mirror of
https://github.com/ArduPilot/ardupilot
synced 2025-01-04 15:08:28 -04:00
2ba9a04bf5
@Description: This parameter reduces the pitch minimum limit of an auto-takeoff just a few seconds before it reaches the target altitude. This reduces overshoot by allowing the flight controller to start leveling off a few seconds before reaching the target height. When set to zero, the mission pitch min is enforced all the way to and through the target altitude, otherwise the pitch min slowly reduces to zero in the final segment. This is the pitch_min, not the demand. The flight controller should still be commanding to gain altitude to finish the takeoff but with this param it is not forcing it higher than it wants to be. (+1 squashed commits)
993 lines
30 KiB
C++
993 lines
30 KiB
C++
/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
|
|
|
|
/*
|
|
Lead developer: Andrew Tridgell
|
|
|
|
Authors: Doug Weibel, Jose Julio, Jordi Munoz, Jason Short, Randy Mackay, Pat Hickey, John Arne Birkeland, Olivier Adler, Amilcar Lucas, Gregory Fletcher, Paul Riseborough, Brandon Jones, Jon Challinger
|
|
Thanks to: Chris Anderson, Michael Oborne, Paul Mather, Bill Premerlani, James Cohen, JB from rotorFX, Automatik, Fefenin, Peter Meister, Remzibi, Yury Smirnov, Sandro Benigno, Max Levine, Roberto Navoni, Lorenz Meier, Yury MonZon
|
|
|
|
Please contribute your ideas! See http://dev.ardupilot.com for details
|
|
|
|
This program is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include "Plane.h"
|
|
|
|
#define SCHED_TASK(func, rate_hz, max_time_micros) SCHED_TASK_CLASS(Plane, &plane, func, rate_hz, max_time_micros)
|
|
|
|
|
|
/*
|
|
scheduler table - all regular tasks are listed here, along with how
|
|
often they should be called (in Hz) and the maximum time
|
|
they are expected to take (in microseconds)
|
|
*/
|
|
const AP_Scheduler::Task Plane::scheduler_tasks[] = {
|
|
// Units: Hz us
|
|
SCHED_TASK(ahrs_update, 400, 400),
|
|
SCHED_TASK(read_radio, 50, 100),
|
|
SCHED_TASK(check_short_failsafe, 50, 100),
|
|
SCHED_TASK(update_speed_height, 50, 200),
|
|
SCHED_TASK(update_flight_mode, 400, 100),
|
|
SCHED_TASK(stabilize, 400, 100),
|
|
SCHED_TASK(set_servos, 400, 100),
|
|
SCHED_TASK(read_control_switch, 7, 100),
|
|
SCHED_TASK(gcs_retry_deferred, 50, 500),
|
|
SCHED_TASK(update_GPS_50Hz, 50, 300),
|
|
SCHED_TASK(update_GPS_10Hz, 10, 400),
|
|
SCHED_TASK(navigate, 10, 150),
|
|
SCHED_TASK(update_compass, 10, 200),
|
|
SCHED_TASK(read_airspeed, 10, 100),
|
|
SCHED_TASK(update_alt, 10, 200),
|
|
SCHED_TASK(adjust_altitude_target, 10, 200),
|
|
SCHED_TASK(obc_fs_check, 10, 100),
|
|
SCHED_TASK(gcs_update, 50, 500),
|
|
SCHED_TASK(gcs_data_stream_send, 50, 500),
|
|
SCHED_TASK(update_events, 50, 150),
|
|
SCHED_TASK(check_usb_mux, 10, 100),
|
|
SCHED_TASK(read_battery, 10, 300),
|
|
SCHED_TASK(compass_accumulate, 50, 200),
|
|
SCHED_TASK(barometer_accumulate, 50, 150),
|
|
SCHED_TASK(update_notify, 50, 300),
|
|
SCHED_TASK(read_rangefinder, 50, 100),
|
|
SCHED_TASK(compass_cal_update, 50, 50),
|
|
SCHED_TASK(accel_cal_update, 10, 50),
|
|
#if OPTFLOW == ENABLED
|
|
SCHED_TASK(update_optical_flow, 50, 50),
|
|
#endif
|
|
SCHED_TASK(one_second_loop, 1, 400),
|
|
SCHED_TASK(check_long_failsafe, 3, 400),
|
|
SCHED_TASK(read_receiver_rssi, 10, 100),
|
|
SCHED_TASK(rpm_update, 10, 100),
|
|
SCHED_TASK(airspeed_ratio_update, 1, 100),
|
|
SCHED_TASK(update_mount, 50, 100),
|
|
SCHED_TASK(update_trigger, 50, 100),
|
|
SCHED_TASK(log_perf_info, 0.2, 100),
|
|
SCHED_TASK(compass_save, 0.016, 200),
|
|
SCHED_TASK(update_logging1, 10, 300),
|
|
SCHED_TASK(update_logging2, 10, 300),
|
|
SCHED_TASK(parachute_check, 10, 200),
|
|
#if FRSKY_TELEM_ENABLED == ENABLED
|
|
