mirror of
https://github.com/ArduPilot/ardupilot
synced 2025-01-20 07:38:28 -04:00
1858 lines
84 KiB
C++
1858 lines
84 KiB
C++
/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
|
||
|
||
#include <AP_HAL/AP_HAL.h>
|
||
|
||
#if HAL_CPU_CLASS >= HAL_CPU_CLASS_150
|
||
|
||
/*
|
||
optionally turn down optimisation for debugging
|
||
*/
|
||
// #pragma GCC optimize("O0")
|
||
|
||
#include "AP_NavEKF2.h"
|
||
#include "AP_NavEKF2_core.h"
|
||
#include <AP_AHRS/AP_AHRS.h>
|
||
#include <AP_Vehicle/AP_Vehicle.h>
|
||
|
||
#include <stdio.h>
|
||
|
||
extern const AP_HAL::HAL& hal;
|
||
|
||
/********************************************************
|
||
* RESET FUNCTIONS *
|
||
********************************************************/
|
||
|
||
// Reset velocity states to last GPS measurement if available or to zero if in constant position mode or if PV aiding is not absolute
|
||
// Do not reset vertical velocity using GPS as there is baro alt available to constrain drift
|
||
void NavEKF2_core::ResetVelocity(void)
|
||
{
|
||
if (PV_AidingMode != AID_ABSOLUTE) {
|
||
stateStruct.velocity.zero();
|
||
} else if (!gpsNotAvailable) {
|
||
// reset horizontal velocity states, applying an offset to the GPS velocity to prevent the GPS position being rejected when the GPS position offset is being decayed to zero.
|
||
stateStruct.velocity.x = gpsDataNew.vel.x + gpsVelGlitchOffset.x; // north velocity from blended accel data
|
||
stateStruct.velocity.y = gpsDataNew.vel.y + gpsVelGlitchOffset.y; // east velocity from blended accel data
|
||
}
|
||
for (uint8_t i=0; i<IMU_BUFFER_LENGTH; i++) {
|
||
storedOutput[i].velocity.x = stateStruct.velocity.x;
|
||
storedOutput[i].velocity.y = stateStruct.velocity.y;
|
||
}
|
||
outputDataNew.velocity.x = stateStruct.velocity.x;
|
||
outputDataNew.velocity.y = stateStruct.velocity.y;
|
||
outputDataDelayed.velocity.x = stateStruct.velocity.x;
|
||
outputDataDelayed.velocity.y = stateStruct.velocity.y;
|
||
}
|
||
|
||
// resets position states to last GPS measurement or to zero if in constant position mode
|
||
void NavEKF2_core::ResetPosition(void)
|
||
{
|
||
if (PV_AidingMode != AID_ABSOLUTE) {
|
||
// reset all position state history to the last known position
|
||
stateStruct.position.x = lastKnownPositionNE.x;
|
||
stateStruct.position.y = lastKnownPositionNE.y;
|
||
} else if (!gpsNotAvailable) {
|
||
// write to state vector and compensate for offset between last GPs measurement and the EKF time horizon
|
||
stateStruct.position.x = gpsDataNew.pos.x + gpsPosGlitchOffsetNE.x + 0.001f*gpsDataNew.vel.x*(float(imuDataDelayed.time_ms) - float(lastTimeGpsReceived_ms));
|
||
stateStruct.position.y = gpsDataNew.pos.y + gpsPosGlitchOffsetNE.y + 0.001f*gpsDataNew.vel.y*(float(imuDataDelayed.time_ms) - float(lastTimeGpsReceived_ms));
|
||
}
|
||
for (uint8_t i=0; i<IMU_BUFFER_LENGTH; i++) {
|
||
storedOutput[i].position.x = stateStruct.position.x;
|
||
storedOutput[i].position.y = stateStruct.position.y;
|
||
}
|
||
outputDataNew.position.x = stateStruct.position.x;
|
||
outputDataNew.position.y = stateStruct.position.y;
|
||
outputDataDelayed.position.x = stateStruct.position.x;
|
||
outputDataDelayed.position.y = stateStruct.position.y;
|
||
}
|
||
|
||
// reset the vertical position state using the last height measurement
|
||
void NavEKF2_core::ResetHeight(void)
|
||
{
|
||
// read the altimeter
|
||
readHgtData();
|
||
// write to the state vector
|
