mirror of
https://github.com/ArduPilot/ardupilot
synced 2025-01-14 20:58:30 -04:00
3adbaddab0
start to make compass backends look like backends from our other libraries
158 lines
5.2 KiB
C++
158 lines
5.2 KiB
C++
#include "AP_Compass_SITL.h"
|
|
|
|
#if AP_COMPASS_SITL_ENABLED
|
|
|
|
#include <AP_HAL/AP_HAL.h>
|
|
|
|
extern const AP_HAL::HAL& hal;
|
|
|
|
AP_Compass_SITL::AP_Compass_SITL()
|
|
: _sitl(AP::sitl())
|
|
{
|
|
if (_sitl != nullptr) {
|
|
for (uint8_t i=0; i<MAX_CONNECTED_MAGS; i++) {
|
|
uint32_t dev_id = _sitl->mag_devid[i];
|
|
if (dev_id == 0) {
|
|
continue;
|
|
}
|
|
uint8_t instance;
|
|
if (!register_compass(dev_id, instance)) {
|
|
continue;
|
|
} else if (_num_compass<MAX_SITL_COMPASSES) {
|
|
_compass_instance[_num_compass] = instance;
|
|
set_dev_id(_compass_instance[_num_compass], dev_id);
|
|
|
|
// save so the compass always comes up configured in SITL
|
|
save_dev_id(_compass_instance[_num_compass]);
|
|
set_rotation(instance, ROTATION_NONE);
|
|
_num_compass++;
|
|
}
|
|
}
|
|
|
|
// Scroll through the registered compasses, and set the offsets
|
|
for (uint8_t i=0; i<_num_compass; i++) {
|
|
if (_compass.get_offsets(i).is_zero()) {
|
|
_compass.set_offsets(i, _sitl->mag_ofs[i]);
|
|
}
|
|
}
|
|
|
|
// we want to simulate a calibrated compass by default, so set
|
|
// scale to 1
|
|
AP_Param::set_default_by_name("COMPASS_SCALE", 1);
|
|
AP_Param::set_default_by_name("COMPASS_SCALE2", 1);
|
|
AP_Param::set_default_by_name("COMPASS_SCALE3", 1);
|
|
|
|
// make first compass external
|
|
set_external(_compass_instance[0], true);
|
|
|
|
hal.scheduler->register_timer_process(FUNCTOR_BIND(this, &AP_Compass_SITL::_timer, void));
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
create correction matrix for diagnonals and off-diagonals
|
|
*/
|
|
void AP_Compass_SITL::_setup_eliptical_correcion(uint8_t i)
|
|
{
|
|
Vector3f diag = _sitl->mag_diag[i].get();
|
|
if (diag.is_zero()) {
|
|
diag = {1,1,1};
|
|
}
|
|
const Vector3f &diagonals = diag;
|
|
const Vector3f &offdiagonals = _sitl->mag_offdiag[i];
|
|
|
|
if (diagonals == _last_dia && offdiagonals == _last_odi) {
|
|
return;
|
|
}
|
|
|
|
_eliptical_corr = Matrix3f(diagonals.x, offdiagonals.x, offdiagonals.y,
|
|
offdiagonals.x, diagonals.y, offdiagonals.z,
|
|
offdiagonals.y, offdiagonals.z, diagonals.z);
|
|
if (!_eliptical_corr.invert()) {
|
|
_eliptical_corr.identity();
|
|
}
|
|
_last_dia = diag;
|
|
_last_odi = offdiagonals;
|
|
}
|
|
|
|
void AP_Compass_SITL::_timer()
|
|
{
|
|
// TODO: Refactor delay buffer with AP_Baro_SITL.
|
|
|
|
// Sampled at 100Hz
|
|
uint32_t now = AP_HAL::millis();
|
|
if ((now - _last_sample_time) < 10) {
|
|
return;
|
|
}
|
|
_last_sample_time = now;
|
|
|
|
// calculate sensor noise and add to 'truth' field in body frame
|
|
// units are milli-Gauss
|
|
Vector3f noise = rand_vec3f() * _sitl->mag_noise;
|
|
Vector3f new_mag_data = _sitl->state.bodyMagField + noise;
|
|
|
|
// add delay
|
|
uint32_t best_time_delta = 1000; // initialise large time representing buffer entry closest to current time - delay.
|
|
uint8_t best_index = 0; // initialise number representing the index of the entry in buffer closest to delay.
|
|
|
|
// storing data from sensor to buffer
|
|
if (now - last_store_time >= 10) { // store data every 10 ms.
|
|
last_store_time = now;
|
|
if (store_index > buffer_length-1) { // reset buffer index if index greater than size of buffer
|
|
store_index = 0;
|
|
}
|
|
buffer[store_index].data = new_mag_data; // add data to current index
|
|
buffer[store_index].time = last_store_time; // add time to current index
|
|
store_index = store_index + 1; // increment index
|
|
}
|
|
|
|
// return delayed measurement
|
|
uint32_t delayed_time = now - _sitl->mag_delay; // get time corresponding to delay
|
|
// find data corresponding to delayed time in buffer
|
|
for (uint8_t i=0; i<=buffer_length-1; i++) {
|
|
// find difference between delayed time and time stamp in buffer
|
|
uint32_t time_delta = abs((int32_t)(delayed_time - buffer[i].time));
|
|
// if this difference is smaller than last delta, store this time
|
|
if (time_delta < best_time_delta) {
|
|
best_index= i;
|
|
best_time_delta = time_delta;
|
|
}
|
|
}
|
|
if (best_time_delta < 1000) { // only output stored state if < 1 sec retrieval error
|
|
new_mag_data = buffer[best_index].data;
|
|
}
|
|
|
|
for (uint8_t i=0; i<_num_compass; i++) {
|
|
_setup_eliptical_correcion(i);
|
|
Vector3f f = (_eliptical_corr * new_mag_data) - _sitl->mag_ofs[i].get();
|
|
// rotate compass
|
|
f.rotate_inverse((enum Rotation)_sitl->mag_orient[i].get());
|
|
f.rotate(get_board_orientation());
|
|
// scale the compass to simulate sensor scale factor errors
|
|
f *= _sitl->mag_scaling[i];
|
|
|
|
switch (_sitl->mag_fail[i]) {
|
|
case 0:
|
|
accumulate_sample(f, _compass_instance[i], 10);
|
|
_last_data[i] = f;
|
|
break;
|
|
case 1:
|
|
// no data
|
|
break;
|
|
case 2:
|
|
// frozen compass
|
|
accumulate_sample(_last_data[i], _compass_instance[i], 10);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
void AP_Compass_SITL::read()
|
|
{
|
|
for (uint8_t i=0; i<_num_compass; i++) {
|
|
drain_accumulated_samples(_compass_instance[i], nullptr);
|
|
}
|
|
}
|
|
#endif // AP_COMPASS_SITL_ENABLED
|