mirror of
https://github.com/ArduPilot/ardupilot
synced 2025-01-07 00:18:29 -04:00
909 lines
32 KiB
C++
909 lines
32 KiB
C++
/*
|
|
This program is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include "AP_SmartRTL.h"
|
|
|
|
#include <AP_AHRS/AP_AHRS.h>
|
|
#include <AP_Logger/AP_Logger.h>
|
|
#include <GCS_MAVLink/GCS.h>
|
|
|
|
extern const AP_HAL::HAL& hal;
|
|
|
|
const AP_Param::GroupInfo AP_SmartRTL::var_info[] = {
|
|
// @Param: ACCURACY
|
|
// @DisplayName: SmartRTL accuracy
|
|
// @Description: SmartRTL accuracy. The minimum distance between points.
|
|
// @Units: m
|
|
// @Range: 0 10
|
|
// @User: Advanced
|
|
AP_GROUPINFO("ACCURACY", 0, AP_SmartRTL, _accuracy, SMARTRTL_ACCURACY_DEFAULT),
|
|
|
|
// @Param: POINTS
|
|
// @DisplayName: SmartRTL maximum number of points on path
|
|
// @Description: SmartRTL maximum number of points on path. Set to 0 to disable SmartRTL. 100 points consumes about 3k of memory.
|
|
// @Range: 0 500
|
|
// @User: Advanced
|
|
// @RebootRequired: True
|
|
AP_GROUPINFO("POINTS", 1, AP_SmartRTL, _points_max, SMARTRTL_POINTS_DEFAULT),
|
|
|
|
// @Param: OPTIONS
|
|
// @DisplayName: SmartRTL options
|
|
// @Description: Bitmask of SmartRTL options.
|
|
// @Bitmask: 2:Ignore pilot yaw
|
|
// @User: Standard
|
|
AP_GROUPINFO("OPTIONS", 2, AP_SmartRTL, _options, 0),
|
|
|
|
AP_GROUPEND
|
|
};
|
|
|
|
/*
|
|
* This library is used for the Safe Return-to-Launch feature. The vehicle's
|
|
* position (aka "bread crumbs") are stored into an array in memory at
|
|
* regular intervals. After a certain number of bread crumbs have been
|
|
* stored and space within the array is low, clean-up algorithms are run to
|
|
* reduce the total number of points. When Safe-RTL is initiated by the
|
|
* vehicle code, a more thorough cleanup runs and the resulting path is fed
|
|
* into navigation controller to return the vehicle to home.
|
|
*
|
|
* The cleanup consists of two parts, pruning and simplification:
|
|
*
|
|
* 1. Pruning calculates the closest distance between two line segments formed
|
|
* by two pairs of sequential points, and then cuts out anything between two
|
|
* points when their line segments get close. This algorithm will never
|
|
* compare two consecutive line segments. Obviously the segments (p1,p2) and
|
|
* (p2,p3) will get very close (they touch), but there would be nothing to
|
|
* trim between them.
|
|
*
|
|
* 2. Simplification uses the Ramer-Douglas-Peucker algorithm. See Wikipedia
|
|
* for a more complete description.
|
|
*
|
|
* The simplification and pruning algorithms run in the background and do not
|
|
* alter the path in memory. Two definitions, SMARTRTL_SIMPLIFY_TIME_US and
|
|
* SMARTRTL_PRUNING_LOOP_TIME_US are used to limit how long each algorithm will
|
|
* be run before they save their state and return.
|
|
*
|
|
* Both algorithms are "anytime algorithms" meaning they can be interrupted
|
|
* before they complete which is helpful when memory is filling up and we just
|
|
* need to quickly identify a handful of points which can be deleted.
|
|
*
|
|
* Once the algorithms have completed the simplify.complete and
|
|
* prune.complete flags are set to true. The "thorough cleanup" procedure,
|
|
* which is run as the vehicle initiates the SmartRTL flight mode, waits for
|
|
* these flags to become true. This can force the vehicle to pause for a few
|
|
* seconds before initiating the return journey.
|
|
*/
|
|
|
|
AP_SmartRTL::AP_SmartRTL(bool example_mode) :
|
|
_example_mode(example_mode)
|
|
{
|
|
AP_Param::setup_object_defaults(this, var_info);
|
|
_simplify.bitmask.setall();
|
|
}
|
|
|
|
// initialise safe rtl including setting up background processes
|
|
void AP_SmartRTL::init()
|
|
{
|
|
// protect against repeated call to init
|
|
if (_path != nullptr) {
|
|
return;
|
|
}
|
|
|
|
// constrain the path length, in case the user decided to make the path unreasonably long.