SCHED_TASK(frsky_telemetry_send, 5, 100),
|
|
#endif
|
|
SCHED_TASK(terrain_update, 10, 200),
|
|
SCHED_TASK(update_is_flying_5Hz, 5, 100),
|
|
SCHED_TASK(dataflash_periodic, 50, 400),
|
|
SCHED_TASK(adsb_update, 1, 400),
|
|
};
|
|
|
|
void Plane::setup()
|
|
{
|
|
cliSerial = hal.console;
|
|
|
|
// load the default values of variables listed in var_info[]
|
|
AP_Param::setup_sketch_defaults();
|
|
|
|
AP_Notify::flags.failsafe_battery = false;
|
|
|
|
notify.init(false);
|
|
|
|
rssi.init();
|
|
|
|
init_ardupilot();
|
|
|
|
// initialise the main loop scheduler
|
|
scheduler.init(&scheduler_tasks[0], ARRAY_SIZE(scheduler_tasks));
|
|
}
|
|
|
|
void Plane::loop()
|
|
{
|
|
uint32_t loop_us = 1000000UL / scheduler.get_loop_rate_hz();
|
|
|
|
// wait for an INS sample
|
|
ins.wait_for_sample();
|
|
|
|
uint32_t timer = micros();
|
|
|
|
perf.delta_us_fast_loop = timer - perf.fast_loopTimer_us;
|
|
G_Dt = perf.delta_us_fast_loop * 1.0e-6f;
|
|
|
|
if (perf.delta_us_fast_loop > loop_us + 500) {
|
|
perf.num_long++;
|
|
}
|
|
|
|
if (perf.delta_us_fast_loop > perf.G_Dt_max && perf.fast_loopTimer_us != 0) {
|
|
perf.G_Dt_max = perf.delta_us_fast_loop;
|
|
}
|
|
|
|
if (perf.delta_us_fast_loop < perf.G_Dt_min || perf.G_Dt_min == 0) {
|
|
perf.G_Dt_min = perf.delta_us_fast_loop;
|
|
}
|
|
perf.fast_loopTimer_us = timer;
|
|
|
|
perf.mainLoop_count++;
|
|
|
|
// tell the scheduler one tick has passed
|
|
scheduler.tick();
|
|
|
|
// run all the tasks that are due to run. Note that we only
|
|
// have to call this once per loop, as the tasks are scheduled
|
|
// in multiples of the main loop tick. So if they don't run on
|
|
// the first call to the scheduler they won't run on a later
|
|
// call until scheduler.tick() is called again
|
|
scheduler.run(loop_us);
|
|
}
|
|
|
|
// update AHRS system
|
|
void Plane::ahrs_update()
|
|
{
|
|
hal.util->set_soft_armed(arming.is_armed() &&
|
|
hal.util->safety_switch_state() != AP_HAL::Util::SAFETY_DISARMED);
|
|
|
|
#if HIL_SUPPORT
|
|
if (g.hil_mode == 1) {
|
|
// update hil before AHRS update
|
|
gcs_update();
|
|
}
|
|
#endif
|
|
|
|
ahrs.update();
|
|
|
|
if (should_log(MASK_LOG_ATTITUDE_FAST)) {
|
|
Log_Write_Attitude();
|
|
}
|
|
|
|
if (should_log(MASK_LOG_IMU)) {
|
|
Log_Write_IMU();
|
|
DataFlash.Log_Write_IMUDT(ins);
|
|
}
|
|
|
|
// calculate a scaled roll limit based on current pitch
|
|
roll_limit_cd = g.roll_limit_cd * cosf(ahrs.pitch);
|
|
pitch_limit_min_cd = aparm.pitch_limit_min_cd * fabsf(cosf(ahrs.roll));
|
|
|
|
// updated the summed gyro used for ground steering and
|
|
// auto-takeoff. Dot product of DCM.c with gyro vector gives earth
|
|
// frame yaw rate
|
|
steer_state.locked_course_err += ahrs.get_yaw_rate_earth() * G_Dt;
|
|
steer_state.locked_course_err = wrap_PI(steer_state.locked_course_err);
|
|
|
|
// update inertial_nav for quadplane
|
|
quadplane.inertial_nav.update(G_Dt);
|
|
}
|
|
|
|
/*
|
|
update 50Hz speed/height controller
|
|
*/
|
|
void Plane::update_speed_height(void)
|
|
{
|
|
if (auto_throttle_mode) {
|
|
// Call TECS 50Hz update. Note that we call this regardless of
|
|
// throttle suppressed, as this needs to be running for
|
|
// takeoff detection
|
|
SpdHgt_Controller->update_50hz();
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
update camera mount
|
|
*/
|
|
void Plane::update_mount(void)
|
|
{
|
|
#if MOUNT == ENABLED
|
|
camera_mount.update();
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
update camera trigger
|
|
*/
|
|
void Plane::update_trigger(void)
|
|
{
|
|
#if CAMERA == ENABLED
|
|
camera.trigger_pic_cleanup();
|
|
if (camera.check_trigger_pin()) {
|
|
gcs_send_message(MSG_CAMERA_FEEDBACK);
|
|
if (should_log(MASK_LOG_CAMERA)) {
|
|
DataFlash.Log_Write_Camera(ahrs, gps, current_loc);
