_test_freq = test_freq[12];
|
|
start_freq = curr_test_freq;
|
|
stop_freq = curr_test_freq;
|
|
} else if (!is_zero(max_rate_p.freq) && tune_type == RP_UP) {
|
|
freq_cnt = 12;
|
|
test_freq[12] = max_rate_p.freq;
|
|
curr_test_freq = test_freq[12];
|
|
start_freq = curr_test_freq;
|
|
stop_freq = curr_test_freq;
|
|
} else if (tune_type == MAX_GAINS || tune_type == RD_UP) {
|
|
start_freq = min_sweep_freq;
|
|
stop_freq = max_sweep_freq;
|
|
method = 0; //reset the method for rate D and rate P tuning.
|
|
} else {
|
|
test_freq[0] = 2.0f * 3.14159f * 2.0f;
|
|
curr_test_freq = test_freq[0];
|
|
start_freq = curr_test_freq;
|
|
stop_freq = curr_test_freq;
|
|
}
|
|
}
|
|
if (!is_equal(start_freq,stop_freq)) {
|
|
// initialize determine_gain function whenever test is initialized
|
|
freqresp_rate.init(AC_AutoTune_FreqResp::InputType::SWEEP);
|
|
dwell_test_init(stop_freq);
|
|
} else {
|
|
// initialize determine_gain function whenever test is initialized
|
|
freqresp_rate.init(AC_AutoTune_FreqResp::InputType::DWELL);
|
|
dwell_test_init(start_freq);
|
|
}
|
|
if (!is_zero(start_freq)) {
|
|
// 4 seconds is added to allow aircraft to achieve start attitude. Then the time to conduct the dwells is added to it.
|
|
step_time_limit_ms = (uint32_t)(4000 + (float)(AUTOTUNE_DWELL_CYCLES + 2) * 1000.0f * M_2PI / start_freq);
|
|
}
|
|
} else if (tune_type == SP_UP) {
|
|
// initialize start frequency when dwell test is used
|
|
if (is_zero(start_freq)) {
|
|
test_freq[0] = 1.5f * 3.14159f * 2.0f;
|
|
curr_test_freq = test_freq[0];
|
|
test_accel_max = 0.0f;
|
|
start_freq = min_sweep_freq;
|
|
stop_freq = max_sweep_freq;
|
|
}
|
|
|
|
if (!is_equal(start_freq,stop_freq)) {
|
|
// initialize determine gain function
|
|
freqresp_angle.init(AC_AutoTune_FreqResp::InputType::SWEEP);
|
|
dwell_test_init(stop_freq);
|
|
} else {
|
|
// initialize determine gain function
|
|
freqresp_angle.init(AC_AutoTune_FreqResp::InputType::DWELL);
|
|
dwell_test_init(start_freq);
|
|
}
|
|
|
|
// TODO add time limit for sweep test
|
|
if (!is_zero(start_freq)) {
|
|
// 1 seconds is added for a little buffer. Then the time to conduct the dwells is added to it.
|
|
step_time_limit_ms = (uint32_t)(2000 + (float)(AUTOTUNE_DWELL_CYCLES + 7) * 1000.0f * M_2PI / start_freq);
|
|
}
|
|
} else {
|
|
|
|
}
|
|
start_angles = Vector3f(roll_cd, pitch_cd, desired_yaw_cd); // heli specific
|
|
}
|
|
|
|
void AC_AutoTune_Heli::test_run(AxisType test_axis, const float dir_sign)
|
|
{
|
|
|
|
if (tune_type == SP_UP) {
|
|
angle_dwell_test_run(start_freq, stop_freq, test_gain[freq_cnt], test_phase[freq_cnt]);
|
|
} else if ((tune_type == RFF_UP) || (tune_type == RFF_DOWN)) {
|
|
rate_ff_test_run(AUTOTUNE_HELI_TARGET_ANGLE_RLLPIT_CD, AUTOTUNE_HELI_TARGET_RATE_RLLPIT_CDS, dir_sign);
|
|
} else if (tune_type == RP_UP || tune_type == RD_UP) {
|
|
dwell_test_run(1, start_freq, stop_freq, test_gain[freq_cnt], test_phase[freq_cnt]);
|
|
} else if (tune_type == MAX_GAINS) {
|
|
dwell_test_run(0, start_freq, stop_freq, test_gain[freq_cnt], test_phase[freq_cnt]);
|
|
} else if (tune_type == TUNE_COMPLETE) {
|
|
return;
|
|
} else {
|
|
step = UPDATE_GAINS;
|
|
}
|
|
}
|
|
|
|
void AC_AutoTune_Heli::do_gcs_announcements()
|
|
{
|
|
const uint32_t now = AP_HAL::millis();
|
|
if (now - announce_time < AUTOTUNE_ANNOUNCE_INTERVAL_MS) {
|
|
return;
|
|
}
|
|
float tune_rp = 0.0f;
|
|
float tune_rd = 0.0f;
|
|
float tune_rff = 0.0f;
|
|
float tune_sp = 0.0f;
|
|
float tune_accel = 0.0f;
|
|
char axis_char = '?';
|
|
switch (axis) {
|
|
case ROLL:
|
|
tune_rp = tune_roll_rp;
|
|
tune_rd = tune_roll_rd;
|
|
tune_rff = tune_roll_rff;
|
|
tune_sp = tune_roll_sp;
|
|
tune_accel = tune_roll_accel;
|
|
axis_char = 'R';
|
|
break;
|
|
case PITCH:
|
|
tune_rp = tune_pitch_rp;
|
|
tune_rd = tune_pitch_rd;
|
|
tune_rff = tune_pitch_rff;
|
|
tune_sp = tune_pitch_sp;
|
|
tune_accel = tune_pitch_accel;
|
|
axis_char = 'P';
|
|
break;
|
|
case YAW:
|
|
tune_rp = tune_yaw_rp;
|
|
tune_rd = tune_yaw_rd;
|
|
tune_rff = tune_yaw_rff;
|
|
tune_sp = tune_yaw_sp;
|
|
tune_accel = tune_yaw_accel;
|
|
axis_char = 'Y';
|
|
break;
|
|
}
|
|
|
|
gcs().send_text(MAV_SEVERITY_INFO, "AutoTune: (%c) %s", axis_char, type_string());
|
|
send_step_string();
|
|
switch (tune_type) {
|
|
case RD_UP:
|
|
// gcs().send_text(MAV_SEVERITY_INFO, "AutoTune: freq=%f gain=%f ph=%f d=%f", (double)(test_freq[freq_cnt]), (double)(test_gain[freq_cnt]), (double)(test_phase[freq_cnt]), (double)tune_rd);
|
|
break;
|
|
case RD_DOWN:
|
|
case RP_DOWN:
|
|
gcs().send_text(MAV_SEVERITY_INFO, "AutoTune: p=%f d=%f", (double)tune_rp, (double)tune_rd);
|
|
break;
|
|
case RP_UP:
|
|
// gcs().send_text(MAV_SEVERITY_INFO, "AutoTune: freq=%f gain=%f p=%f", (double)(test_freq[freq_cnt]), (double)(test_gain[freq_cnt]), (double)tune_rp);
|
|
break;
|
|
case RFF_UP:
|
|
if (!is_zero(test_rate_filt)) {
|
|
gcs().send_text(MAV_SEVERITY_INFO, "AutoTune: target=%f rotation=%f command=%f", (double)(test_tgt_rate_filt*57.3f), (double)(test_rate_filt*57.3f), (double)(test_command_filt));
|
|
}
|
|
gcs().send_text(MAV_SEVERITY_INFO, "AutoTune: ff=%f", (double)tune_rff);
|
|
break;
|
|
case RFF_DOWN:
|
|
gcs().send_text(MAV_SEVERITY_INFO, "AutoTune: ff=%f", (double)tune_rff);
