mirror of
https://github.com/ArduPilot/ardupilot
synced 2025-01-25 01:58:29 -04:00
425 lines
13 KiB
C++
425 lines
13 KiB
C++
/// @file AC_PID.cpp
|
|
/// @brief Generic PID algorithm
|
|
|
|
#include <AP_Math/AP_Math.h>
|
|
#include "AC_PID.h"
|
|
|
|
#define AC_PID_DEFAULT_NOTCH_ATTENUATION 40
|
|
|
|
const AP_Param::GroupInfo AC_PID::var_info[] = {
|
|
// @Param: P
|
|
// @DisplayName: PID Proportional Gain
|
|
// @Description: P Gain which produces an output value that is proportional to the current error value
|
|
AP_GROUPINFO_FLAGS_DEFAULT_POINTER("P", 0, AC_PID, _kp, default_kp),
|
|
|
|
// @Param: I
|
|
// @DisplayName: PID Integral Gain
|
|
// @Description: I Gain which produces an output that is proportional to both the magnitude and the duration of the error
|
|
AP_GROUPINFO_FLAGS_DEFAULT_POINTER("I", 1, AC_PID, _ki, default_ki),
|
|
|
|
// @Param: D
|
|
// @DisplayName: PID Derivative Gain
|
|
// @Description: D Gain which produces an output that is proportional to the rate of change of the error
|
|
AP_GROUPINFO_FLAGS_DEFAULT_POINTER("D", 2, AC_PID, _kd, default_kd),
|
|
|
|
// 3 was for uint16 IMAX
|
|
|
|
// @Param: FF
|
|
// @DisplayName: FF FeedForward Gain
|
|
// @Description: FF Gain which produces an output value that is proportional to the demanded input
|
|
AP_GROUPINFO_FLAGS_DEFAULT_POINTER("FF", 4, AC_PID, _kff, default_kff),
|
|
|
|
// @Param: IMAX
|
|
// @DisplayName: PID Integral Maximum
|
|
// @Description: The maximum/minimum value that the I term can output
|
|
AP_GROUPINFO_FLAGS_DEFAULT_POINTER("IMAX", 5, AC_PID, _kimax, default_kimax),
|
|
|
|
// 6 was for float FILT
|
|
|
|
// 7 is for float ILMI and FF
|
|
|
|
// index 8 was for AFF
|
|
|
|
// @Param: FLTT
|
|
// @DisplayName: PID Target filter frequency in Hz
|
|
// @Description: Target filter frequency in Hz
|
|
// @Units: Hz
|
|
AP_GROUPINFO_FLAGS_DEFAULT_POINTER("FLTT", 9, AC_PID, _filt_T_hz, default_filt_T_hz),
|
|
|
|
// @Param: FLTE
|
|
// @DisplayName: PID Error filter frequency in Hz
|
|
// @Description: Error filter frequency in Hz
|
|
// @Units: Hz
|
|
AP_GROUPINFO_FLAGS_DEFAULT_POINTER("FLTE", 10, AC_PID, _filt_E_hz, default_filt_E_hz),
|
|
|
|
// @Param: FLTD
|
|
// @DisplayName: PID Derivative term filter frequency in Hz
|
|
// @Description: Derivative filter frequency in Hz
|
|
// @Units: Hz
|
|
AP_GROUPINFO_FLAGS_DEFAULT_POINTER("FLTD", 11, AC_PID, _filt_D_hz, default_filt_D_hz),
|
|
|
|
// @Param: SMAX
|
|
// @DisplayName: Slew rate limit
|
|
// @Description: Sets an upper limit on the slew rate produced by the combined P and D gains. If the amplitude of the control action produced by the rate feedback exceeds this value, then the D+P gain is reduced to respect the limit. This limits the amplitude of high frequency oscillations caused by an excessive gain. The limit should be set to no more than 25% of the actuators maximum slew rate to allow for load effects. Note: The gain will not be reduced to less than 10% of the nominal value. A value of zero will disable this feature.