|
|
_points_max.set(constrain_int16(_points_max, 0, SMARTRTL_POINTS_MAX));
|
|
|
|
// check if user has disabled SmartRTL
|
|
if (_points_max == 0 || !is_positive(_accuracy)) {
|
|
return;
|
|
}
|
|
|
|
// allocate arrays
|
|
_path = (Vector3f*)calloc(_points_max, sizeof(Vector3f));
|
|
|
|
_prune.loops_max = _points_max * SMARTRTL_PRUNING_LOOP_BUFFER_LEN_MULT;
|
|
_prune.loops = (prune_loop_t*)calloc(_prune.loops_max, sizeof(prune_loop_t));
|
|
|
|
_simplify.stack_max = _points_max * SMARTRTL_SIMPLIFY_STACK_LEN_MULT;
|
|
_simplify.stack = (simplify_start_finish_t*)calloc(_simplify.stack_max, sizeof(simplify_start_finish_t));
|
|
|
|
// check if memory allocation failed
|
|
if (_path == nullptr || _prune.loops == nullptr || _simplify.stack == nullptr) {
|
|
log_action(SRTL_DEACTIVATED_INIT_FAILED);
|
|
GCS_SEND_TEXT(MAV_SEVERITY_WARNING, "SmartRTL deactivated: init failed");
|
|
free(_path);
|
|
free(_prune.loops);
|
|
free(_simplify.stack);
|
|
return;
|
|
}
|
|
|
|
_path_points_max = _points_max;
|
|
|
|
// when running the example sketch, we want the cleanup tasks to run when we tell them to, not in the background (so that they can be timed.)
|
|
if (!_example_mode){
|
|
// register background cleanup to run in IO thread
|
|
hal.scheduler->register_io_process(FUNCTOR_BIND_MEMBER(&AP_SmartRTL::run_background_cleanup, void));
|
|
}
|
|
}
|
|
|
|
// returns number of points on the path
|
|
uint16_t AP_SmartRTL::get_num_points() const
|
|
{
|
|
return _path_points_count;
|
|
}
|
|
|
|
// get next point on the path to home, returns true on success
|
|
bool AP_SmartRTL::pop_point(Vector3f& point)
|
|
{
|
|
// check we are active
|
|
if (!_active) {
|
|
return false;
|
|
}
|
|
|
|
// get semaphore
|
|
if (!_path_sem.take_nonblocking()) {
|
|
log_action(SRTL_POP_FAILED_NO_SEMAPHORE);
|
|
return false;
|
|
}
|
|
|
|
// check we have another point
|
|
if (_path_points_count == 0) {
|
|
_path_sem.give();
|
|
return false;
|
|
}
|
|
|
|
// return last point and remove from path
|
|
point = _path[--_path_points_count];
|
|
|
|
// record count of last point popped
|
|
_path_points_completed_limit = _path_points_count;
|
|
|
|
_path_sem.give();
|
|
return true;
|
|
}
|
|
|
|
// peek at next point on the path without removing it form the path. Returns true on success
|
|
bool AP_SmartRTL::peek_point(Vector3f& point)
|
|
{
|
|
// check we are active
|
|
if (!_active) {
|
|
return false;
|
|
}
|
|
|
|
// get semaphore
|
|
if (!_path_sem.take_nonblocking()) {
|
|
log_action(SRTL_PEEK_FAILED_NO_SEMAPHORE);
|
|
return false;
|
|
}
|
|
|
|
// check we have another point
|
|
if (_path_points_count == 0) {
|
|
_path_sem.give();
|
|
return false;
|
|
}
|
|
|
|
// return last point
|
|
point = _path[_path_points_count-1];
|
|
|
|
_path_sem.give();
|
|
return true;
|
|
}
|
|
|
|
// clear return path and set home location. This should be called as part of the arming procedure
|
|
void AP_SmartRTL::set_home(bool position_ok)
|
|
{
|
|
Vector3f current_pos;
|
|
position_ok &= AP::ahrs().get_relative_position_NED_origin(current_pos);
|
|
set_home(position_ok, current_pos);
|
|
}
|
|
|
|
void AP_SmartRTL::set_home(bool position_ok, const Vector3f& current_pos)
|
|
{
|
|
if (_path == nullptr) {
|
|
return;
|
|
}
|
|
|
|
// clear path
|
|
_path_points_count = 0;
|
|
|
|
// reset simplification and pruning. These functions access members that should normally only
|
|
// be touched by the background thread but it will not be running because active should be false
|
|
reset_simplification();
|
|
reset_pruning();
|
|
|
|
// don't continue if no position at take-off
|
|
if (!position_ok) {
|
|
return;
|
|
}
|
|
|
|
// save current position as first point in path
|
|
if (!add_point(current_pos)) {
|
|
return;
|
|
}
|
|
|
|
// successfully added point and reset path
|
|
const uint32_t now = AP_HAL::millis();
|
|
_last_good_position_ms = now;
|
|
_last_position_save_ms = now;
|
|
_active = true;
|
|
_home_saved = true;
|
|
}
|
|
|
|
// call this at 3hz (or higher) regardless of what mode the vehicle is in
|
|
void AP_SmartRTL::update(bool position_ok, bool save_position)
|
|
{
|
|
// try to save home if not already saved
|
|
if (position_ok && !_home_saved) {