|
|
break;
|
|
case SP_DOWN:
|
|
case SP_UP:
|
|
gcs().send_text(MAV_SEVERITY_INFO, "AutoTune: p=%f accel=%f", (double)tune_sp, (double)tune_accel);
|
|
break;
|
|
case MAX_GAINS:
|
|
case TUNE_COMPLETE:
|
|
break;
|
|
}
|
|
// gcs().send_text(MAV_SEVERITY_INFO, "AutoTune: success %u/%u", counter, AUTOTUNE_SUCCESS_COUNT);
|
|
|
|
announce_time = now;
|
|
}
|
|
|
|
// load_test_gains - load the to-be-tested gains for a single axis
|
|
// called by control_attitude() just before it beings testing a gain (i.e. just before it twitches)
|
|
void AC_AutoTune_Heli::load_test_gains()
|
|
{
|
|
AC_AutoTune::load_test_gains();
|
|
|
|
switch (axis) {
|
|
case ROLL:
|
|
if (tune_type == SP_UP) {
|
|
attitude_control->get_rate_roll_pid().kI(orig_roll_ri);
|
|
} else {
|
|
// freeze integrator to hold trim by making i term small during rate controller tuning
|
|
attitude_control->get_rate_roll_pid().kI(0.01f * orig_roll_ri);
|
|
}
|
|
attitude_control->get_rate_roll_pid().ff(tune_roll_rff);
|
|
attitude_control->get_rate_roll_pid().filt_T_hz(orig_roll_fltt);
|
|
attitude_control->get_rate_roll_pid().slew_limit(0.0f);
|
|
break;
|
|
case PITCH:
|
|
if (tune_type == SP_UP) {
|
|
attitude_control->get_rate_pitch_pid().kI(orig_pitch_ri);
|
|
} else {
|
|
// freeze integrator to hold trim by making i term small during rate controller tuning
|
|
attitude_control->get_rate_pitch_pid().kI(0.01f * orig_pitch_ri);
|
|
}
|
|
attitude_control->get_rate_pitch_pid().ff(tune_pitch_rff);
|
|
attitude_control->get_rate_pitch_pid().filt_T_hz(orig_pitch_fltt);
|
|
attitude_control->get_rate_pitch_pid().slew_limit(0.0f);
|
|
break;
|
|
case YAW:
|
|
// freeze integrator to hold trim by making i term small during rate controller tuning
|
|
attitude_control->get_rate_yaw_pid().kI(tune_yaw_rp*0.01f);
|
|
attitude_control->get_rate_yaw_pid().kD(tune_yaw_rd);
|
|
attitude_control->get_rate_yaw_pid().ff(tune_yaw_rff);
|
|
attitude_control->get_rate_yaw_pid().filt_T_hz(orig_yaw_fltt);
|
|
attitude_control->get_rate_yaw_pid().slew_limit(0.0f);
|
|
if (tune_type == SP_UP) {
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
// save_tuning_gains - save the final tuned gains for each axis
|
|
// save discovered gains to eeprom if autotuner is enabled (i.e. switch is in the high position)
|
|
void AC_AutoTune_Heli::save_tuning_gains()
|
|
{
|
|
|
|
AC_AutoTune::save_tuning_gains();
|
|
|
|
// sanity check the rate P values
|
|
if ((axes_completed & AUTOTUNE_AXIS_BITMASK_ROLL) && roll_enabled()) {
|
|
// rate roll gains
|
|
attitude_control->get_rate_roll_pid().ff(tune_roll_rff);
|
|
attitude_control->get_rate_roll_pid().filt_T_hz(orig_roll_fltt);
|
|
attitude_control->get_rate_roll_pid().slew_limit(orig_roll_smax);
|
|
attitude_control->get_rate_roll_pid().kI(tune_roll_rff*AUTOTUNE_FFI_RATIO_FINAL);
|
|
attitude_control->get_rate_roll_pid().save_gains();
|
|
|
|
// resave pids to originals in case the autotune is run again
|
|
orig_roll_rff = attitude_control->get_rate_roll_pid().ff();
|
|
orig_roll_ri = attitude_control->get_rate_roll_pid().kI();
|
|
}
|
|
|
|
if ((axes_completed & AUTOTUNE_AXIS_BITMASK_PITCH) && pitch_enabled()) {
|
|
// rate pitch gains
|
|
attitude_control->get_rate_pitch_pid().ff(tune_pitch_rff);
|
|
attitude_control->get_rate_pitch_pid().filt_T_hz(orig_pitch_fltt);
|
|
attitude_control->get_rate_pitch_pid().slew_limit(orig_pitch_smax);
|
|
attitude_control->get_rate_pitch_pid().kI(tune_pitch_rff*AUTOTUNE_FFI_RATIO_FINAL);
|
|
attitude_control->get_rate_pitch_pid().save_gains();
|
|
|
|
// resave pids to originals in case the autotune is run again
|
|
orig_pitch_rff = attitude_control->get_rate_pitch_pid().ff();
|
|
orig_pitch_ri = attitude_control->get_rate_pitch_pid().kI();
|
|
}
|
|
|
|
if ((axes_completed & AUTOTUNE_AXIS_BITMASK_YAW) && yaw_enabled() && !is_zero(tune_yaw_rp)) {
|
|
// rate yaw gains
|
|
attitude_control->get_rate_yaw_pid().kD(tune_yaw_rd);
|
|
attitude_control->get_rate_yaw_pid().ff(tune_yaw_rff);
|
|
attitude_control->get_rate_yaw_pid().filt_T_hz(orig_yaw_fltt);
|
|
attitude_control->get_rate_yaw_pid().slew_limit(orig_yaw_smax);
|
|
attitude_control->get_rate_yaw_pid().filt_E_hz(orig_yaw_rLPF);
|
|
attitude_control->get_rate_yaw_pid().kI(tune_yaw_rp*AUTOTUNE_YAW_PI_RATIO_FINAL);
|
|
attitude_control->get_rate_yaw_pid().save_gains();
|
|
|
|
// resave pids to originals in case the autotune is run again
|
|
orig_yaw_rd = attitude_control->get_rate_yaw_pid().kD();
|
|
orig_yaw_rLPF = attitude_control->get_rate_yaw_pid().filt_E_hz();
|
|
orig_yaw_rff = attitude_control->get_rate_yaw_pid().ff();
|
|
orig_yaw_ri = attitude_control->get_rate_yaw_pid().kI();
|
|
}
|
|
|
|
// update GCS and log save gains event
|
|
update_gcs(AUTOTUNE_MESSAGE_SAVED_GAINS);
|
|
AP::logger().Write_Event(LogEvent::AUTOTUNE_SAVEDGAINS);
|
|
|
|
reset();
|
|
}
|
|
|
|
// update gains for the rate p up tune type
|
|
void AC_AutoTune_Heli::updating_rate_p_up_all(AxisType test_axis)
|
|
{
|
|
float p_gain = 0.0f;
|
|
|
|
switch (test_axis) {
|
|
case ROLL:
|
|
p_gain = tune_roll_rp;
|
|
break;
|
|
case PITCH:
|
|
p_gain = tune_pitch_rp;
|
|
break;
|
|
case YAW:
|
|
p_gain = tune_yaw_rp;
|
|
break;
|
|
}
|
|
// announce results of dwell and update
|