|
|
// @Range: 0 200
|
|
// @Increment: 0.5
|
|
// @User: Advanced
|
|
AP_GROUPINFO_FLAGS_DEFAULT_POINTER("SMAX", 12, AC_PID, _slew_rate_max, default_slew_rate_max),
|
|
|
|
// @Param: PDMX
|
|
// @DisplayName: PD sum maximum
|
|
// @Description: The maximum/minimum value that the sum of the P and D term can output
|
|
// @User: Advanced
|
|
AP_GROUPINFO("PDMX", 13, AC_PID, _kpdmax, 0),
|
|
|
|
// @Param: D_FF
|
|
// @DisplayName: PID Derivative FeedForward Gain
|
|
// @Description: FF D Gain which produces an output that is proportional to the rate of change of the target
|
|
// @Range: 0 0.02
|
|
// @Increment: 0.0001
|
|
// @User: Advanced
|
|
AP_GROUPINFO_FLAGS_DEFAULT_POINTER("D_FF", 14, AC_PID, _kdff, default_kdff),
|
|
|
|
#if AP_FILTER_ENABLED
|
|
// @Param: NTF
|
|
// @DisplayName: PID Target notch filter index
|
|
// @Description: PID Target notch filter index
|
|
// @Range: 1 8
|
|
// @User: Advanced
|
|
AP_GROUPINFO("NTF", 15, AC_PID, _notch_T_filter, 0),
|
|
|
|
// @Param: NEF
|
|
// @DisplayName: PID Error notch filter index
|
|
// @Description: PID Error notch filter index
|
|
// @Range: 1 8
|
|
// @User: Advanced
|
|
AP_GROUPINFO("NEF", 16, AC_PID, _notch_E_filter, 0),
|
|
#endif
|
|
|
|
AP_GROUPEND
|
|
};
|
|
|
|
// Constructor
|
|
AC_PID::AC_PID(float initial_p, float initial_i, float initial_d, float initial_ff, float initial_imax, float initial_filt_T_hz, float initial_filt_E_hz, float initial_filt_D_hz,
|
|
float initial_srmax, float initial_srtau, float initial_dff) :
|
|
default_kp(initial_p),
|
|
default_ki(initial_i),
|
|
default_kd(initial_d),
|
|
default_kff(initial_ff),
|
|
default_kimax(initial_imax),
|
|
default_filt_T_hz(initial_filt_T_hz),
|
|
default_filt_E_hz(initial_filt_E_hz),
|
|
default_filt_D_hz(initial_filt_D_hz),
|
|
default_slew_rate_max(initial_srmax),
|
|
default_kdff(initial_dff)
|
|
{
|
|
// load parameter values from eeprom
|
|
AP_Param::setup_object_defaults(this, var_info);
|
|
|
|
// this param is not in the table, so its default is no loaded in the call above
|
|
_slew_rate_tau.set(initial_srtau);
|
|
|
|
// reset input filter to first value received
|
|
_flags._reset_filter = true;
|
|
|
|
memset(&_pid_info, 0, sizeof(_pid_info));
|
|
|
|
// slew limit scaler allows for plane to use degrees/sec slew
|
|
// limit
|
|
_slew_limit_scale = 1;
|
|
}
|
|
|
|
// filt_T_hz - set target filter hz
|
|
void AC_PID::filt_T_hz(float hz)
|
|
{
|
|
_filt_T_hz.set(fabsf(hz));
|
|
}
|
|
|
|
// filt_E_hz - set error filter hz
|
|
void AC_PID::filt_E_hz(float hz)
|
|
{
|
|
_filt_E_hz.set(fabsf(hz));
|
|
}
|
|
|
|
// filt_D_hz - set derivative filter hz
|
|
void AC_PID::filt_D_hz(float hz)
|
|
{
|
|
_filt_D_hz.set(fabsf(hz));
|
|
}
|
|
|
|
// slew_limit - set slew limit
|
|
void AC_PID::slew_limit(float smax)
|
|
{
|
|
_slew_rate_max.set(fabsf(smax));
|
|
}
|
|
|
|
void AC_PID::set_notch_sample_rate(float sample_rate)
|
|
{
|
|
#if AP_FILTER_ENABLED
|
|
if (_notch_T_filter == 0 && _notch_E_filter == 0) {
|
|
return;
|
|
}
|
|
|
|
if (_notch_T_filter != 0) {
|
|
if (_target_notch == nullptr) {
|
|
_target_notch = new NotchFilterFloat();
|
|
}
|
|
AP_Filter* filter = AP::filters().get_filter(_notch_T_filter);
|
|
if (filter != nullptr && !filter->setup_notch_filter(*_target_notch, sample_rate)) {
|
|
delete _target_notch;
|
|
_target_notch = nullptr;
|
|
_notch_T_filter.set(0);
|
|
}
|
|
}
|
|
|
|
if (_notch_E_filter != 0) {
|
|
if (_error_notch == nullptr) {
|
|
_error_notch = new NotchFilterFloat();
|
|
}
|
|