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
read and update compass
|
|
*/
|
|
void Plane::update_compass(void)
|
|
{
|
|
if (g.compass_enabled && compass.read()) {
|
|
ahrs.set_compass(&compass);
|
|
compass.learn_offsets();
|
|
if (should_log(MASK_LOG_COMPASS)) {
|
|
DataFlash.Log_Write_Compass(compass);
|
|
}
|
|
} else {
|
|
ahrs.set_compass(NULL);
|
|
}
|
|
}
|
|
|
|
/*
|
|
if the compass is enabled then try to accumulate a reading
|
|
*/
|
|
void Plane::compass_accumulate(void)
|
|
{
|
|
if (g.compass_enabled) {
|
|
compass.accumulate();
|
|
}
|
|
}
|
|
|
|
/*
|
|
try to accumulate a baro reading
|
|
*/
|
|
void Plane::barometer_accumulate(void)
|
|
{
|
|
barometer.accumulate();
|
|
}
|
|
|
|
/*
|
|
do 10Hz logging
|
|
*/
|
|
void Plane::update_logging1(void)
|
|
{
|
|
if (should_log(MASK_LOG_ATTITUDE_MED) && !should_log(MASK_LOG_ATTITUDE_FAST)) {
|
|
Log_Write_Attitude();
|
|
}
|
|
|
|
if (should_log(MASK_LOG_ATTITUDE_MED) && !should_log(MASK_LOG_IMU))
|
|
Log_Write_IMU();
|
|
}
|
|
|
|
/*
|
|
do 10Hz logging - part2
|
|
*/
|
|
void Plane::update_logging2(void)
|
|
{
|
|
if (should_log(MASK_LOG_CTUN))
|
|
Log_Write_Control_Tuning();
|
|
|
|
if (should_log(MASK_LOG_NTUN))
|
|
Log_Write_Nav_Tuning();
|
|
|
|
if (should_log(MASK_LOG_RC))
|
|
Log_Write_RC();
|
|
|
|
if (should_log(MASK_LOG_IMU))
|
|
DataFlash.Log_Write_Vibration(ins);
|
|
}
|
|
|
|
|
|
/*
|
|
check for OBC failsafe check
|
|
*/
|
|
void Plane::obc_fs_check(void)
|
|
{
|
|
#if OBC_FAILSAFE == ENABLED
|
|
// perform OBC failsafe checks
|
|
obc.check(OBC_MODE(control_mode), failsafe.last_heartbeat_ms, geofence_breached(), failsafe.last_valid_rc_ms);
|
|
#endif
|
|
}
|
|
|
|
|
|
/*
|
|
update aux servo mappings
|
|
*/
|
|
void Plane::update_aux(void)
|
|
{
|
|
RC_Channel_aux::enable_aux_servos();
|
|
}
|
|
|
|
void Plane::one_second_loop()
|
|
{
|
|
// send a heartbeat
|
|
gcs_send_message(MSG_HEARTBEAT);
|
|
|
|
// make it possible to change control channel ordering at runtime
|
|
set_control_channels();
|
|
|
|
// make it possible to change orientation at runtime
|
|
ahrs.set_orientation();
|
|
|
|
// sync MAVLink system ID
|
|
mavlink_system.sysid = g.sysid_this_mav;
|
|
|
|
update_aux();
|
|
|
|
// update notify flags
|
|
AP_Notify::flags.pre_arm_check = arming.pre_arm_checks(false);
|
|
AP_Notify::flags.pre_arm_gps_check = true;
|
|
AP_Notify::flags.armed = arming.is_armed() || arming.arming_required() == AP_Arming::NO;
|
|
|
|
#if AP_TERRAIN_AVAILABLE
|
|
if (should_log(MASK_LOG_GPS)) {
|
|
terrain.log_terrain_data(DataFlash);
|
|
}
|
|
#endif
|
|
|
|
ins.set_raw_logging(should_log(MASK_LOG_IMU_RAW));
|
|
}
|
|
|
|
void Plane::log_perf_info()
|
|
{
|
|
if (scheduler.debug() != 0) {
|
|
gcs_send_text_fmt(MAV_SEVERITY_INFO, "PERF: %u/%u Dt=%u/%u Log=%u\n",
|
|
(unsigned)perf.num_long,
|
|
(unsigned)perf.mainLoop_count,
|
|
(unsigned)perf.G_Dt_max,
|
|
(unsigned)perf.G_Dt_min,
|
|
(unsigned)(DataFlash.num_dropped() - perf.last_log_dropped));
|
|
}
|
|
|
|
if (should_log(MASK_LOG_PM)) {
|
|
Log_Write_Performance();
|
|
}
|
|
|
|
resetPerfData();
|
|
}
|
|
|
|
void Plane::compass_save()
|
|
{
|
|
if (g.compass_enabled) {
|
|
compass.save_offsets();
|
|
}
|
|
}
|
|
|
|
void Plane::terrain_update(void)
|
|
{
|
|
#if AP_TERRAIN_AVAILABLE
|
|
terrain.update();
|
|
#endif
|
|
}
|
|
|
|
|
|
void Plane::dataflash_periodic(void)
|
|
{
|
|
DataFlash.periodic_tasks();
|
|
}
|
|
|
|
/*
|
|
once a second update the airspeed calibration ratio
|
|
*/
|
|
void Plane::airspeed_ratio_update(void)
|
|
{
|
|
if (!airspeed.enabled() ||
|
|
gps.status() < AP_GPS::GPS_OK_FIX_3D ||
|
|
gps.ground_speed() < 4) {
|
|
// don't calibrate when not moving
|
|
return;
|
|
}
|
|
if (airspeed.get_airspeed() < aparm.airspeed_min &&