|
gcs().send_text(MAV_SEVERITY_INFO, "AutoTune: freq=%f gain=%f ph=%f rate_p=%f", (double)(test_freq[freq_cnt]), (double)(test_gain[freq_cnt]), (double)(test_phase[freq_cnt]), (double)(p_gain));
|
|
|
|
switch (test_axis) {
|
|
case ROLL:
|
|
updating_rate_p_up(tune_roll_rp, test_freq, test_gain, test_phase, freq_cnt, max_rate_p);
|
|
break;
|
|
case PITCH:
|
|
updating_rate_p_up(tune_pitch_rp, test_freq, test_gain, test_phase, freq_cnt, max_rate_p);
|
|
break;
|
|
case YAW:
|
|
updating_rate_p_up(tune_yaw_rp, test_freq, test_gain, test_phase, freq_cnt, max_rate_p);
|
|
break;
|
|
}
|
|
}
|
|
|
|
// update gains for the rate d up tune type
|
|
void AC_AutoTune_Heli::updating_rate_d_up_all(AxisType test_axis)
|
|
{
|
|
float d_gain = 0.0f;
|
|
|
|
switch (test_axis) {
|
|
case ROLL:
|
|
d_gain = tune_roll_rd;
|
|
break;
|
|
case PITCH:
|
|
d_gain = tune_pitch_rd;
|
|
break;
|
|
case YAW:
|
|
d_gain = tune_yaw_rd;
|
|
break;
|
|
}
|
|
// announce results of dwell and update
|
|
gcs().send_text(MAV_SEVERITY_INFO, "AutoTune: freq=%f gain=%f ph=%f rate_d=%f", (double)(test_freq[freq_cnt]), (double)(test_gain[freq_cnt]), (double)(test_phase[freq_cnt]), (double)(d_gain));
|
|
|
|
switch (test_axis) {
|
|
case ROLL:
|
|
updating_rate_d_up(tune_roll_rd, test_freq, test_gain, test_phase, freq_cnt, max_rate_d);
|
|
break;
|
|
case PITCH:
|
|
updating_rate_d_up(tune_pitch_rd, test_freq, test_gain, test_phase, freq_cnt, max_rate_d);
|
|
break;
|
|
case YAW:
|
|
updating_rate_d_up(tune_yaw_rd, test_freq, test_gain, test_phase, freq_cnt, max_rate_d);
|
|
break;
|
|
}
|
|
}
|
|
|
|
// update gains for the rate ff up tune type
|
|
void AC_AutoTune_Heli::updating_rate_ff_up_all(AxisType test_axis)
|
|
{
|
|
switch (test_axis) {
|
|
case ROLL:
|
|
updating_rate_ff_up(tune_roll_rff, test_tgt_rate_filt*5730.0f, test_rate_filt*5730.0f, test_command_filt);
|
|
break;
|
|
case PITCH:
|
|
updating_rate_ff_up(tune_pitch_rff, test_tgt_rate_filt*5730.0f, test_rate_filt*5730.0f, test_command_filt);
|
|
break;
|
|
case YAW:
|
|
updating_rate_ff_up(tune_yaw_rff, test_tgt_rate_filt*5730.0f, test_rate_filt*5730.0f, test_command_filt);
|
|
// TODO make FF updating routine determine when to set rff gain to zero based on A/C response
|
|
if (tune_yaw_rff <= AUTOTUNE_RFF_MIN && counter == AUTOTUNE_SUCCESS_COUNT) {
|
|
tune_yaw_rff = 0.0f;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
// update gains for the angle p up tune type
|
|
void AC_AutoTune_Heli::updating_angle_p_up_all(AxisType test_axis)
|
|
{
|
|
// announce results of dwell and update
|
|
gcs().send_text(MAV_SEVERITY_INFO, "AutoTune: freq=%f gain=%f", (double)(test_freq[freq_cnt]), (double)(test_gain[freq_cnt]));
|
|
gcs().send_text(MAV_SEVERITY_INFO, "AutoTune: phase=%f accel=%f", (double)(test_phase[freq_cnt]), (double)(test_accel_max));
|
|
|
|
switch (test_axis) {
|
|
case ROLL:
|
|
updating_angle_p_up(tune_roll_sp, test_freq, test_gain, test_phase, freq_cnt);
|
|
break;
|
|
case PITCH:
|
|
updating_angle_p_up(tune_pitch_sp, test_freq, test_gain, test_phase, freq_cnt);
|
|
break;
|
|
case YAW:
|
|
updating_angle_p_up(tune_yaw_sp, test_freq, test_gain, test_phase, freq_cnt);
|
|
break;
|
|
}
|
|
}
|
|
|
|
// update gains for the max gain tune type
|
|
void AC_AutoTune_Heli::updating_max_gains_all(AxisType test_axis)
|
|
{
|
|
|
|
// announce results of dwell and update
|
|
gcs().send_text(MAV_SEVERITY_INFO, "AutoTune: freq=%f gain=%f ph=%f", (double)(test_freq[freq_cnt]), (double)(test_gain[freq_cnt]), (double)(test_phase[freq_cnt]));
|
|
|
|
switch (test_axis) {
|
|
case ROLL:
|
|
updating_max_gains(&test_freq[0], &test_gain[0], &test_phase[0], freq_cnt, max_rate_p, max_rate_d, tune_roll_rp, tune_roll_rd);
|
|
break;
|
|
case PITCH:
|
|
updating_max_gains(&test_freq[0], &test_gain[0], &test_phase[0], freq_cnt, max_rate_p, max_rate_d, tune_pitch_rp, tune_pitch_rd);
|
|
break;
|
|
case YAW:
|
|
updating_max_gains(&test_freq[0], &test_gain[0], &test_phase[0], freq_cnt, max_rate_p, max_rate_d, tune_yaw_rp, tune_yaw_rd);
|
|
// rate P and rate D can be non zero for yaw and need to be included in the max allowed gain
|
|
if (!is_zero(max_rate_p.max_allowed) && counter == AUTOTUNE_SUCCESS_COUNT) {
|
|
max_rate_p.max_allowed += tune_yaw_rp;
|
|
}
|
|
if (!is_zero(max_rate_d.max_allowed) && counter == AUTOTUNE_SUCCESS_COUNT) {
|
|
max_rate_d.max_allowed += tune_yaw_rd;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
// updating_rate_ff_up - adjust FF to ensure the target is reached
|
|
// FF is adjusted until rate requested is acheived
|
|
void AC_AutoTune_Heli::updating_rate_ff_up(float &tune_ff, float rate_target, float meas_rate, float meas_command)
|
|
{
|
|
|
|
static bool first_dir_complete;
|
|
static float first_dir_rff;
|
|
if (ff_up_first_iter) {
|
|
if (!is_zero(meas_rate)) {
|
|
tune_ff = 5730.0f * meas_command / meas_rate;
|
|
}
|
|
tune_ff = constrain_float(tune_ff, AUTOTUNE_RFF_MIN, AUTOTUNE_RFF_MAX);
|
|
ff_up_first_iter = false;
|
|
} else if (is_positive(rate_target * meas_rate) && fabsf(meas_rate) < 1.05f * fabsf(rate_target) &&
|
|
fabsf(meas_rate) > 0.95f * fabsf(rate_target)) {
|
|
if (!first_dir_complete) {
|
|
first_dir_rff = tune_ff;
|
|
first_dir_complete = true;
|
|