||
stateStruct.position.z = -baroDataNew.hgt; // down position from blended accel data
|
||
terrainState = stateStruct.position.z + rngOnGnd;
|
||
for (uint8_t i=0; i<IMU_BUFFER_LENGTH; i++) {
|
||
storedOutput[i].position.z = stateStruct.position.z;
|
||
}
|
||
outputDataNew.position.z = stateStruct.position.z;
|
||
outputDataDelayed.position.z = stateStruct.position.z;
|
||
}
|
||
|
||
// Reset the baro so that it reads zero at the current height
|
||
// Reset the EKF height to zero
|
||
// Adjust the EKf origin height so that the EKF height + origin height is the same as before
|
||
// Return true if the height datum reset has been performed
|
||
// If using a range finder for height do not reset and return false
|
||
bool NavEKF2_core::resetHeightDatum(void)
|
||
{
|
||
// if we are using a range finder for height, return false
|
||
if (frontend._altSource == 1) {
|
||
return false;
|
||
}
|
||
// record the old height estimate
|
||
float oldHgt = -stateStruct.position.z;
|
||
// reset the barometer so that it reads zero at the current height
|
||
_baro.update_calibration();
|
||
// reset the height state
|
||
stateStruct.position.z = 0.0f;
|
||
// adjust the height of the EKF origin so that the origin plus baro height before and afer the reset is the same
|
||
if (validOrigin) {
|
||
EKF_origin.alt += oldHgt*100;
|
||
}
|
||
return true;
|
||
}
|
||
|
||
|
||
|
||
|
||
/********************************************************
|
||
* GET STATES/PARAMS FUNCTIONS *
|
||
********************************************************/
|
||
|
||
// return NED velocity in m/s
|
||
//
|
||
void NavEKF2_core::getVelNED(Vector3f &vel) const
|
||
{
|
||
vel = outputDataNew.velocity;
|
||
}
|
||
|
||
// This returns the specific forces in the NED frame
|
||
void NavEKF2_core::getAccelNED(Vector3f &accelNED) const {
|
||
accelNED = velDotNED;
|
||
accelNED.z -= GRAVITY_MSS;
|
||
}
|
||
|
||
// return the Z-accel bias estimate in m/s^2
|
||
void NavEKF2_core::getAccelZBias(float &zbias) const {
|
||
if (dtIMUavg > 0) {
|
||
zbias = stateStruct.accel_zbias / dtIMUavg;
|
||
} else {
|
||
zbias = 0;
|
||
}
|
||
}
|
||
|
||
// Return the last calculated NED position relative to the reference point (m).
|
||
// if a calculated solution is not available, use the best available data and return false
|
||
bool NavEKF2_core::getPosNED(Vector3f &pos) const
|
||
{
|
||
// The EKF always has a height estimate regardless of mode of operation
|
||
pos.z = outputDataNew.position.z;
|
||
// There are three modes of operation, absolute position (GPS fusion), relative position (optical flow fusion) and constant position (no position estimate available)
|
||
nav_filter_status status;
|
||
getFilterStatus(status);
|
||
if (status.flags.horiz_pos_abs || status.flags.horiz_pos_rel) {
|
||
// This is the normal mode of operation where we can use the EKF position states
|
||
pos.x = outputDataNew.position.x;
|
||
pos.y = outputDataNew.position.y;
|
||
return true;
|
||
} else {
|
||
// In constant position mode the EKF position states are at the origin, so we cannot use them as a position estimate
|
||
if(validOrigin) {
|
||
if ((_ahrs->get_gps().status() >= AP_GPS::GPS_OK_FIX_2D)) {
|
||
// If the origin has been set and we have GPS, then return the GPS position relative to the origin
|
||
const struct Location &gpsloc = _ahrs->get_gps().location();
|
||
Vector2f tempPosNE = location_diff(EKF_origin, gpsloc);
|
||