|
|
gps.ground_speed() < (uint32_t)aparm.airspeed_min) {
|
|
// don't calibrate when flying below the minimum airspeed. We
|
|
// check both airspeed and ground speed to catch cases where
|
|
// the airspeed ratio is way too low, which could lead to it
|
|
// never coming up again
|
|
return;
|
|
}
|
|
if (labs(ahrs.roll_sensor) > roll_limit_cd ||
|
|
ahrs.pitch_sensor > aparm.pitch_limit_max_cd ||
|
|
ahrs.pitch_sensor < pitch_limit_min_cd) {
|
|
// don't calibrate when going beyond normal flight envelope
|
|
return;
|
|
}
|
|
const Vector3f &vg = gps.velocity();
|
|
airspeed.update_calibration(vg);
|
|
gcs_send_airspeed_calibration(vg);
|
|
}
|
|
|
|
|
|
/*
|
|
read the GPS and update position
|
|
*/
|
|
void Plane::update_GPS_50Hz(void)
|
|
{
|
|
// get position from AHRS
|
|
have_position = ahrs.get_position(current_loc);
|
|
|
|
static uint32_t last_gps_reading[GPS_MAX_INSTANCES];
|
|
gps.update();
|
|
|
|
for (uint8_t i=0; i<gps.num_sensors(); i++) {
|
|
if (gps.last_message_time_ms(i) != last_gps_reading[i]) {
|
|
last_gps_reading[i] = gps.last_message_time_ms(i);
|
|
if (should_log(MASK_LOG_GPS)) {
|
|
Log_Write_GPS(i);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
read update GPS position - 10Hz update
|
|
*/
|
|
void Plane::update_GPS_10Hz(void)
|
|
{
|
|
static uint32_t last_gps_msg_ms;
|
|
if (gps.last_message_time_ms() != last_gps_msg_ms && gps.status() >= AP_GPS::GPS_OK_FIX_3D) {
|
|
last_gps_msg_ms = gps.last_message_time_ms();
|
|
|
|
if (ground_start_count > 1) {
|
|
ground_start_count--;
|
|
} else if (ground_start_count == 1) {
|
|
// We countdown N number of good GPS fixes
|
|
// so that the altitude is more accurate
|
|
// -------------------------------------
|
|
if (current_loc.lat == 0) {
|
|
ground_start_count = 5;
|
|
|
|
} else {
|
|
init_home();
|
|
|
|
// set system clock for log timestamps
|
|
hal.util->set_system_clock(gps.time_epoch_usec());
|
|
|
|
if (g.compass_enabled) {
|
|
// Set compass declination automatically
|
|
const Location &loc = gps.location();
|
|
compass.set_initial_location(loc.lat, loc.lng);
|
|
}
|
|
ground_start_count = 0;
|
|
}
|
|
}
|
|
|
|
// see if we've breached the geo-fence
|
|
geofence_check(false);
|
|
|
|
#if CAMERA == ENABLED
|
|
if (camera.update_location(current_loc, plane.ahrs ) == true) {
|
|
do_take_picture();
|
|
}
|
|
#endif
|
|
|
|
if (!hal.util->get_soft_armed()) {
|
|
update_home();
|
|
}
|
|
|
|
// update wind estimate
|
|
ahrs.estimate_wind();
|
|
}
|
|
|
|
calc_gndspeed_undershoot();
|
|
}
|
|
|
|
/*
|
|
main handling for AUTO mode
|
|
*/
|
|
void Plane::handle_auto_mode(void)
|
|
{
|
|
uint8_t nav_cmd_id;
|
|
|
|
// we should be either running a mission or RTLing home
|
|
if (mission.state() == AP_Mission::MISSION_RUNNING) {
|
|
nav_cmd_id = mission.get_current_nav_cmd().id;
|
|
}else{
|
|
nav_cmd_id = auto_rtl_command.id;
|
|
}
|
|
|
|
if (quadplane.in_vtol_auto()) {
|
|
quadplane.control_auto(next_WP_loc);
|
|
} else if (nav_cmd_id == MAV_CMD_NAV_TAKEOFF ||
|
|
(nav_cmd_id == MAV_CMD_NAV_LAND && flight_stage == AP_SpdHgtControl::FLIGHT_LAND_ABORT)) {
|
|
takeoff_calc_roll();
|
|
takeoff_calc_pitch();
|
|
calc_throttle();
|
|
} else if (nav_cmd_id == MAV_CMD_NAV_LAND) {
|
|
calc_nav_roll();
|
|
calc_nav_pitch();
|
|
|
|
if (auto_state.land_complete) {
|
|
// during final approach constrain roll to the range
|
|
// allowed for level flight
|
|
nav_roll_cd = constrain_int32(nav_roll_cd, -g.level_roll_limit*100UL, g.level_roll_limit*100UL);
|
|
}
|
|
calc_throttle();
|
|
|
|
if (auto_state.land_complete) {
|
|
// we are in the final stage of a landing - force
|
|
// zero throttle
|
|
channel_throttle->servo_out = 0;
|
|
}
|
|
} else {
|
|