positive_direction = !positive_direction;
|
|
} else {
|
|
counter = AUTOTUNE_SUCCESS_COUNT;
|
|
tune_ff = 0.95f * 0.5 * (tune_ff + first_dir_rff);
|
|
tune_ff = constrain_float(tune_ff, AUTOTUNE_RFF_MIN, AUTOTUNE_RFF_MAX);
|
|
ff_up_first_iter = true;
|
|
first_dir_complete = false;
|
|
}
|
|
} else if (is_positive(rate_target * meas_rate) && fabsf(meas_rate) > 1.05f * fabsf(rate_target)) {
|
|
tune_ff = 0.98f * tune_ff;
|
|
if (tune_ff <= AUTOTUNE_RFF_MIN) {
|
|
tune_ff = AUTOTUNE_RFF_MIN;
|
|
counter = AUTOTUNE_SUCCESS_COUNT;
|
|
AP::logger().Write_Event(LogEvent::AUTOTUNE_REACHED_LIMIT);
|
|
ff_up_first_iter = true;
|
|
first_dir_complete = false;
|
|
}
|
|
} else if (is_positive(rate_target * meas_rate) && fabsf(meas_rate) < 0.95f * fabsf(rate_target)) {
|
|
tune_ff = 1.02f * tune_ff;
|
|
if (tune_ff >= AUTOTUNE_RFF_MAX) {
|
|
tune_ff = AUTOTUNE_RFF_MAX;
|
|
counter = AUTOTUNE_SUCCESS_COUNT;
|
|
AP::logger().Write_Event(LogEvent::AUTOTUNE_REACHED_LIMIT);
|
|
ff_up_first_iter = true;
|
|
first_dir_complete = false;
|
|
}
|
|
} else {
|
|
if (!is_zero(meas_rate)) {
|
|
tune_ff = 5730.0f * meas_command / meas_rate;
|
|
}
|
|
tune_ff = constrain_float(tune_ff, AUTOTUNE_RFF_MIN, AUTOTUNE_RFF_MAX);
|
|
}
|
|
}
|
|
|
|
void AC_AutoTune_Heli::updating_rate_p_up(float &tune_p, float *freq, float *gain, float *phase, uint8_t &frq_cnt, max_gain_data &max_gain_p)
|
|
{
|
|
float test_freq_incr = 0.25f * 3.14159f * 2.0f;
|
|
static uint8_t prev_good_frq_cnt;
|
|
static float prev_gain;
|
|
|
|
if (frq_cnt < 12 && is_equal(start_freq,stop_freq)) {
|
|
if (frq_cnt == 0) {
|
|
tune_p = max_gain_p.max_allowed * 0.10f;
|
|
freq_cnt_max = 0;
|
|
} else if (phase[frq_cnt] <= 180.0f && !is_zero(phase[frq_cnt])) {
|
|
prev_good_frq_cnt = frq_cnt;
|
|
} else if (frq_cnt > 1 && phase[frq_cnt] > phase[frq_cnt-1] + 360.0f && !is_zero(phase[frq_cnt])) {
|
|
if (phase[frq_cnt] - 360.0f < 180.0f) {
|
|
prev_good_frq_cnt = frq_cnt;
|
|
}
|
|
} else if (frq_cnt > 1 && phase[frq_cnt] > 300.0f && !is_zero(phase[frq_cnt])) {
|
|
frq_cnt = 11;
|
|
}
|
|
frq_cnt++;
|
|
if (frq_cnt == 12) {
|
|
freq[frq_cnt] = freq[prev_good_frq_cnt];
|
|
curr_test_freq = freq[frq_cnt];
|
|
} else {
|
|
freq[frq_cnt] = freq[frq_cnt-1] + test_freq_incr;
|
|
curr_test_freq = freq[frq_cnt];
|
|
}
|
|
} else if (is_equal(start_freq,stop_freq) && method == 2) {
|
|
gcs().send_text(MAV_SEVERITY_INFO, "AutoTune: cnt=%f freq=%f gain=%f phase=%f", (double)(frq_cnt), (double)(curr_test_freq), (double)(gain[frq_cnt]), (double)(phase[frq_cnt]));
|
|
if (is_zero(tune_p)) {
|
|
tune_p = 0.05f * max_gain_p.max_allowed;
|
|
} else if (phase[frq_cnt] > 180.0f) {
|
|
curr_test_freq = curr_test_freq - 0.5 * test_freq_incr;
|
|
freq[frq_cnt] = curr_test_freq;
|
|
} else if (phase[frq_cnt] < 160.0f) {
|
|
curr_test_freq = curr_test_freq + 0.5 * test_freq_incr;
|
|
freq[frq_cnt] = curr_test_freq;
|
|
} else if (phase[frq_cnt] <= 180.0f && phase[frq_cnt] >= 160.0f) {
|
|
if (gain[frq_cnt] < max_resp_gain && tune_p < 0.6f * max_gain_p.max_allowed) {
|
|
tune_p += 0.05f * max_gain_p.max_allowed;
|
|
} else {
|
|
counter = AUTOTUNE_SUCCESS_COUNT;
|
|
// reset curr_test_freq and frq_cnt for next test
|
|
curr_test_freq = freq[0];
|
|
frq_cnt = 0;
|
|
tune_p -= 0.05f * max_gain_p.max_allowed;
|
|
tune_p = constrain_float(tune_p,0.0f,0.6f * max_gain_p.max_allowed);
|
|
// prev_gain = 0.0f;
|
|
}
|
|
}
|
|
// prev_gain = gain[frq_cnt];
|
|
} else if (is_equal(start_freq,stop_freq) && method == 1) {
|
|
gcs().send_text(MAV_SEVERITY_INFO, "AutoTune: cnt=%f freq=%f gain=%f phase=%f", (double)(frq_cnt), (double)(curr_test_freq), (double)(gain[frq_cnt]), (double)(phase[frq_cnt]));
|
|
|
|
if (is_zero(tune_p)) {
|
|
tune_p = 0.05f * max_gain_p.max_allowed;
|
|
prev_gain = gain[frq_cnt];
|
|
} else if ((gain[frq_cnt] < prev_gain || is_zero(prev_gain)) && tune_p < 0.6f * max_gain_p.max_allowed) {
|
|
tune_p += 0.05f * max_gain_p.max_allowed;
|
|
prev_gain = gain[frq_cnt];
|
|
} else {
|
|
counter = AUTOTUNE_SUCCESS_COUNT;
|
|
// reset curr_test_freq and frq_cnt for next test
|
|
curr_test_freq = freq[0];
|
|
frq_cnt = 0;
|
|
prev_gain = 0.0f;
|
|
tune_p -= 0.05f * max_gain_p.max_allowed;
|
|
tune_p = constrain_float(tune_p,0.0f,0.6f * max_gain_p.max_allowed);
|
|
}
|
|
|
|
}
|
|
|
|
if (counter == AUTOTUNE_SUCCESS_COUNT) {
|
|
start_freq = 0.0f; //initializes next test that uses dwell test
|
|
} else {
|
|
start_freq = curr_test_freq;
|
|
stop_freq = curr_test_freq;
|
|
}
|
|
|
|
/*
|
|
float test_freq_incr = 0.5f * 3.14159f * 2.0f;
|
|
|
|
if (freq_cnt < 12) {
|
|
if (freq_cnt == 0) {
|
|
freq_cnt_max = 0;
|
|
} else if (gain[freq_cnt] > gain[freq_cnt_max]) {
|
|
freq_cnt_max = freq_cnt;
|
|
}
|
|
freq_cnt++;
|
|
freq[freq_cnt] = freq[freq_cnt-1] + test_freq_incr;
|
|
curr_test_freq = freq[freq_cnt];
|
|
} else {
|
|
if (gain[freq_cnt] < max_gain) {
|
|
tune_p += gain_incr;
|
|
curr_test_freq = freq[freq_cnt_max];
|
|
freq[freq_cnt] = curr_test_freq;
|
|
} else {
|
|
counter = AUTOTUNE_SUCCESS_COUNT;
|
|
// reset curr_test_freq and freq_cnt for next test
|
|
curr_test_freq = freq[0];
|
|
freq_cnt = 0;
|
|
}
|
|
}
|
|
if (counter == AUTOTUNE_SUCCESS_COUNT) {
|
|
start_freq = 0.0f; //initializes next test that uses dwell test