|
|
set_home(true);
|
|
}
|
|
|
|
if (!_active || !save_position) {
|
|
return;
|
|
}
|
|
|
|
Vector3f current_pos;
|
|
position_ok &= AP::ahrs().get_relative_position_NED_origin(current_pos);
|
|
update(position_ok, current_pos);
|
|
}
|
|
|
|
void AP_SmartRTL::update(bool position_ok, const Vector3f& current_pos)
|
|
{
|
|
if (!_active) {
|
|
return;
|
|
}
|
|
|
|
if (position_ok) {
|
|
const uint32_t now = AP_HAL::millis();
|
|
_last_good_position_ms = now;
|
|
// add the point
|
|
if (add_point(current_pos)) {
|
|
_last_position_save_ms = now;
|
|
} else if (AP_HAL::millis() - _last_position_save_ms > SMARTRTL_TIMEOUT) {
|
|
// deactivate after timeout due to failure to save points to path (most likely due to buffer filling up)
|
|
deactivate(SRTL_DEACTIVATED_PATH_FULL_TIMEOUT, "buffer full");
|
|
}
|
|
} else {
|
|
// check for timeout due to bad position
|
|
if (AP_HAL::millis() - _last_good_position_ms > SMARTRTL_TIMEOUT) {
|
|
deactivate(SRTL_DEACTIVATED_BAD_POSITION_TIMEOUT, "bad position");
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
// request thorough cleanup including simplification, pruning and removal of all unnecessary points
|
|
// returns true if the thorough cleanup was completed, false if it has not yet completed
|
|
// this method should be called repeatedly until it returns true before initiating the return journey
|
|
bool AP_SmartRTL::request_thorough_cleanup(ThoroughCleanupType clean_type)
|
|
{
|
|
// this should never happen but just in case
|
|
if (!_active) {
|
|
return false;
|
|
}
|
|
|
|
// request thorough cleanup
|
|
if (_thorough_clean_request_ms == 0) {
|
|
_thorough_clean_request_ms = AP_HAL::millis();
|
|
if (clean_type != THOROUGH_CLEAN_DEFAULT) {
|
|
_thorough_clean_type = clean_type;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// check if background thread has completed request
|
|
if (_thorough_clean_complete_ms == _thorough_clean_request_ms) {
|
|
_thorough_clean_request_ms = 0;
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
// cancel request for thorough cleanup
|
|
void AP_SmartRTL::cancel_request_for_thorough_cleanup()
|
|
{
|
|
_thorough_clean_request_ms = 0;
|
|
}
|
|
|
|
//
|
|
// Private methods
|
|
//
|
|
|
|
// add point to end of path (if necessary), returns true on success
|
|
bool AP_SmartRTL::add_point(const Vector3f& point)
|
|
{
|
|
// get semaphore
|
|
if (!_path_sem.take_nonblocking()) {
|
|
log_action(SRTL_ADD_FAILED_NO_SEMAPHORE, point);
|
|
return false;
|
|
}
|
|
|
|
// check if we have traveled far enough
|
|
if (_path_points_count > 0) {
|
|
const Vector3f& last_pos = _path[_path_points_count-1];
|
|
if (last_pos.distance_squared(point) < sq(_accuracy.get())) {
|
|
_path_sem.give();
|
|
return true;
|
|
}
|
|
}
|
|
|
|
// check we have space in the path
|
|
if (_path_points_count >= _path_points_max) {
|
|
_path_sem.give();
|
|
log_action(SRTL_ADD_FAILED_PATH_FULL, point);
|
|
return false;
|
|
}
|
|
|
|
// add point to path
|
|
_path[_path_points_count++] = point;
|
|
log_action(SRTL_POINT_ADD, point);
|
|
|
|
_path_sem.give();
|
|
return true;
|
|
}
|
|
|
|
// run background cleanup - should be run regularly from the IO thread
|
|
void AP_SmartRTL::run_background_cleanup()
|
|
{
|
|
if (!_active) {
|
|
return;
|
|
}
|
|
|
|
// get semaphore
|
|
if (!_path_sem.take_nonblocking()) {
|
|
return;
|
|
}
|
|
// local copy of _path_points_count and _path_points_completed_limit
|
|
const uint16_t path_points_count = _path_points_count;
|
|
const uint16_t path_points_completed_limit = _path_points_completed_limit;
|
|
_path_points_completed_limit = SMARTRTL_POINTS_MAX;
|
|
_path_sem.give();
|
|
|
|
// check if thorough cleanup is required
|
|
if (_thorough_clean_request_ms > 0) {
|
|
// check if we have already completed the request
|
|
if (_thorough_clean_complete_ms != _thorough_clean_request_ms) {
|
|
if (thorough_cleanup(path_points_count, _thorough_clean_type)) {
|
|
// record completion
|
|
_thorough_clean_complete_ms = _thorough_clean_request_ms;
|
|
}
|
|
}
|
|
// we do not perform any further detection or cleanup until the requester acknowledges
|
|
// they have what they need by setting _thorough_clean_request_ms back to zero