// we are doing normal AUTO flight, the special cases
|
|
// are for takeoff and landing
|
|
if (nav_cmd_id != MAV_CMD_NAV_CONTINUE_AND_CHANGE_ALT) {
|
|
steer_state.hold_course_cd = -1;
|
|
}
|
|
auto_state.land_complete = false;
|
|
auto_state.land_pre_flare = false;
|
|
calc_nav_roll();
|
|
calc_nav_pitch();
|
|
calc_throttle();
|
|
}
|
|
}
|
|
|
|
/*
|
|
main flight mode dependent update code
|
|
*/
|
|
void Plane::update_flight_mode(void)
|
|
{
|
|
enum FlightMode effective_mode = control_mode;
|
|
if (control_mode == AUTO && g.auto_fbw_steer == 42) {
|
|
effective_mode = FLY_BY_WIRE_A;
|
|
}
|
|
|
|
if (effective_mode != AUTO) {
|
|
// hold_course is only used in takeoff and landing
|
|
steer_state.hold_course_cd = -1;
|
|
}
|
|
|
|
// ensure we are fly-forward
|
|
if (quadplane.in_vtol_mode()) {
|
|
ahrs.set_fly_forward(false);
|
|
} else {
|
|
ahrs.set_fly_forward(true);
|
|
}
|
|
|
|
switch (effective_mode)
|
|
{
|
|
case AUTO:
|
|
handle_auto_mode();
|
|
break;
|
|
|
|
case RTL:
|
|
case LOITER:
|
|
case GUIDED:
|
|
calc_nav_roll();
|
|
calc_nav_pitch();
|
|
calc_throttle();
|
|
break;
|
|
|
|
case TRAINING: {
|
|
training_manual_roll = false;
|
|
training_manual_pitch = false;
|
|
update_load_factor();
|
|
|
|
// if the roll is past the set roll limit, then
|
|
// we set target roll to the limit
|
|
if (ahrs.roll_sensor >= roll_limit_cd) {
|
|
nav_roll_cd = roll_limit_cd;
|
|
} else if (ahrs.roll_sensor <= -roll_limit_cd) {
|
|
nav_roll_cd = -roll_limit_cd;
|
|
} else {
|
|
training_manual_roll = true;
|
|
nav_roll_cd = 0;
|
|
}
|
|
|
|
// if the pitch is past the set pitch limits, then
|
|
// we set target pitch to the limit
|
|
if (ahrs.pitch_sensor >= aparm.pitch_limit_max_cd) {
|
|
nav_pitch_cd = aparm.pitch_limit_max_cd;
|
|
} else if (ahrs.pitch_sensor <= pitch_limit_min_cd) {
|
|
nav_pitch_cd = pitch_limit_min_cd;
|
|
} else {
|
|
training_manual_pitch = true;
|
|
nav_pitch_cd = 0;
|
|
}
|
|
if (fly_inverted()) {
|
|
nav_pitch_cd = -nav_pitch_cd;
|
|
}
|
|
break;
|
|
}
|
|
|
|
case ACRO: {
|
|
// handle locked/unlocked control
|
|
if (acro_state.locked_roll) {
|
|
nav_roll_cd = acro_state.locked_roll_err;
|
|
} else {
|
|
nav_roll_cd = ahrs.roll_sensor;
|
|
}
|
|
if (acro_state.locked_pitch) {
|
|
nav_pitch_cd = acro_state.locked_pitch_cd;
|
|
} else {
|
|
nav_pitch_cd = ahrs.pitch_sensor;
|
|
}
|
|
break;
|
|
}
|
|
|
|
case AUTOTUNE:
|
|
case FLY_BY_WIRE_A: {
|
|
// set nav_roll and nav_pitch using sticks
|
|
nav_roll_cd = channel_roll->norm_input() * roll_limit_cd;
|
|
nav_roll_cd = constrain_int32(nav_roll_cd, -roll_limit_cd, roll_limit_cd);
|
|
update_load_factor();
|
|
float pitch_input = channel_pitch->norm_input();
|
|
if (pitch_input > 0) {
|
|
nav_pitch_cd = pitch_input * aparm.pitch_limit_max_cd;
|
|
} else {
|
|
nav_pitch_cd = -(pitch_input * pitch_limit_min_cd);
|
|
}
|
|
adjust_nav_pitch_throttle();
|
|
nav_pitch_cd = constrain_int32(nav_pitch_cd, pitch_limit_min_cd, aparm.pitch_limit_max_cd.get());
|
|
if (fly_inverted()) {
|
|
nav_pitch_cd = -nav_pitch_cd;
|
|
}
|
|
if (failsafe.ch3_failsafe && g.short_fs_action == 2) {
|
|
// FBWA failsafe glide
|
|
nav_roll_cd = 0;
|
|
nav_pitch_cd = 0;
|
|
channel_throttle->servo_out = 0;
|
|
}
|
|
if (g.fbwa_tdrag_chan > 0) {
|
|
// check for the user enabling FBWA taildrag takeoff mode
|
|
bool tdrag_mode = (hal.rcin->read(g.fbwa_tdrag_chan-1) > 1700);
|
|
if (tdrag_mode && !auto_state.fbwa_tdrag_takeoff_mode) {
|
|
if (auto_state.highest_airspeed < g.takeoff_tdrag_speed1) {
|
|
auto_state.fbwa_tdrag_takeoff_mode = true;
|
|
gcs_send_text(MAV_SEVERITY_WARNING, "FBWA tdrag mode");
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
|
|
case FLY_BY_WIRE_B:
|
|
// Thanks to Yury MonZon for the altitude limit code!