|
|
} else {
|
|
start_freq = curr_test_freq;
|
|
stop_freq = curr_test_freq;
|
|
} */
|
|
}
|
|
|
|
void AC_AutoTune_Heli::updating_rate_d_up(float &tune_d, float *freq, float *gain, float *phase, uint8_t &frq_cnt, max_gain_data &max_gain_d)
|
|
{
|
|
float test_freq_incr = 0.25f * 3.14159f * 2.0f;
|
|
static uint8_t prev_good_frq_cnt;
|
|
static float prev_gain;
|
|
|
|
if (!is_equal(start_freq,stop_freq)) {
|
|
frq_cnt = 12;
|
|
if (sweep.maxgain_freq > sweep.ph180_freq) {
|
|
// freq[frq_cnt] = sweep.maxgain_freq - 0.5f * test_freq_incr;
|
|
freq[frq_cnt] = sweep.ph180_freq - 0.5f * test_freq_incr;
|
|
freq_cnt_max = frq_cnt;
|
|
// method = 1;
|
|
method = 2;
|
|
} else if (!is_zero(sweep.ph180_freq)) {
|
|
freq[frq_cnt] = sweep.ph180_freq - 0.5f * test_freq_incr;
|
|
// using 180 phase as max gain to start
|
|
freq_cnt_max = frq_cnt;
|
|
method = 2;
|
|
} else {
|
|
freq[frq_cnt] = 4.0f * M_PI;
|
|
method = 0;
|
|
}
|
|
curr_test_freq = freq[frq_cnt];
|
|
}
|
|
if (frq_cnt < 12 && is_equal(start_freq,stop_freq)) {
|
|
if (frq_cnt == 0) {
|
|
tune_d = max_gain_d.max_allowed * 0.25f;
|
|
freq_cnt_max = 0;
|
|
} else if (phase[frq_cnt] <= 180.0f && !is_zero(phase[frq_cnt])) {
|
|
prev_good_frq_cnt = frq_cnt;
|
|
} else if (frq_cnt > 1 && phase[frq_cnt] > phase[frq_cnt-1] + 360.0f && !is_zero(phase[frq_cnt])) {
|
|
if (phase[frq_cnt] - 360.0f < 180.0f) {
|
|
prev_good_frq_cnt = frq_cnt;
|
|
}
|
|
} else if (frq_cnt > 1 && phase[frq_cnt] > 300.0f && !is_zero(phase[frq_cnt])) {
|
|
frq_cnt = 11;
|
|
}
|
|
frq_cnt++;
|
|
if (frq_cnt == 12) {
|
|
freq[frq_cnt] = freq[prev_good_frq_cnt];
|
|
curr_test_freq = freq[frq_cnt];
|
|
method = 2;
|
|
} else {
|
|
freq[frq_cnt] = freq[frq_cnt-1] + test_freq_incr;
|
|
curr_test_freq = freq[frq_cnt];
|
|
}
|
|
} else if (is_equal(start_freq,stop_freq) && method == 2) {
|
|
gcs().send_text(MAV_SEVERITY_INFO, "AutoTune: cnt=%f freq=%f gain=%f phase=%f", (double)(frq_cnt), (double)(curr_test_freq), (double)(gain[frq_cnt]), (double)(phase[frq_cnt]));
|
|
if (is_zero(tune_d)) {
|
|
tune_d = 0.05f * max_gain_d.max_allowed;
|
|
prev_gain = gain[frq_cnt];
|
|
} else if (phase[frq_cnt] > 180.0f) {
|
|
curr_test_freq = curr_test_freq - 0.5 * test_freq_incr;
|
|
freq[frq_cnt] = curr_test_freq;
|
|
} else if (phase[frq_cnt] < 160.0f) {
|
|
curr_test_freq = curr_test_freq + 0.5 * test_freq_incr;
|
|
freq[frq_cnt] = curr_test_freq;
|
|
} else if (phase[frq_cnt] <= 180.0f && phase[frq_cnt] >= 160.0f) {
|
|
if ((gain[frq_cnt] < prev_gain || is_zero(prev_gain)) && tune_d < 0.6f * max_gain_d.max_allowed) {
|
|
tune_d += 0.05f * max_gain_d.max_allowed;
|
|
prev_gain = gain[frq_cnt];
|
|
} else {
|
|
counter = AUTOTUNE_SUCCESS_COUNT;
|
|
// reset curr_test_freq and frq_cnt for next test
|
|
curr_test_freq = freq[0];
|
|
frq_cnt = 0;
|
|
prev_gain = 0.0f;
|
|
tune_d -= 0.05f * max_gain_d.max_allowed;
|
|
tune_d = constrain_float(tune_d,0.0f,0.6f * max_gain_d.max_allowed);
|
|
}
|
|
}
|
|
} else if (is_equal(start_freq,stop_freq) && method == 1) {
|
|
gcs().send_text(MAV_SEVERITY_INFO, "AutoTune: cnt=%f freq=%f gain=%f phase=%f", (double)(frq_cnt), (double)(curr_test_freq), (double)(gain[frq_cnt]), (double)(phase[frq_cnt]));
|
|
if (is_zero(tune_d)) {
|
|
tune_d = 0.05f * max_gain_d.max_allowed;
|
|
prev_gain = gain[frq_cnt];
|
|
} else if ((gain[frq_cnt] < prev_gain || is_zero(prev_gain)) && tune_d < 0.6f * max_gain_d.max_allowed) {
|
|
tune_d += 0.05f * max_gain_d.max_allowed;
|
|
prev_gain = gain[frq_cnt];
|
|
} else {
|
|
counter = AUTOTUNE_SUCCESS_COUNT;
|
|
// reset curr_test_freq and frq_cnt for next test
|
|
curr_test_freq = freq[0];
|
|
frq_cnt = 0;
|
|
prev_gain = 0.0f;
|
|
tune_d -= 0.05f * max_gain_d.max_allowed;
|
|
tune_d = constrain_float(tune_d,0.0f,0.6f * max_gain_d.max_allowed);
|
|
}
|
|
}
|
|
if (counter == AUTOTUNE_SUCCESS_COUNT) {
|
|
start_freq = 0.0f; //initializes next test that uses dwell test
|
|
} else {
|
|
start_freq = curr_test_freq;
|
|
stop_freq = curr_test_freq;
|
|
}
|
|
}
|
|
|
|
void AC_AutoTune_Heli::updating_angle_p_up(float &tune_p, float *freq, float *gain, float *phase, uint8_t &frq_cnt)
|
|
{
|
|
float test_freq_incr = 0.5f * 3.14159f * 2.0f;
|
|
float gain_incr = 0.5f;
|
|
static float phase_max;
|
|
static float prev_gain;
|
|
static bool find_peak;
|
|
|
|
if (!is_equal(start_freq,stop_freq)) {
|
|
frq_cnt = 12;
|
|
if (!is_zero(sweep.ph180_freq)) {
|
|
// freq[frq_cnt] = sweep.ph180_freq - 0.5f * test_freq_incr;
|
|
freq[frq_cnt] = sweep.maxgain_freq - 0.5f * test_freq_incr;
|
|
// using 180 phase as max gain to start
|
|
freq_cnt_max = frq_cnt;
|
|
} else {
|
|
freq[frq_cnt] = 4.0f * M_PI;
|
|
}
|
|
curr_test_freq = freq[frq_cnt];
|
|
}
|
|
if (freq_cnt < 12 && is_equal(start_freq,stop_freq)) {
|
|
if (freq_cnt == 0) {
|
|
freq_cnt_max = 0;
|
|
} else if (gain[freq_cnt] > max_resp_gain && tune_p > AUTOTUNE_SP_MIN) {
|
|
// exceeded max response gain already, reduce tuning gain to remain under max response gain
|
|
tune_p -= gain_incr;
|
|
// force counter to stay on frequency
|
|
freq_cnt -= 1;
|
|
} else if (gain[freq_cnt] > max_resp_gain && tune_p <= AUTOTUNE_SP_MIN) {
|
|
// exceeded max response gain at the minimum allowable tuning gain. terminate testing.