|
|
return;
|
|
}
|
|
|
|
// ensure clean complete time is zero
|
|
_thorough_clean_complete_ms = 0;
|
|
|
|
// perform routine cleanup which removes 10 to 50 points if possible
|
|
routine_cleanup(path_points_count, path_points_completed_limit);
|
|
|
|
// warn if buffer is about to be filled
|
|
uint32_t now_ms = AP_HAL::millis();
|
|
if ((path_points_count >0) && (path_points_count >= _path_points_max - 9) && (now_ms - _last_low_space_notify_ms > 10000)) {
|
|
GCS_SEND_TEXT(MAV_SEVERITY_INFO, "SmartRTL Low on space!");
|
|
_last_low_space_notify_ms = now_ms;
|
|
}
|
|
|
|
}
|
|
|
|
// routine cleanup is called regularly from run_background_cleanup
|
|
// simplifies the path after SMARTRTL_CLEANUP_POINT_TRIGGER points (50 points) have been added OR
|
|
// SMARTRTL_CLEANUP_POINT_MIN (10 points) have been added and the path has less than SMARTRTL_CLEANUP_START_MARGIN spaces (10 spaces) remaining
|
|
// prunes the path if the path has less than SMARTRTL_CLEANUP_START_MARGIN spaces (10 spaces) remaining
|
|
void AP_SmartRTL::routine_cleanup(uint16_t path_points_count, uint16_t path_points_completed_limit)
|
|
{
|
|
// if simplify is running, let it run to completion
|
|
if (!_simplify.complete) {
|
|
detect_simplifications();
|
|
return;
|
|
}
|
|
|
|
// remove simplified from path if required
|
|
if (_simplify.removal_required) {
|
|
remove_points_by_simplify_bitmask();
|
|
return;
|
|
}
|
|
|
|
// if necessary restart detect_pruning up to last point simplified
|
|
if (_prune.complete) {
|
|
restart_pruning_if_new_points();
|
|
}
|
|
// if pruning is running, let it run to completion
|
|
if (!_prune.complete) {
|
|
detect_loops();
|
|
return;
|
|
}
|
|
|
|
// detect path shrinkage and reduce simplify and prune path_points_completed count
|
|
if (_simplify.path_points_completed > path_points_completed_limit) {
|
|
_simplify.path_points_completed = path_points_completed_limit;
|
|
}
|
|
if (_prune.path_points_completed > path_points_completed_limit) {
|
|
_prune.path_points_completed = path_points_completed_limit;
|
|
}
|
|
|
|
// calculate the number of points we could simplify
|
|
const uint16_t points_to_simplify = (path_points_count > _simplify.path_points_completed) ? (path_points_count - _simplify.path_points_completed) : 0 ;
|
|
const bool low_on_space = (_path_points_max - path_points_count) <= SMARTRTL_CLEANUP_START_MARGIN;
|
|
|
|
// if 50 points can be simplified or we are low on space and at least 10 points can be simplified
|
|
if ((points_to_simplify >= SMARTRTL_CLEANUP_POINT_TRIGGER) || (low_on_space && (points_to_simplify >= SMARTRTL_CLEANUP_POINT_MIN))) {
|
|
restart_simplification(path_points_count);
|
|
return;
|
|
}
|
|
|
|
// we are low on space, prune
|
|
if (low_on_space) {
|
|
// remove at least 10 points
|
|
remove_points_by_loops(SMARTRTL_CLEANUP_POINT_MIN);
|
|
}
|
|
}
|
|
|
|
// thorough cleanup simplifies and prunes all loops. returns true if the cleanup was completed.
|
|
// path_points_count is _path_points_count but passed in to avoid having to take the semaphore
|
|
bool AP_SmartRTL::thorough_cleanup(uint16_t path_points_count, ThoroughCleanupType clean_type)
|
|
{
|
|
if (clean_type != THOROUGH_CLEAN_PRUNE_ONLY) {
|
|
// restart simplify if new points have appeared on path
|
|
if (_simplify.complete) {
|
|
restart_simplify_if_new_points(path_points_count);
|
|
}
|
|
// if simplification is not complete, run it
|
|
if (!_simplify.complete) {
|
|
detect_simplifications();
|
|
return false;
|
|
}
|
|
// remove simplified points from path if required
|
|
if (_simplify.removal_required) {
|
|
remove_points_by_simplify_bitmask();
|
|
return false;
|
|
}
|
|
}
|
|
|
|
if (clean_type != THOROUGH_CLEAN_SIMPLIFY_ONLY) {
|
|
// if necessary restart detect_pruning up to last point simplified
|
|
if (_prune.complete) {
|
|
restart_pruning_if_new_points();
|
|
}
|
|
// if pruning is not complete, run it
|
|
if (!_prune.complete) {
|
|
detect_loops();
|
|
return false;
|
|
}
|
|
// remove pruning points
|
|
if (!remove_points_by_loops(SMARTRTL_POINTS_MAX)) {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
// Simplifies a 3D path, according to the Ramer-Douglas-Peucker algorithm.