|
|
nav_roll_cd = channel_roll->norm_input() * roll_limit_cd;
|
|
nav_roll_cd = constrain_int32(nav_roll_cd, -roll_limit_cd, roll_limit_cd);
|
|
update_load_factor();
|
|
update_fbwb_speed_height();
|
|
break;
|
|
|
|
case CRUISE:
|
|
/*
|
|
in CRUISE mode we use the navigation code to control
|
|
roll when heading is locked. Heading becomes unlocked on
|
|
any aileron or rudder input
|
|
*/
|
|
if ((channel_roll->control_in != 0 ||
|
|
rudder_input != 0)) {
|
|
cruise_state.locked_heading = false;
|
|
cruise_state.lock_timer_ms = 0;
|
|
}
|
|
|
|
if (!cruise_state.locked_heading) {
|
|
nav_roll_cd = channel_roll->norm_input() * roll_limit_cd;
|
|
nav_roll_cd = constrain_int32(nav_roll_cd, -roll_limit_cd, roll_limit_cd);
|
|
update_load_factor();
|
|
} else {
|
|
calc_nav_roll();
|
|
}
|
|
update_fbwb_speed_height();
|
|
break;
|
|
|
|
case STABILIZE:
|
|
nav_roll_cd = 0;
|
|
nav_pitch_cd = 0;
|
|
// throttle is passthrough
|
|
break;
|
|
|
|
case CIRCLE:
|
|
// we have no GPS installed and have lost radio contact
|
|
// or we just want to fly around in a gentle circle w/o GPS,
|
|
// holding altitude at the altitude we set when we
|
|
// switched into the mode
|
|
nav_roll_cd = roll_limit_cd / 3;
|
|
update_load_factor();
|
|
calc_nav_pitch();
|
|
calc_throttle();
|
|
break;
|
|
|
|
case MANUAL:
|
|
// servo_out is for Sim control only
|
|
// ---------------------------------
|
|
channel_roll->servo_out = channel_roll->pwm_to_angle();
|
|
channel_pitch->servo_out = channel_pitch->pwm_to_angle();
|
|
steering_control.steering = steering_control.rudder = channel_rudder->pwm_to_angle();
|
|
break;
|
|
//roll: -13788.000, pitch: -13698.000, thr: 0.000, rud: -13742.000
|
|
|
|
|
|
case QSTABILIZE:
|
|
case QHOVER:
|
|
case QLOITER:
|
|
case QLAND: {
|
|
// set nav_roll and nav_pitch using sticks
|
|
nav_roll_cd = channel_roll->norm_input() * roll_limit_cd;
|
|
nav_roll_cd = constrain_int32(nav_roll_cd, -roll_limit_cd, roll_limit_cd);
|
|
float pitch_input = channel_pitch->norm_input();
|
|
if (pitch_input > 0) {
|
|
nav_pitch_cd = pitch_input * aparm.pitch_limit_max_cd;
|
|
} else {
|
|
nav_pitch_cd = -(pitch_input * pitch_limit_min_cd);
|
|
}
|
|
nav_pitch_cd = constrain_int32(nav_pitch_cd, pitch_limit_min_cd, aparm.pitch_limit_max_cd.get());
|
|
break;
|
|
}
|
|
|
|
case INITIALISING:
|
|
// handled elsewhere
|
|
break;
|
|
}
|
|
}
|
|
|
|
void Plane::update_navigation()
|
|
{
|
|
// wp_distance is in ACTUAL meters, not the *100 meters we get from the GPS
|
|
// ------------------------------------------------------------------------
|
|
|
|
uint16_t radius = 0;
|
|
|
|
switch(control_mode) {
|
|
case AUTO:
|
|
update_commands();
|
|
break;
|
|
|
|
case RTL:
|
|
if (g.rtl_autoland == 1 &&
|
|
!auto_state.checked_for_autoland &&
|
|
nav_controller->reached_loiter_target() &&