pos.x = tempPosNE.x;
|
||
pos.y = tempPosNE.y;
|
||
return false;
|
||
} else {
|
||
// If no GPS fix is available, all we can do is provide the last known position
|
||
pos.x = outputDataNew.position.x;
|
||
pos.y = outputDataNew.position.y;
|
||
return false;
|
||
}
|
||
} else {
|
||
// If the origin has not been set, then we have no means of providing a relative position
|
||
pos.x = 0.0f;
|
||
pos.y = 0.0f;
|
||
return false;
|
||
}
|
||
}
|
||
return false;
|
||
}
|
||
|
||
// return the horizontal speed limit in m/s set by optical flow sensor limits
|
||
// return the scale factor to be applied to navigation velocity gains to compensate for increase in velocity noise with height when using optical flow
|
||
void NavEKF2_core::getEkfControlLimits(float &ekfGndSpdLimit, float &ekfNavVelGainScaler) const
|
||
{
|
||
if (PV_AidingMode == AID_RELATIVE) {
|
||
// allow 1.0 rad/sec margin for angular motion
|
||
ekfGndSpdLimit = max((frontend._maxFlowRate - 1.0f), 0.0f) * max((terrainState - stateStruct.position[2]), rngOnGnd);
|
||
// use standard gains up to 5.0 metres height and reduce above that
|
||
ekfNavVelGainScaler = 4.0f / max((terrainState - stateStruct.position[2]),4.0f);
|
||
} else {
|
||
ekfGndSpdLimit = 400.0f; //return 80% of max filter speed
|
||
ekfNavVelGainScaler = 1.0f;
|
||
}
|
||
}
|
||
|
||
// Return the last calculated latitude, longitude and height in WGS-84
|
||
// If a calculated location isn't available, return a raw GPS measurement
|
||
// The status will return true if a calculation or raw measurement is available
|
||
// The getFilterStatus() function provides a more detailed description of data health and must be checked if data is to be used for flight control
|
||
bool NavEKF2_core::getLLH(struct Location &loc) const
|
||
{
|
||
if(validOrigin) {
|
||
// Altitude returned is an absolute altitude relative to the WGS-84 spherioid
|
||
loc.alt = EKF_origin.alt - outputDataNew.position.z*100;
|
||
loc.flags.relative_alt = 0;
|
||
loc.flags.terrain_alt = 0;
|
||
|
||
// there are three modes of operation, absolute position (GPS fusion), relative position (optical flow fusion) and constant position (no aiding)
|
||
nav_filter_status status;
|
||
getFilterStatus(status);
|
||
if (status.flags.horiz_pos_abs || status.flags.horiz_pos_rel) {
|
||
loc.lat = EKF_origin.lat;
|
||
loc.lng = EKF_origin.lng;
|
||
location_offset(loc, outputDataNew.position.x, outputDataNew.position.y);
|
||
return true;
|
||
} else {
|
||
// we could be in constant position mode becasue the vehicle has taken off without GPS, or has lost GPS
|
||
// in this mode we cannot use the EKF states to estimate position so will return the best available data
|
||
if ((_ahrs->get_gps().status() >= AP_GPS::GPS_OK_FIX_2D)) {
|
||
// we have a GPS position fix to return
|
||
const struct Location &gpsloc = _ahrs->get_gps().location();
|
||
loc.lat = gpsloc.lat;
|
||
loc.lng = gpsloc.lng;
|
||
return true;
|
||
} else {
|
||
// if no GPS fix, provide last known position before entering the mode
|
||
location_offset(loc, lastKnownPositionNE.x, lastKnownPositionNE.y);
|
||
return false;
|
||
}
|
||
}
|
||
} else {
|
||
// If no origin has been defined for the EKF, then we cannot use its position states so return a raw
|
||
// GPS reading if available and return false
|
||
if ((_ahrs->get_gps().status() >= AP_GPS::GPS_OK_FIX_3D)) {
|
||
const struct Location &gpsloc = _ahrs->get_gps().location();
|
||