AP_Filter* filter = AP::filters().get_filter(_notch_E_filter);
|
|
if (filter != nullptr && !filter->setup_notch_filter(*_error_notch, sample_rate)) {
|
|
delete _error_notch;
|
|
_error_notch = nullptr;
|
|
_notch_E_filter.set(0);
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
|
|
// update_all - set target and measured inputs to PID controller and calculate outputs
|
|
// target and error are filtered
|
|
// the derivative is then calculated and filtered
|
|
// the integral is then updated based on the setting of the limit flag
|
|
float AC_PID::update_all(float target, float measurement, float dt, bool limit, float boost)
|
|
{
|
|
// don't process inf or NaN
|
|
if (!isfinite(target) || !isfinite(measurement)) {
|
|
return 0.0f;
|
|
}
|
|
|
|
// reset input filter to value received
|
|
_pid_info.reset = _flags._reset_filter;
|
|
if (_flags._reset_filter) {
|
|
_flags._reset_filter = false;
|
|
_target = target;
|
|
_error = _target - measurement;
|
|
_derivative = 0.0f;
|
|
_target_derivative = 0.0f;
|
|
#if AP_FILTER_ENABLED
|
|
if (_target_notch != nullptr) {
|
|
_target_notch->reset();
|
|
_target = _target_notch->apply(_target);
|
|
}
|
|
if (_error_notch != nullptr) {
|
|
_error_notch->reset();
|
|
_error = _error_notch->apply(_error);
|
|
}
|
|
#endif
|
|
} else {
|
|
float error_last = _error;
|
|
float target_last = _target;
|
|
float error = _target - measurement;
|
|
#if AP_FILTER_ENABLED
|
|
// apply notch filters before FTLD/FLTE to avoid shot noise
|
|
if (_target_notch != nullptr) {
|
|
target = _target_notch->apply(target);
|
|
}
|
|
if (_error_notch != nullptr) {
|
|
error = _error_notch->apply(error);
|
|
}
|
|
#endif
|
|
_target += get_filt_T_alpha(dt) * (target - _target);
|
|
_error += get_filt_E_alpha(dt) * (error - _error);
|
|
|
|
// calculate and filter derivative
|
|
if (is_positive(dt)) {
|
|
float derivative = (_error - error_last) / dt;
|
|
_derivative += get_filt_D_alpha(dt) * (derivative - _derivative);
|
|
_target_derivative = (_target - target_last) / dt;
|
|
}
|
|
}
|
|
|
|
// update I term
|
|
update_i(dt, limit);
|
|
|
|
float P_out = (_error * _kp);
|
|
float D_out = (_derivative * _kd);
|
|
|
|
// calculate slew limit modifier for P+D
|
|
_pid_info.Dmod = _slew_limiter.modifier((_pid_info.P + _pid_info.D) * _slew_limit_scale, dt);
|
|
_pid_info.slew_rate = _slew_limiter.get_slew_rate();
|
|
|
|
P_out *= _pid_info.Dmod;
|
|
D_out *= _pid_info.Dmod;
|
|
|
|
// boost output if required
|
|
P_out *= boost;
|
|
D_out *= boost;
|
|
|
|
_pid_info.PD_limit = false;
|
|
// Apply PD sum limit if enabled
|
|
if (is_positive(_kpdmax)) {
|
|
const float PD_sum_abs = fabsf(P_out + D_out);
|
|
if (PD_sum_abs > _kpdmax) {
|
|
const float PD_scale = _kpdmax / PD_sum_abs;
|
|
P_out *= PD_scale;
|
|
D_out *= PD_scale;
|
|
_pid_info.PD_limit = true;
|
|
}
|
|
}
|
|
|
|
_pid_info.target = _target;
|
|
_pid_info.actual = measurement;
|
|
_pid_info.error = _error;
|
|
_pid_info.P = P_out;
|
|
_pid_info.D = D_out;
|
|
_pid_info.FF = _target * _kff;
|
|
_pid_info.DFF = _target_derivative * _kdff;
|
|
|
|
return P_out + D_out + _integrator;
|
|
}
|
|
|
|
// update_error - set error input to PID controller and calculate outputs
|
|
// target is set to zero and error is set and filtered
|
|
// the derivative then is calculated and filtered
|
|
// the integral is then updated based on the setting of the limit flag
|
|
// Target and Measured must be set manually for logging purposes.
|
|
// todo: remove function when it is no longer used.