|
|
// _simplify.complete is set to true when all simplifications on the path have been identified
|
|
void AP_SmartRTL::detect_simplifications()
|
|
{
|
|
// complete immediately if only one segment
|
|
if (_simplify.path_points_count < 3) {
|
|
_simplify.complete = true;
|
|
return;
|
|
}
|
|
|
|
// if not complete but also nothing to do, we must be restarting
|
|
if (_simplify.stack_count == 0) {
|
|
// reset to beginning state. add a single element in the array with:
|
|
// start = first path point OR the index of the last already-simplified point
|
|
// finish = final path point
|
|
_simplify.stack[0].start = (_simplify.path_points_completed > 0) ? _simplify.path_points_completed - 1 : 0;
|
|
_simplify.stack[0].finish = _simplify.path_points_count-1;
|
|
_simplify.stack_count++;
|
|
}
|
|
|
|
const uint32_t start_time_us = AP_HAL::micros();
|
|
while (_simplify.stack_count > 0) { // while there is something to do
|
|
|
|
// if this method has run for long enough, exit
|
|
if (AP_HAL::micros() - start_time_us > SMARTRTL_SIMPLIFY_TIME_US) {
|
|
return;
|
|
}
|
|
|
|
// pop last item off the simplify stack
|
|
const simplify_start_finish_t tmp = _simplify.stack[--_simplify.stack_count];
|
|
const uint16_t start_index = tmp.start;
|
|
const uint16_t end_index = tmp.finish;
|
|
|
|
// find the point between start and end points that is farthest from the start-end line segment
|
|
float max_dist = 0.0f;
|
|
uint16_t farthest_point_index = start_index;
|
|
for (uint16_t i = start_index + 1; i < end_index; i++) {
|
|
// only check points that have not already been flagged for simplification
|
|
if (_simplify.bitmask.get(i)) {
|
|
const float dist = _path[i].distance_to_segment(_path[start_index], _path[end_index]);
|
|
if (dist > max_dist) {
|
|
farthest_point_index = i;
|
|
max_dist = dist;
|
|
}
|
|
}
|
|
}
|
|
|
|
// if the farthest point is more than ACCURACY * 0.5 add two new elements to the _simplification_stack
|
|
// so that on the next iteration we will check between start-to-farthestpoint and farthestpoint-to-end
|
|
if (max_dist > SMARTRTL_SIMPLIFY_EPSILON) {
|
|
// if the to-do list is full, give up on simplifying. This should never happen.
|
|
if (_simplify.stack_count >= _simplify.stack_max) {
|
|
_simplify.complete = true;
|
|
return;
|
|
}
|
|
_simplify.stack[_simplify.stack_count++] = simplify_start_finish_t {start_index, farthest_point_index};
|
|
_simplify.stack[_simplify.stack_count++] = simplify_start_finish_t {farthest_point_index, end_index};
|
|
} else {
|
|
// if the farthest point was closer than ACCURACY * 0.5 we can simplify all points between start and end
|
|
for (uint16_t i = start_index + 1; i < end_index; i++) {
|
|
_simplify.bitmask.clear(i);
|
|
_simplify.removal_required = true;
|
|
}
|
|
}
|
|
}
|
|
_simplify.path_points_completed = _simplify.path_points_count;
|
|
_simplify.complete = true;
|
|
}
|
|
|
|
/**
|
|
* This method runs for the allotted time, and detects loops in a path. Any detected loops are added to _prune.loops,
|
|
* this function does not alter the path in memory. It works by comparing the line segment between any two sequential points
|
|
* to the line segment between any other two sequential points. If they get close enough, anything between them could be pruned.