|
|
tune_p = AUTOTUNE_SP_MIN;
|
|
counter = AUTOTUNE_SUCCESS_COUNT;
|
|
AP::logger().Write_Event(LogEvent::AUTOTUNE_REACHED_LIMIT);
|
|
curr_test_freq = freq[0];
|
|
freq_cnt = 0;
|
|
} else if (gain[freq_cnt] > gain[freq_cnt_max]) {
|
|
freq_cnt_max = freq_cnt;
|
|
phase_max = phase[freq_cnt];
|
|
prev_gain = gain[freq_cnt];
|
|
} else if (gain[freq_cnt] > 0.0f && gain[freq_cnt] < 0.5f) {
|
|
// must be past peak, continue on to determine angle p
|
|
freq_cnt = 11;
|
|
}
|
|
freq_cnt++;
|
|
if (freq_cnt == 12) {
|
|
freq[freq_cnt] = freq[freq_cnt_max];
|
|
curr_test_freq = freq[freq_cnt];
|
|
} else {
|
|
freq[freq_cnt] = freq[freq_cnt-1] + test_freq_incr;
|
|
curr_test_freq = freq[freq_cnt];
|
|
}
|
|
}
|
|
|
|
// once finished with sweep of frequencies, cnt = 12 is used to then tune for max response gain
|
|
if (freq_cnt >= 12 && is_equal(start_freq,stop_freq)) {
|
|
if (gain[freq_cnt] < max_resp_gain && tune_p < AUTOTUNE_SP_MAX && !find_peak) {
|
|
// keep increasing tuning gain unless phase changes or max response gain is acheived
|
|
if (phase[freq_cnt]-phase_max > 20.0f && phase[freq_cnt] < 210.0f) {
|
|
freq[freq_cnt] += 0.5 * test_freq_incr;
|
|
find_peak = true;
|
|
} else {
|
|
tune_p += gain_incr;
|
|
freq[freq_cnt] = freq[freq_cnt_max];
|
|
if (tune_p >= AUTOTUNE_SP_MAX) {
|
|
tune_p = AUTOTUNE_SP_MAX;
|
|
counter = AUTOTUNE_SUCCESS_COUNT;
|
|
AP::logger().Write_Event(LogEvent::AUTOTUNE_REACHED_LIMIT);
|
|
curr_test_freq = freq[0];
|
|
freq_cnt = 0;
|
|
}
|
|
}
|
|
curr_test_freq = freq[freq_cnt];
|
|
prev_gain = gain[freq_cnt];
|
|
} else if (gain[freq_cnt] > 1.1f * max_resp_gain && tune_p > AUTOTUNE_SP_MIN && !find_peak) {
|
|
tune_p -= gain_incr;
|
|
} else if (find_peak) {
|
|
// find the frequency where the response gain is maximum
|
|
if (gain[freq_cnt] > prev_gain) {
|
|
freq[freq_cnt] += 0.5 * test_freq_incr;
|
|
} else {
|
|
find_peak = false;
|
|
phase_max = phase[freq_cnt];
|
|
}
|
|
curr_test_freq = freq[freq_cnt];
|
|
prev_gain = gain[freq_cnt];
|
|
} else {
|
|
// adjust tuning gain so max response gain is not exceeded
|
|
if (prev_gain < max_resp_gain && gain[freq_cnt] > max_resp_gain) {
|
|
float adj_factor = (max_resp_gain - gain[freq_cnt]) / (gain[freq_cnt] - prev_gain);
|
|
tune_p = tune_p + gain_incr * adj_factor;
|
|
}
|
|
counter = AUTOTUNE_SUCCESS_COUNT;
|
|
// reset curr_test_freq and freq_cnt for next test
|
|
curr_test_freq = freq[0];
|
|
freq_cnt = 0;
|
|
}
|
|
}
|
|
if (counter == AUTOTUNE_SUCCESS_COUNT) {
|
|
start_freq = 0.0f; //initializes next test that uses dwell test
|
|
} else {
|
|
start_freq = curr_test_freq;
|
|
stop_freq = curr_test_freq;
|
|
}
|
|
}
|
|
|
|
void AC_AutoTune_Heli::updating_angle_p_up_yaw(float &tune_p, float *freq, float *gain, float *phase, uint8_t &frq_cnt)
|
|
{
|
|
float test_freq_incr = 0.5f * 3.14159f * 2.0f;
|
|
static uint8_t prev_good_frq_cnt;
|
|
|
|
if (frq_cnt < 12) {
|
|
if (frq_cnt == 0) {
|
|
freq_cnt_max = 0;
|
|
} else if (phase[frq_cnt] <= 180.0f && !is_zero(phase[frq_cnt])) {
|
|
prev_good_frq_cnt = frq_cnt;
|
|
} else if (frq_cnt > 1 && phase[frq_cnt] > phase[frq_cnt-1] + 360.0f && !is_zero(phase[frq_cnt])) {
|
|
if (phase[frq_cnt] - 360.0f < 180.0f) {
|
|
prev_good_frq_cnt = frq_cnt;
|
|
}
|
|
} else if (frq_cnt > 1 && phase[frq_cnt] > 300.0f && !is_zero(phase[frq_cnt])) {
|
|
frq_cnt = 11;
|
|
}
|
|
frq_cnt++;
|
|
if (frq_cnt == 12) {
|
|
freq[frq_cnt] = freq[prev_good_frq_cnt];
|
|
curr_test_freq = freq[frq_cnt];
|
|
} else {
|
|
freq[frq_cnt] = freq[frq_cnt-1] + test_freq_incr;
|
|
curr_test_freq = freq[frq_cnt];
|
|
}
|
|
}
|
|
|
|
// once finished with sweep of frequencies, cnt = 12 is used to then tune for max response gain
|
|
if (freq_cnt >= 12) {
|
|
if (gain[frq_cnt] < max_resp_gain && phase[frq_cnt] <= 180.0f && phase[frq_cnt] >= 160.0f && tune_p < AUTOTUNE_SP_MAX) {
|
|
tune_p += 0.5f;
|
|
if (tune_p >= AUTOTUNE_SP_MAX) {
|
|
tune_p = AUTOTUNE_SP_MAX;
|
|
counter = AUTOTUNE_SUCCESS_COUNT;
|
|
AP::logger().Write_Event(LogEvent::AUTOTUNE_REACHED_LIMIT);
|
|
curr_test_freq = freq[0];
|
|
freq_cnt = 0;
|
|
}
|
|
} else if (gain[frq_cnt] < max_resp_gain && phase[frq_cnt] > 180.0f) {
|
|
curr_test_freq = curr_test_freq - 0.5 * test_freq_incr;
|
|
freq[frq_cnt] = curr_test_freq;
|
|
} else if (gain[frq_cnt] < max_resp_gain && phase[frq_cnt] < 160.0f) {
|
|
curr_test_freq = curr_test_freq + 0.5 * test_freq_incr;
|
|
freq[frq_cnt] = curr_test_freq;
|
|
} else {
|
|
counter = AUTOTUNE_SUCCESS_COUNT;
|
|
// reset curr_test_freq and frq_cnt for next test
|
|
curr_test_freq = freq[0];
|
|
frq_cnt = 0;
|
|
}
|
|
|
|
// guard against frequency getting too high or too low
|
|
if (curr_test_freq > 50.24f || curr_test_freq < 3.14f) {
|
|
counter = AUTOTUNE_SUCCESS_COUNT;
|
|
AP::logger().Write_Event(LogEvent::AUTOTUNE_REACHED_LIMIT);
|
|
curr_test_freq = freq[0];
|
|
freq_cnt = 0;
|
|
}
|
|
|
|
}
|
|
if (counter == AUTOTUNE_SUCCESS_COUNT) {
|
|
start_freq = 0.0f; //initializes next test that uses dwell test
|
|
} else {
|
|
start_freq = curr_test_freq;
|
|
stop_freq = curr_test_freq;
|
|
}
|
|
}
|
|
|
|
// updating_max_gains: use dwells at increasing frequency to determine gain at which instability will occur
|
|
void AC_AutoTune_Heli::updating_max_gains(float *freq, float *gain, float *phase, uint8_t &frq_cnt, max_gain_data &max_gain_p, max_gain_data &max_gain_d, float &tune_p, float &tune_d)
|
|
{
|
|