|
|
labs(altitude_error_cm) < 1000) {
|
|
// we've reached the RTL point, see if we have a landing sequence
|
|
jump_to_landing_sequence();
|
|
|
|
// prevent running the expensive jump_to_landing_sequence
|
|
// on every loop
|
|
auto_state.checked_for_autoland = true;
|
|
}
|
|
else if (g.rtl_autoland == 2 &&
|
|
!auto_state.checked_for_autoland) {
|
|
// Go directly to the landing sequence
|
|
jump_to_landing_sequence();
|
|
|
|
// prevent running the expensive jump_to_landing_sequence
|
|
// on every loop
|
|
auto_state.checked_for_autoland = true;
|
|
}
|
|
radius = abs(g.rtl_radius);
|
|
if (radius > 0) {
|
|
loiter.direction = (g.rtl_radius < 0) ? -1 : 1;
|
|
}
|
|
// fall through to LOITER
|
|
|
|
case LOITER:
|
|
case GUIDED:
|
|
update_loiter(radius);
|
|
break;
|
|
|
|
case CRUISE:
|
|
update_cruise();
|
|
break;
|
|
|
|
case MANUAL:
|
|
case STABILIZE:
|
|
case TRAINING:
|
|
case INITIALISING:
|
|
case ACRO:
|
|
case FLY_BY_WIRE_A:
|
|
case AUTOTUNE:
|
|
case FLY_BY_WIRE_B:
|
|
case CIRCLE:
|
|
case QSTABILIZE:
|
|
case QHOVER:
|
|
case QLOITER:
|
|
case QLAND:
|
|
// nothing to do
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
set the flight stage
|
|
*/
|
|
void Plane::set_flight_stage(AP_SpdHgtControl::FlightStage fs)
|
|
{
|
|
if (fs == flight_stage) {
|
|
return;
|
|
}
|
|
|
|
switch (fs) {
|
|
case AP_SpdHgtControl::FLIGHT_LAND_APPROACH:
|
|
gcs_send_text_fmt(MAV_SEVERITY_INFO, "Landing approach start at %.1fm", (double)relative_altitude());
|
|
#if GEOFENCE_ENABLED == ENABLED
|
|
if (g.fence_autoenable == 1) {
|
|
if (! geofence_set_enabled(false, AUTO_TOGGLED)) {
|
|
gcs_send_text(MAV_SEVERITY_NOTICE, "Disable fence failed (autodisable)");
|
|
} else {
|
|
gcs_send_text(MAV_SEVERITY_NOTICE, "Fence disabled (autodisable)");
|
|
}
|
|
} else if (g.fence_autoenable == 2) {
|
|
if (! geofence_set_floor_enabled(false)) {
|
|
gcs_send_text(MAV_SEVERITY_NOTICE, "Disable fence floor failed (autodisable)");
|
|
} else {
|
|
gcs_send_text(MAV_SEVERITY_NOTICE, "Fence floor disabled (auto disable)");
|
|
}
|
|
}
|
|
#endif
|
|
break;
|
|
|
|
case AP_SpdHgtControl::FLIGHT_LAND_ABORT:
|
|
gcs_send_text_fmt(MAV_SEVERITY_NOTICE, "Landing aborted via throttle. Climbing to %dm", auto_state.takeoff_altitude_rel_cm/100);
|
|
break;
|
|
|
|
case AP_SpdHgtControl::FLIGHT_LAND_PREFLARE:
|
|
case AP_SpdHgtControl::FLIGHT_LAND_FINAL:
|
|
case AP_SpdHgtControl::FLIGHT_NORMAL:
|
|
case AP_SpdHgtControl::FLIGHT_VTOL:
|
|
case AP_SpdHgtControl::FLIGHT_TAKEOFF:
|
|
break;
|
|
}
|
|
|
|
|
|
flight_stage = fs;
|
|
|
|
if (should_log(MASK_LOG_MODE)) {
|
|
Log_Write_Status();
|
|
}
|
|
}
|
|
|
|
void Plane::update_alt()
|
|
{
|
|
barometer.update();
|
|
if (should_log(MASK_LOG_IMU)) {
|
|
Log_Write_Baro();
|
|
}
|
|
|
|
// calculate the sink rate.