|
|
*
|
|
* reset_pruning should have been called at least once before this function is called to setup the indexes (_prune.i, etc)
|
|
*/
|
|
void AP_SmartRTL::detect_loops()
|
|
{
|
|
// if there are less than 4 points (3 segments), mark complete
|
|
if (_prune.path_points_count < 4) {
|
|
_prune.complete = true;
|
|
return;
|
|
}
|
|
|
|
// capture start time
|
|
const uint32_t start_time_us = AP_HAL::micros();
|
|
|
|
// run for defined amount of time
|
|
while (AP_HAL::micros() - start_time_us < SMARTRTL_PRUNING_LOOP_TIME_US) {
|
|
|
|
// advance inner loop
|
|
_prune.j++;
|
|
if (_prune.j > _prune.i - 2) {
|
|
// set inner loop back to first point
|
|
_prune.j = 1;
|
|
// reduce outer loop
|
|
_prune.i--;
|
|
// complete when outer loop has run out of new points to check
|
|
if (_prune.i < 4 || _prune.i < _prune.path_points_completed) {
|
|
_prune.complete = true;
|
|
_prune.path_points_completed = _prune.path_points_count;
|
|
return;
|
|
}
|
|
}
|
|
|
|
// find the closest distance between two line segments and the mid-point
|
|
dist_point dp = segment_segment_dist(_path[_prune.i], _path[_prune.i-1], _path[_prune.j-1], _path[_prune.j]);
|
|
if (dp.distance < SMARTRTL_PRUNING_DELTA) {
|
|
// if there is a loop here, add to loop array
|
|
if (!add_loop(_prune.j, _prune.i-1, dp.midpoint)) {
|
|
// if the buffer is full, stop trying to prune
|
|
_prune.complete = true;
|
|
}
|
|
// set inner loop forward to trigger outer loop move to next segment
|
|
_prune.j = _prune.i;
|
|
}
|
|
}
|
|
}
|
|
|
|
// restart simplify if new points have been added to path
|
|
// path_points_count is _path_points_count but passed in to avoid having to take the semaphore
|
|
void AP_SmartRTL::restart_simplify_if_new_points(uint16_t path_points_count)
|
|
{
|
|
// any difference in the number of points is because of new points being added to path
|
|
if (_simplify.path_points_count != path_points_count) {
|
|
restart_simplification(path_points_count);
|
|
}
|
|
}
|
|
|
|
// reset pruning if new points have been simplified
|
|
void AP_SmartRTL::restart_pruning_if_new_points()
|
|
{
|
|
// any difference in the number of points is because of new points being added to path
|
|
if (_prune.path_points_count != _simplify.path_points_completed) {
|
|
restart_pruning(_simplify.path_points_completed);
|
|
}
|
|
}
|
|
|
|
// restart simplification algorithm so that it will check new points in the path
|
|
void AP_SmartRTL::restart_simplification(uint16_t path_points_count)
|
|
{
|
|
_simplify.complete = false;
|
|
_simplify.removal_required = false;
|
|
_simplify.bitmask.setall();
|
|
_simplify.stack_count = 0;
|
|
_simplify.path_points_count = path_points_count;
|
|
}
|
|
|
|
// reset simplification algorithm so that it will re-check all points in the path
|
|
void AP_SmartRTL::reset_simplification()
|
|
{
|
|
restart_simplification(0);
|
|
_simplify.path_points_completed = 0;
|
|
}
|
|
|
|
// restart pruning algorithm to check new points that have arrived
|
|
void AP_SmartRTL::restart_pruning(uint16_t path_points_count)
|
|
{
|
|
_prune.complete = false;
|
|
_prune.i = (path_points_count > 0) ? path_points_count - 1 : 0;
|
|
_prune.j = 0;
|
|
_prune.path_points_count = path_points_count;
|
|
}
|
|
|
|
// reset pruning algorithm so that it will re-check all points in the path
|
|
void AP_SmartRTL::reset_pruning()
|
|
{
|
|
restart_pruning(0);
|
|
_prune.loops_count = 0; // clear the loops that we've recorded
|
|
_prune.path_points_completed = 0;
|
|
}
|
|
|
|
// remove all simplify-able points from the path
|
|
void AP_SmartRTL::remove_points_by_simplify_bitmask()
|
|
{
|
|
// get semaphore before modifying path
|
|
if (!_path_sem.take_nonblocking()) {
|
|
return;
|
|
}
|
|
uint16_t dest = 1;
|
|
uint16_t removed = 0;
|
|
for (uint16_t src = 1; src < _path_points_count; src++) {
|
|
if (!_simplify.bitmask.get(src)) {
|
|
log_action(SRTL_POINT_SIMPLIFY, _path[src]);
|
|
removed++;
|
|
} else {
|
|
_path[dest] = _path[src];
|
|
dest++;
|
|
}
|
|
}
|
|
|
|
// reduce count of the number of points simplified
|
|
if (_path_points_count > removed && _simplify.path_points_count > removed) {
|
|
_path_points_count -= removed;
|
|
_simplify.path_points_count -= removed;
|
|
_simplify.path_points_completed = _simplify.path_points_count;
|
|
} else {
|
|
// this is an error that should never happen so deactivate
|
|
deactivate(SRTL_DEACTIVATED_PROGRAM_ERROR, "program error");
|
|
}
|
|
|
|
_path_sem.give();
|
|
|
|
// flag point removal is complete
|
|