float test_freq_incr = 1.0f * M_PI * 2.0f;
|
|
static bool found_max_p = false;
|
|
static bool found_max_d = false;
|
|
static bool find_middle = false;
|
|
|
|
if (!is_equal(start_freq,stop_freq)) {
|
|
frq_cnt = 2;
|
|
if (!is_zero(sweep.ph180_freq)) {
|
|
freq[frq_cnt] = sweep.ph180_freq - 0.5f * test_freq_incr;
|
|
} else {
|
|
freq[frq_cnt] = 4.0f * M_PI;
|
|
}
|
|
curr_test_freq = freq[frq_cnt];
|
|
start_freq = curr_test_freq;
|
|
stop_freq = curr_test_freq;
|
|
|
|
} else if (frq_cnt < 12 && is_equal(start_freq,stop_freq)) {
|
|
if (frq_cnt > 2 && phase[frq_cnt] > 161.0f && phase[frq_cnt] < 270.0f &&
|
|
!find_middle && !found_max_p) {
|
|
find_middle = true;
|
|
} else if (find_middle && !found_max_p) {
|
|
if (phase[frq_cnt] > 161.0f) {
|
|
// interpolate between frq_cnt-2 and frq_cnt
|
|
max_gain_p.freq = linear_interpolate(freq[frq_cnt-2],freq[frq_cnt],161.0f,phase[frq_cnt-2],phase[frq_cnt]);
|
|
max_gain_p.gain = linear_interpolate(gain[frq_cnt-2],gain[frq_cnt],161.0f,phase[frq_cnt-2],phase[frq_cnt]);
|
|
} else {
|
|
// interpolate between frq_cnt-1 and frq_cnt
|
|
max_gain_p.freq = linear_interpolate(freq[frq_cnt],freq[frq_cnt-1],161.0f,phase[frq_cnt],phase[frq_cnt-1]);
|
|
max_gain_p.gain = linear_interpolate(gain[frq_cnt],gain[frq_cnt-1],161.0f,phase[frq_cnt],phase[frq_cnt-1]);
|
|
}
|
|
max_gain_p.phase = 161.0f;
|
|
max_gain_p.max_allowed = powf(10.0f,-1 * (log10f(max_gain_p.gain) * 20.0f + 2.42) / 20.0f);
|
|
// limit max gain allowed to be no more than 2x the max p gain limit to keep initial gains bounded
|
|
max_gain_p.max_allowed = constrain_float(max_gain_p.max_allowed, 0.0f, 2.0f * AUTOTUNE_RP_MAX);
|
|
found_max_p = true;
|
|
find_middle = false;
|
|
|
|
if (!is_zero(sweep.ph270_freq)) {
|
|
// set freq cnt back to reinitialize process
|
|
frq_cnt = 1; // set to 1 because it will be incremented
|
|
// set frequency back at least one test_freq_incr as it will be added
|
|
freq[1] = sweep.ph270_freq - 1.5f * test_freq_incr;
|
|
}
|
|
|
|
gcs().send_text(MAV_SEVERITY_INFO, "AutoTune: Max rate P freq=%f gain=%f ph=%f rate_p=%f", (double)(max_gain_p.freq), (double)(max_gain_p.gain), (double)(max_gain_p.phase), (double)(max_gain_p.max_allowed));
|
|
}
|
|
if (frq_cnt > 2 && phase[frq_cnt] > 251.0f && phase[frq_cnt] < 360.0f &&
|
|
!find_middle && !found_max_d && found_max_p) {
|
|
find_middle = true;
|
|
} else if (find_middle && found_max_p && !found_max_d) {
|
|
if (phase[frq_cnt] > 251.0f) {
|
|
// interpolate between frq_cnt-2 and frq_cnt
|
|
max_gain_d.freq = linear_interpolate(freq[frq_cnt-2],freq[frq_cnt],251.0f,phase[frq_cnt-2],phase[frq_cnt]);
|
|
max_gain_d.gain = linear_interpolate(gain[frq_cnt-2],gain[frq_cnt],251.0f,phase[frq_cnt-2],phase[frq_cnt]);
|
|
} else {
|
|
// interpolate between frq_cnt-1 and frq_cnt
|
|
max_gain_d.freq = linear_interpolate(freq[frq_cnt],freq[frq_cnt-1],251.0f,phase[frq_cnt],phase[frq_cnt-1]);
|
|
max_gain_d.gain = linear_interpolate(gain[frq_cnt],gain[frq_cnt-1],251.0f,phase[frq_cnt],phase[frq_cnt-1]);
|
|
}
|
|
max_gain_d.phase = 251.0f;
|
|
max_gain_d.max_allowed = powf(10.0f,-1 * (log10f(max_gain_d.freq * max_gain_d.gain) * 20.0f + 2.42) / 20.0f);
|
|
// limit max gain allowed to be no more than 2x the max d gain limit to keep initial gains bounded
|
|
max_gain_d.max_allowed = constrain_float(max_gain_d.max_allowed, 0.0f, 2.0f * AUTOTUNE_RD_MAX);
|
|
found_max_d = true;
|
|
find_middle = false;
|
|
gcs().send_text(MAV_SEVERITY_INFO, "AutoTune: Max Rate D freq=%f gain=%f ph=%f rate_d=%f", (double)(max_gain_d.freq), (double)(max_gain_d.gain), (double)(max_gain_d.phase), (double)(max_gain_d.max_allowed));
|
|
}
|
|
// stop progression in frequency.
|
|
if ((frq_cnt > 1 && phase[frq_cnt] > 330.0f && !is_zero(phase[frq_cnt])) || found_max_d) {
|
|
frq_cnt = 11;
|
|
}
|
|
frq_cnt++;
|
|
if (frq_cnt == 12) {
|
|
counter = AUTOTUNE_SUCCESS_COUNT;
|
|
// reset variables for next test
|
|
curr_test_freq = freq[0];
|
|
frq_cnt = 0;
|
|
found_max_p = false;
|
|
found_max_d = false;
|
|
find_middle = false;
|
|
// tune_p = 0.35f * max_gain_p.max_allowed;
|
|
// tune_d = 0.25f * max_gain_d.max_allowed;
|
|
start_freq = 0.0f; //initializes next test that uses dwell test
|
|
} else {
|
|
if (frq_cnt == 3 && phase[2] >= 161.0f && !found_max_p) {
|
|
// phase greater than 161 deg won't allow max p to be found
|
|
// reset freq cnt to 2 and lower dwell freq to push phase below 161 deg
|
|
frq_cnt = 2;
|
|
freq[frq_cnt] = freq[frq_cnt] - 0.5f * test_freq_incr;
|
|
} else if (frq_cnt == 3 && phase[2] >= 251.0f && !found_max_d) {
|
|
// phase greater than 161 deg won't allow max p to be found
|
|
// reset freq cnt to 2 and lower dwell freq to push phase below 161 deg
|
|
frq_cnt = 2;
|
|
freq[frq_cnt] = freq[frq_cnt] - 0.5f * test_freq_incr;
|
|
} else if (find_middle) {
|
|
freq[frq_cnt] = freq[frq_cnt-1] - 0.5f * test_freq_incr;
|
|
} else {
|
|
freq[frq_cnt] = freq[frq_cnt-1] + test_freq_incr;
|
|
}
|
|
curr_test_freq = freq[frq_cnt];
|
|
start_freq = curr_test_freq;
|
|
stop_freq = curr_test_freq;
|
|
}
|
|
}
|
|
}
|
|
|
|
void AC_AutoTune_Heli::Log_AutoTune()
|
|
{
|
|
switch (axis) {
|
|
case ROLL:
|
|
Log_Write_AutoTune(axis, tune_type, test_freq[freq_cnt], test_gain[freq_cnt], test_phase[freq_cnt], tune_roll_rff, tune_roll_rp, tune_roll_rd, tune_roll_sp, test_accel_max);
|
|
break;
|
|
case PITCH:
|
|