|
|
float sink_rate;
|
|
Vector3f vel;
|
|
if (ahrs.get_velocity_NED(vel)) {
|
|
sink_rate = vel.z;
|
|
} else if (gps.status() >= AP_GPS::GPS_OK_FIX_3D && gps.have_vertical_velocity()) {
|
|
sink_rate = gps.velocity().z;
|
|
} else {
|
|
sink_rate = -barometer.get_climb_rate();
|
|
}
|
|
|
|
// low pass the sink rate to take some of the noise out
|
|
auto_state.sink_rate = 0.8f * auto_state.sink_rate + 0.2f*sink_rate;
|
|
|
|
geofence_check(true);
|
|
|
|
update_flight_stage();
|
|
|
|
if (auto_throttle_mode && !throttle_suppressed) {
|
|
|
|
bool is_doing_auto_land = false;
|
|
float distance_beyond_land_wp = 0;
|
|
|
|
switch (flight_stage) {
|
|
case AP_SpdHgtControl::FLIGHT_LAND_APPROACH:
|
|
case AP_SpdHgtControl::FLIGHT_LAND_PREFLARE:
|
|
case AP_SpdHgtControl::FLIGHT_LAND_FINAL:
|
|
is_doing_auto_land = true;
|
|
if (location_passed_point(current_loc, prev_WP_loc, next_WP_loc)) {
|
|
distance_beyond_land_wp = get_distance(current_loc, next_WP_loc);
|
|
}
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
SpdHgt_Controller->update_pitch_throttle(relative_target_altitude_cm(),
|
|
target_airspeed_cm,
|
|
flight_stage,
|
|
is_doing_auto_land,
|
|
distance_beyond_land_wp,
|
|
get_takeoff_pitch_min_cd(),
|
|
throttle_nudge,
|
|
tecs_hgt_afe(),
|
|
aerodynamic_load_factor);
|
|
if (should_log(MASK_LOG_TECS)) {
|
|
Log_Write_TECS_Tuning();
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
recalculate the flight_stage
|
|
*/
|
|
void Plane::update_flight_stage(void)
|
|
{
|
|
// Update the speed & height controller states
|
|
if (auto_throttle_mode && !throttle_suppressed) {
|
|
if (control_mode==AUTO) {
|
|
if (quadplane.in_vtol_auto()) {
|
|
set_flight_stage(AP_SpdHgtControl::FLIGHT_VTOL);
|
|
} else if (auto_state.takeoff_complete == false) {
|
|
set_flight_stage(AP_SpdHgtControl::FLIGHT_TAKEOFF);
|
|
} else if (mission.get_current_nav_cmd().id == MAV_CMD_NAV_LAND) {
|
|
|
|
if ((g.land_abort_throttle_enable && channel_throttle->control_in >= 90) ||
|
|
auto_state.commanded_go_around ||
|
|
flight_stage == AP_SpdHgtControl::FLIGHT_LAND_ABORT){
|
|
// abort mode is sticky, it must complete while executing NAV_LAND
|
|
set_flight_stage(AP_SpdHgtControl::FLIGHT_LAND_ABORT);
|
|
} else if (auto_state.land_complete == true) {
|
|
set_flight_stage(AP_SpdHgtControl::FLIGHT_LAND_FINAL);
|
|
} else if (auto_state.land_pre_flare == true) {
|
|
set_flight_stage(AP_SpdHgtControl::FLIGHT_LAND_PREFLARE);
|
|
} else if (flight_stage != AP_SpdHgtControl::FLIGHT_LAND_APPROACH) {
|
|
bool heading_lined_up = abs(nav_controller->bearing_error_cd()) < 1000 && !nav_controller->data_is_stale();
|
|
bool on_flight_line = abs(nav_controller->crosstrack_error() < 5) && !nav_controller->data_is_stale();
|
|
bool below_prev_WP = current_loc.alt < prev_WP_loc.alt;
|
|
if ((auto_state.wp_proportion >= 0 && heading_lined_up && on_flight_line) ||
|
|
(auto_state.wp_proportion > 0.15f && heading_lined_up && below_prev_WP) ||
|
|
(auto_state.wp_proportion > 0.5f)) {
|
|
set_flight_stage(AP_SpdHgtControl::FLIGHT_LAND_APPROACH);
|
|
} else {
|
|
set_flight_stage(AP_SpdHgtControl::FLIGHT_NORMAL);
|
|
}
|
|
}
|
|
} else if (quadplane.in_assisted_flight()) {
|
|
set_flight_stage(AP_SpdHgtControl::FLIGHT_VTOL);
|
|
} else {
|
|
set_flight_stage(AP_SpdHgtControl::FLIGHT_NORMAL);
|
|
}
|
|
} else {
|
|
// If not in AUTO then assume normal operation for normal TECS operation.
|
|
// This prevents TECS from being stuck in the wrong stage if you switch from
|
|
// AUTO to, say, FBWB during a landing, an aborted landing or takeoff.
|
|
set_flight_stage(AP_SpdHgtControl::FLIGHT_NORMAL);
|
|
}
|
|
} else if (quadplane.in_vtol_mode() ||
|
|
quadplane.in_assisted_flight()) {
|
|
set_flight_stage(AP_SpdHgtControl::FLIGHT_VTOL);
|
|
} else {
|
|
set_flight_stage(AP_SpdHgtControl::FLIGHT_NORMAL);
|
|
}
|
|
|
|
// tell AHRS the airspeed to true airspeed ratio
|
|
airspeed.set_EAS2TAS(barometer.get_EAS2TAS());
|
|
}
|
|
|
|
|
|
|
|
|
|
#if OPTFLOW == ENABLED
|
|
// called at 50hz
|
|
void Plane::update_optical_flow(void)
|
|
{
|
|
static uint32_t last_of_update = 0;
|
|
|
|
// exit immediately if not enabled
|
|
if (!optflow.enabled()) {
|
|
return;
|
|
}
|
|
|
|
// read from sensor
|
|
optflow.update();
|
|
|
|
// write to log and send to EKF if new data has arrived
|
|
if (optflow.last_update() != last_of_update) {
|
|
last_of_update = optflow.last_update();
|
|
uint8_t flowQuality = optflow.quality();
|
|
Vector2f flowRate = optflow.flowRate();
|
|
Vector2f bodyRate = optflow.bodyRate();
|
|
ahrs.writeOptFlowMeas(flowQuality, flowRate, bodyRate, last_of_update);
|
|
Log_Write_Optflow();
|
|
}
|
|
}
|
|
#endif
|
|
|
|
AP_HAL_MAIN_CALLBACKS(&plane);
|