_simplify.bitmask.setall();
|
|
_simplify.removal_required = false;
|
|
}
|
|
|
|
// remove loops until at least num_point_to_delete have been removed from path
|
|
// does not necessarily prune all loops
|
|
// returns false if it failed to remove points (because it could not take semaphore)
|
|
bool AP_SmartRTL::remove_points_by_loops(uint16_t num_points_to_remove)
|
|
{
|
|
// exit immediately if no loops to prune
|
|
if (_prune.loops_count == 0) {
|
|
return true;
|
|
}
|
|
|
|
// get semaphore before modifying path
|
|
if (!_path_sem.take_nonblocking()) {
|
|
return false;
|
|
}
|
|
|
|
uint16_t removed_points = 0;
|
|
uint16_t i = _prune.loops_count;
|
|
while ((i > 0) && (removed_points < num_points_to_remove)) {
|
|
i--;
|
|
prune_loop_t loop = _prune.loops[i];
|
|
|
|
// midpoint goes into start_index (this is the end point of the first segment)
|
|
_path[loop.start_index] = loop.midpoint;
|
|
|
|
// shift points after the end of the loop down by the number of points in the loop
|
|
uint16_t loop_num_points_to_remove = loop.end_index - loop.start_index;
|
|
for (uint16_t dest = loop.start_index + 1; dest < _path_points_count - loop_num_points_to_remove; dest++) {
|
|
log_action(SRTL_POINT_PRUNE, _path[dest]);
|
|
_path[dest] = _path[dest + loop_num_points_to_remove];
|
|
}
|
|
|
|
if (_path_points_count > loop_num_points_to_remove) {
|
|
_path_points_count -= loop_num_points_to_remove;
|
|
removed_points += loop_num_points_to_remove;
|
|
} else {
|
|
// this is an error that should never happen so deactivate
|
|
deactivate(SRTL_DEACTIVATED_PROGRAM_ERROR, "program error");
|
|
_path_sem.give();
|
|
// we return true so thorough_cleanup does not get stuck
|
|
return true;
|
|
}
|
|
|
|
// fix the indices of any existing prune loops
|
|
// we do not check for overlapping loops because add_loops should have caught them
|
|
for (uint16_t loop_cnt = 0; loop_cnt < i; loop_cnt++) {
|
|
if (_prune.loops[loop_cnt].start_index >= loop.end_index) {
|
|
_prune.loops[loop_cnt].start_index -= loop_num_points_to_remove;
|
|
}
|
|
if (_prune.loops[loop_cnt].end_index >= loop.end_index) {
|
|
_prune.loops[loop_cnt].end_index -= loop_num_points_to_remove;
|
|
}
|
|
}
|
|
|
|
// remove last prune loop from array
|
|
_prune.loops_count--;
|
|
}
|
|
|
|
_path_sem.give();
|
|
return true;
|
|
}
|
|
|
|
// add loop to loops array
|
|
// returns true if loop added successfully, false if loop array is full
|
|
// checks if loop overlaps with an existing loop, keeps only the longer loop
|
|
bool AP_SmartRTL::add_loop(uint16_t start_index, uint16_t end_index, const Vector3f& midpoint)
|
|
{
|
|
// if the buffer is full, return failure
|
|
if (_prune.loops_count >= _prune.loops_max) {
|
|
return false;
|
|
}
|
|
|
|
// sanity check indices
|
|
if (end_index <= start_index) {
|
|
return false;
|
|
}
|
|
|
|
// create new loop structure and calculate length squared of loop
|
|
prune_loop_t new_loop = {start_index, end_index, midpoint, 0.0f};
|
|
new_loop.length_squared = midpoint.distance_squared(_path[start_index]) + midpoint.distance_squared(_path[end_index]);
|
|
for (uint16_t i = start_index; i < end_index; i++) {
|
|
new_loop.length_squared += _path[i].distance_squared(_path[i+1]);
|
|
}
|
|
|
|
// look for overlapping loops and find their combined length
|
|
bool overlapping_loops = false;
|
|
float overlapping_loop_length = 0.0f;
|
|
for (uint16_t loop_idx = 0; loop_idx < _prune.loops_count; loop_idx++) {
|
|
if (loops_overlap(_prune.loops[loop_idx], new_loop)) {
|
|
overlapping_loops = true;
|
|
overlapping_loop_length += _prune.loops[loop_idx].length_squared;
|
|
}
|
|
}
|
|
|
|
// handle overlapping loops
|
|
if (overlapping_loops) {
|
|
// if adding this loop would lengthen the path, discard the new loop but return success
|
|
if (overlapping_loop_length > new_loop.length_squared) {
|
|
return true;
|
|
}
|
|
// remove overlapping loops
|
|
uint16_t dest_idx = 0;
|
|
uint16_t removed = 0;
|
|
for (uint16_t src_idx = 0; src_idx < _prune.loops_count; src_idx++) {
|
|
if (loops_overlap(_prune.loops[src_idx], new_loop)) {
|
|
removed++;
|
|
} else {
|
|
_prune.loops[dest_idx] = _prune.loops[src_idx];
|
|
dest_idx++;
|
|
}
|
|
}
|
|
_prune.loops_count -= removed;
|
|
}
|
|
|
|
// add new loop to _prune.loops array
|
|
_prune.loops[_prune.loops_count] = new_loop;
|
|
_prune.loops_count++;
|
|
return true;
|
|
}
|
|
|
|
/**
|
|
* Returns the closest distance in 3D space between any part of two input segments, defined from p1 to p2 and from p3 to p4.