|
|
float AC_PID::update_error(float error, float dt, bool limit)
|
|
{
|
|
// don't process inf or NaN
|
|
if (!isfinite(error)) {
|
|
return 0.0f;
|
|
}
|
|
|
|
// Reuse update all code path, zero target and pass negative error as measurement
|
|
// Passing as measurement bypasses any target filtering to maintain behaviour
|
|
// Negate as update all calculates error as target - measurement
|
|
_target = 0.0;
|
|
const float output = update_all(0.0, -error, dt, limit);
|
|
|
|
// Make sure logged target and actual are still 0 to maintain behaviour
|
|
_pid_info.target = 0.0;
|
|
_pid_info.actual = 0.0;
|
|
|
|
return output;
|
|
}
|
|
|
|
// update_i - update the integral
|
|
// If the limit flag is set the integral is only allowed to shrink
|
|
void AC_PID::update_i(float dt, bool limit)
|
|
{
|
|
if (!is_zero(_ki) && is_positive(dt)) {
|
|
// Ensure that integrator can only be reduced if the output is saturated
|
|
if (!limit || ((is_positive(_integrator) && is_negative(_error)) || (is_negative(_integrator) && is_positive(_error)))) {
|
|
_integrator += ((float)_error * _ki) * dt;
|
|
_integrator = constrain_float(_integrator, -_kimax, _kimax);
|
|
}
|
|
} else {
|
|
_integrator = 0.0f;
|
|
}
|
|
_pid_info.I = _integrator;
|
|
_pid_info.limit = limit;
|
|
|
|
// Set I set flag for logging and clear
|
|
_pid_info.I_term_set = _flags._I_set;
|
|
_flags._I_set = false;
|
|
}
|
|
|
|
float AC_PID::get_p() const
|
|
{
|
|
return _pid_info.P;
|
|
}
|
|
|
|
float AC_PID::get_i() const
|
|
{
|
|
return _integrator;
|
|
}
|
|
|
|
float AC_PID::get_d() const
|
|
{
|
|
return _pid_info.D;
|
|
}
|
|
|
|
float AC_PID::get_ff() const
|
|
{
|
|
return _pid_info.FF + _pid_info.DFF;
|
|
}
|
|
|
|
void AC_PID::reset_I()
|
|
{
|
|
_flags._I_set = true;
|
|
_integrator = 0.0;
|
|
}
|
|
|
|
// load original gains from eeprom, used by autotune to restore gains after tuning
|
|
void AC_PID::load_gains()
|
|
{
|
|
_kp.load();
|
|
_ki.load();
|
|
_kd.load();
|
|
_kff.load();
|
|
_filt_T_hz.load();
|
|
_filt_E_hz.load();
|
|
_filt_D_hz.load();
|
|
}
|
|
|
|
// save original gains to eeprom, used by autotune to save gains before tuning
|
|
void AC_PID::save_gains()
|
|
{
|
|
_kp.save();
|
|
_ki.save();
|
|
_kd.save();
|
|
_kff.save();
|
|
_filt_T_hz.save();
|
|
_filt_E_hz.save();
|
|
_filt_D_hz.save();
|
|
}
|
|
|
|
/// Overload the function call operator to permit easy initialisation
|
|
void AC_PID::operator()(float p_val, float i_val, float d_val, float ff_val, float imax_val, float input_filt_T_hz, float input_filt_E_hz, float input_filt_D_hz, float dff_val)
|
|
{
|
|
_kp.set(p_val);
|
|
_ki.set(i_val);
|
|
_kd.set(d_val);
|
|
_kff.set(ff_val);
|
|
_kimax.set(fabsf(imax_val));
|
|
_filt_T_hz.set(input_filt_T_hz);
|
|
_filt_E_hz.set(input_filt_E_hz);
|
|
_filt_D_hz.set(input_filt_D_hz);
|
|
_kdff.set(dff_val);
|
|
}
|
|
|
|
// get_filt_T_alpha - get the target filter alpha
|
|
float AC_PID::get_filt_T_alpha(float dt) const
|
|
{
|
|
return calc_lowpass_alpha_dt(dt, _filt_T_hz);
|
|
}
|
|
|
|
// get_filt_E_alpha - get the error filter alpha
|
|
float AC_PID::get_filt_E_alpha(float dt) const
|
|
{
|
|
return calc_lowpass_alpha_dt(dt, _filt_E_hz);
|
|
}
|
|
|
|
// get_filt_D_alpha - get the derivative filter alpha
|
|
float AC_PID::get_filt_D_alpha(float dt) const
|
|
{
|
|
return calc_lowpass_alpha_dt(dt, _filt_D_hz);
|
|
}
|
|
|
|
void AC_PID::set_integrator(float integrator)
|
|
{
|
|
_flags._I_set = true;
|
|
_integrator = constrain_float(integrator, -_kimax, _kimax);
|
|
}
|
|
|
|
void AC_PID::relax_integrator(float integrator, float dt, float time_constant)
|
|
{
|
|
integrator = constrain_float(integrator, -_kimax, _kimax);
|
|
if (is_positive(dt)) {
|
|
_flags._I_set = true;
|
|
_integrator = _integrator + (integrator - _integrator) * (dt / (dt + time_constant));
|
|
}
|
|
}
|