Log_Write_AutoTune(axis, tune_type, test_freq[freq_cnt], test_gain[freq_cnt], test_phase[freq_cnt], tune_pitch_rff, tune_pitch_rp, tune_pitch_rd, tune_pitch_sp, test_accel_max);
|
|
break;
|
|
case YAW:
|
|
Log_Write_AutoTune(axis, tune_type, test_freq[freq_cnt], test_gain[freq_cnt], test_phase[freq_cnt], tune_yaw_rff, tune_yaw_rp, tune_yaw_rd, tune_yaw_sp, test_accel_max);
|
|
break;
|
|
}
|
|
// }
|
|
}
|
|
|
|
void AC_AutoTune_Heli::Log_AutoTuneDetails()
|
|
{
|
|
if (tune_type == SP_UP) {
|
|
Log_Write_AutoTuneDetails(command_out, 0.0f, 0.0f, filt_target_rate, rotation_rate);
|
|
} else {
|
|
Log_Write_AutoTuneDetails(command_out, filt_target_rate, rotation_rate, 0.0f, 0.0f);
|
|
}
|
|
}
|
|
|
|
void AC_AutoTune_Heli::Log_AutoTuneSweep()
|
|
{
|
|
Log_Write_AutoTuneSweep(curr_test_freq, curr_test_gain, curr_test_phase);
|
|
}
|
|
|
|
// @LoggerMessage: ATNH
|
|
// @Description: Heli AutoTune
|
|
// @Vehicles: Copter
|
|
// @Field: TimeUS: Time since system startup
|
|
// @Field: Axis: which axis is currently being tuned
|
|
// @Field: TuneStep: step in autotune process
|
|
// @Field: Freq: target dwell frequency
|
|
// @Field: Gain: measured gain of dwell
|
|
// @Field: Phase: measured phase of dwell
|
|
// @Field: RFF: new rate gain FF term
|
|
// @Field: RP: new rate gain P term
|
|
// @Field: RD: new rate gain D term
|
|
// @Field: SP: new angle P term
|
|
// @Field: ACC: new max accel term
|
|
|
|
// Write an Autotune data packet
|
|
void AC_AutoTune_Heli::Log_Write_AutoTune(uint8_t _axis, uint8_t tune_step, float dwell_freq, float meas_gain, float meas_phase, float new_gain_rff, float new_gain_rp, float new_gain_rd, float new_gain_sp, float max_accel)
|
|
{
|
|
AP::logger().Write(
|
|
"ATNH",
|
|
"TimeUS,Axis,TuneStep,Freq,Gain,Phase,RFF,RP,RD,SP,ACC",
|
|
"s--E-d-----",
|
|
"F--000-----",
|
|
"QBBffffffff",
|
|
AP_HAL::micros64(),
|
|
axis,
|
|
tune_step,
|
|
dwell_freq,
|
|
meas_gain,
|
|
meas_phase,
|
|
new_gain_rff,
|
|
new_gain_rp,
|
|
new_gain_rd,
|
|
new_gain_sp,
|
|
max_accel);
|
|
}
|
|
|
|
// Write an Autotune data packet
|
|
void AC_AutoTune_Heli::Log_Write_AutoTuneDetails(float motor_cmd, float tgt_rate_rads, float rate_rads, float tgt_ang_rad, float ang_rad)
|
|
{
|
|
// @LoggerMessage: ATDH
|
|
// @Description: Heli AutoTune data packet
|
|
// @Vehicles: Copter
|
|
// @Field: TimeUS: Time since system startup
|
|
// @Field: Cmd: current motor command
|
|
// @Field: TRate: current target angular rate
|
|
// @Field: Rate: current angular rate
|
|
// @Field: TAng: current target angle
|
|
// @Field: Ang: current angle
|
|
AP::logger().WriteStreaming(
|
|
"ATDH",
|
|
"TimeUS,Cmd,TRate,Rate,TAng,Ang",
|
|
"s-kkdd",
|
|
"F00000",
|
|
"Qfffff",
|
|
AP_HAL::micros64(),
|
|
motor_cmd,
|
|
tgt_rate_rads*57.3,
|
|
rate_rads*57.3f,
|
|
tgt_ang_rad*57.3,
|
|
ang_rad*57.3f);
|
|
}
|
|
|
|
// Write an Autotune data packet
|
|
void AC_AutoTune_Heli::Log_Write_AutoTuneSweep(float freq, float gain, float phase)
|
|
{
|
|
// @LoggerMessage: ATSH
|
|
// @Description: Heli AutoTune Sweep packet
|
|
// @Vehicles: Copter
|
|
// @Field: TimeUS: Time since system startup
|
|
// @Field: freq: current frequency
|
|
// @Field: gain: current response gain
|
|
// @Field: phase: current response phase
|
|
AP::logger().WriteStreaming(
|
|
"ATSH",
|
|
"TimeUS,freq,gain,phase",
|
|
"sE-d",
|
|
"F000",
|
|
"Qfff",
|
|
AP_HAL::micros64(),
|
|
freq,
|
|
gain,
|
|
phase);
|
|
}
|
|
|
|
// get intra test rate I gain for the specified axis
|
|
float AC_AutoTune_Heli::get_intra_test_ri(AxisType test_axis)
|
|
{
|
|
float ret = 0.0f;
|
|
switch (test_axis) {
|
|
case ROLL:
|
|
ret = orig_roll_rff * AUTOTUNE_FFI_RATIO_FOR_TESTING;
|
|
break;
|
|
case PITCH:
|
|
ret = orig_pitch_rff * AUTOTUNE_FFI_RATIO_FOR_TESTING;
|
|
break;
|
|
case YAW:
|
|
ret = orig_yaw_rp*AUTOTUNE_PI_RATIO_FOR_TESTING;
|
|
break;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
// get tuned rate I gain for the specified axis
|
|
float AC_AutoTune_Heli::get_tuned_ri(AxisType test_axis)
|
|
{
|
|
float ret = 0.0f;
|
|
switch (test_axis) {
|
|
case ROLL:
|
|
ret = tune_roll_rff*AUTOTUNE_FFI_RATIO_FINAL;
|
|
break;
|
|
case PITCH:
|
|
ret = tune_pitch_rff*AUTOTUNE_FFI_RATIO_FINAL;
|
|
break;
|
|
case YAW:
|
|
ret = tune_yaw_rp*AUTOTUNE_YAW_PI_RATIO_FINAL;
|
|
break;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
// get minimum rate P (for any axis)
|
|
float AC_AutoTune_Heli::get_rp_min() const
|
|
{
|
|
return AUTOTUNE_RP_MIN;
|
|
}
|
|
|
|
// get minimum angle P (for any axis)
|
|
float AC_AutoTune_Heli::get_sp_min() const
|
|
{
|
|
return AUTOTUNE_SP_MIN;
|
|
}
|
|
|
|
// get minimum rate Yaw filter value
|
|
float AC_AutoTune_Heli::get_yaw_rate_filt_min() const
|
|
{
|
|
return AUTOTUNE_RLPF_MIN;
|
|
}
|
|
|
|
void AC_AutoTune_Heli::set_tune_sequence()
|
|
{
|
|
uint8_t seq_cnt = 0;
|
|
|
|
if (seq_bitmask & AUTOTUNE_SEQ_BITMASK_VFF) {
|
|
tune_seq[seq_cnt] = RFF_UP;
|
|
seq_cnt++;
|
|
}
|
|
if (seq_bitmask & AUTOTUNE_SEQ_BITMASK_RATE_D) {
|
|
tune_seq[seq_cnt] = MAX_GAINS;
|
|
seq_cnt++;
|
|
tune_seq[seq_cnt] = RD_UP;
|
|
seq_cnt++;
|
|
tune_seq[seq_cnt] = RP_UP;
|
|
seq_cnt++;
|
|
}
|
|
if (seq_bitmask & AUTOTUNE_SEQ_BITMASK_ANGLE_P) {
|
|
tune_seq[seq_cnt] = SP_UP;
|
|
seq_cnt++;
|
|
}
|
|
if (seq_bitmask & AUTOTUNE_SEQ_BITMASK_MAX_GAIN && !(seq_bitmask & AUTOTUNE_SEQ_BITMASK_RATE_D)) {
|
|
tune_seq[seq_cnt] = MAX_GAINS;
|
|
seq_cnt++;
|
|
}
|
|
tune_seq[seq_cnt] = TUNE_COMPLETE;
|
|
|
|
}
|