|
|
* Also returns the point which is halfway between
|
|
*
|
|
* Limitation: This function does not work for parallel lines. In this case, dist_point.distance will be FLT_MAX.
|
|
* This does not matter for the path cleanup algorithm because the pruning will still occur fine between the first
|
|
* parallel segment and a segment which is directly before or after the second segment.
|
|
*/
|
|
AP_SmartRTL::dist_point AP_SmartRTL::segment_segment_dist(const Vector3f &p1, const Vector3f &p2, const Vector3f &p3, const Vector3f &p4)
|
|
{
|
|
const Vector3f line1 = p2-p1;
|
|
const Vector3f line2 = p4-p3;
|
|
const Vector3f line_start_diff = p1-p3; // from the beginning of the second line to the beginning of the first line
|
|
|
|
// these don't really have a physical representation. They're only here to break up the longer formulas below.
|
|
const float a = line1*line1;
|
|
const float b = line1*line2;
|
|
const float c = line2*line2;
|
|
const float d = line1*line_start_diff;
|
|
const float e = line2*line_start_diff;
|
|
|
|
// the parameter for the position on line1 and line2 which define the closest points.
|
|
float t1 = 0.0f;
|
|
float t2 = 0.0f;
|
|
|
|
// if lines are almost parallel, return a garbage answer. This is irrelevant, since the loop
|
|
// could always be pruned start/end of the previous/subsequent line segment
|
|
if (is_zero((a*c)-(b*b))) {
|
|
return {FLT_MAX, Vector3f(0.0f, 0.0f, 0.0f)};
|
|
}
|
|
|
|
t1 = (b*e-c*d)/(a*c-b*b);
|
|
t2 = (a*e-b*d)/(a*c-b*b);
|
|
|
|
// restrict both parameters between 0 and 1.
|
|
t1 = constrain_float(t1, 0.0f, 1.0f);
|
|
t2 = constrain_float(t2, 0.0f, 1.0f);
|
|
|
|
// difference between two closest points
|
|
const Vector3f dP = line_start_diff+line1*t1-line2*t2;
|
|
|
|
const Vector3f midpoint = (p1+line1*t1 + p3+line2*t2)/2.0f;
|
|
return {dP.length(), midpoint};
|
|
}
|
|
|
|
// de-activate SmartRTL, send warning to GCS and logger
|
|
void AP_SmartRTL::deactivate(SRTL_Actions action, const char *reason)
|
|
{
|
|
_active = false;
|
|
log_action(action);
|
|
GCS_SEND_TEXT(MAV_SEVERITY_WARNING, "SmartRTL deactivated: %s", reason);
|
|
}
|
|
|
|
#if HAL_LOGGING_ENABLED
|
|
// logging
|
|
void AP_SmartRTL::log_action(SRTL_Actions action, const Vector3f &point) const
|
|
{
|
|
if (!_example_mode) {
|
|
AP::logger().Write_SRTL(_active, _path_points_count, _path_points_max, action, point);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
// returns true if the two loops overlap (used within add_loop to determine which loops to keep or throw away)
|
|
bool AP_SmartRTL::loops_overlap(const prune_loop_t &loop1, const prune_loop_t &loop2) const
|
|
{
|
|
// check if loop1 within loop2
|
|
if (loop1.start_index >= loop2.start_index && loop1.end_index <= loop2.end_index) {
|
|
return true;
|
|
}
|
|
// check if loop2 within loop1
|
|
if (loop2.start_index >= loop1.start_index && loop2.end_index <= loop1.end_index) {
|
|
return true;
|
|
}
|
|
// check for partial overlap (loop1's start OR end point is within loop2)
|
|
const bool loop1_start_in_loop2 = (loop1.start_index >= loop2.start_index) && (loop1.start_index <= loop2.end_index);
|
|
const bool loop1_end_in_loop2 = (loop1.end_index >= loop2.start_index) && (loop1.end_index <= loop2.end_index);
|
|
if (loop1_start_in_loop2 != loop1_end_in_loop2) {
|
|
return true;
|
|
}
|
|
// if we got here, no overlap
|
|
return false;
|
|
}
|
|
|
|
// returns true if pilot's yaw input should be used to adjust vehicle's heading
|
|
bool AP_SmartRTL::use_pilot_yaw(void) const
|
|
{
|
|
return (_options.get() & uint32_t(Options::IgnorePilotYaw)) == 0;
|
|
}
|
|
|