loc = gpsloc;
|
||
loc.flags.relative_alt = 0;
|
||
loc.flags.terrain_alt = 0;
|
||
}
|
||
return false;
|
||
}
|
||
}
|
||
|
||
// return the LLH location of the filters NED origin
|
||
bool NavEKF2_core::getOriginLLH(struct Location &loc) const
|
||
{
|
||
if (validOrigin) {
|
||
loc = EKF_origin;
|
||
}
|
||
return validOrigin;
|
||
}
|
||
|
||
// return the estimated height above ground level
|
||
bool NavEKF2_core::getHAGL(float &HAGL) const
|
||
{
|
||
HAGL = terrainState - outputDataNew.position.z;
|
||
// If we know the terrain offset and altitude, then we have a valid height above ground estimate
|
||
return !hgtTimeout && gndOffsetValid && healthy();
|
||
}
|
||
|
||
// return data for debugging optical flow fusion
|
||
void NavEKF2_core::getFlowDebug(float &varFlow, float &gndOffset, float &flowInnovX, float &flowInnovY, float &auxInnov, float &HAGL, float &rngInnov, float &range, float &gndOffsetErr) const
|
||
{
|
||
varFlow = max(flowTestRatio[0],flowTestRatio[1]);
|
||
gndOffset = terrainState;
|
||
flowInnovX = innovOptFlow[0];
|
||
flowInnovY = innovOptFlow[1];
|
||
auxInnov = auxFlowObsInnov;
|
||
HAGL = terrainState - stateStruct.position.z;
|
||
rngInnov = innovRng;
|
||
range = rngMea;
|
||
gndOffsetErr = sqrtf(Popt); // note Popt is constrained to be non-negative in EstimateTerrainOffset()
|
||
}
|
||
|
||
// provides the height limit to be observed by the control loops
|
||
// returns false if no height limiting is required
|
||
// this is needed to ensure the vehicle does not fly too high when using optical flow navigation
|
||
bool NavEKF2_core::getHeightControlLimit(float &height) const
|
||
{
|
||
// only ask for limiting if we are doing optical flow navigation
|
||
if (frontend._fusionModeGPS == 3) {
|
||
// If are doing optical flow nav, ensure the height above ground is within range finder limits after accounting for vehicle tilt and control errors
|
||
height = max(float(_rng.max_distance_cm()) * 0.007f - 1.0f, 1.0f);
|
||
return true;
|
||
} else {
|
||
return false;
|
||
}
|
||
}
|
||
|
||
|
||
|
||
/********************************************************
|
||
* SET STATES/PARAMS FUNCTIONS *
|
||
********************************************************/
|
||
|
||
// set the LLH location of the filters NED origin
|
||
bool NavEKF2_core::setOriginLLH(struct Location &loc)
|
||
{
|
||
if (isAiding) {
|
||
return false;
|
||
}
|
||
EKF_origin = loc;
|
||
validOrigin = true;
|
||
return true;
|
||
}
|
||
|
||
// Set the NED origin to be used until the next filter reset
|
||
void NavEKF2_core::setOrigin()
|
||
{
|
||
// assume origin at current GPS location (no averaging)
|
||
EKF_origin = _ahrs->get_gps().location();
|
||
// define Earth rotation vector in the NED navigation frame at the origin
|
||
calcEarthRateNED(earthRateNED, _ahrs->get_home().lat);
|
||
validOrigin = true;
|
||
hal.console->printf("EKF Origin Set\n");
|
||
}
|
||
|
||
// Commands the EKF to not use GPS.
|
||
// This command must be sent prior to arming
|
||
// This command is forgotten by the EKF each time the vehicle disarms
|
||
// Returns 0 if command rejected
|
||
// Returns 1 if attitude, vertical velocity and vertical position will be provided
|
||
// Returns 2 if attitude, 3D-velocity, vertical position and relative horizontal position will be provided
|
||
uint8_t NavEKF2_core::setInhibitGPS(void)
|
||
{
|
||
if(!isAiding) {
|
||
return 0;
|
||
}
|
||
if (optFlowDataPresent()) {
|
||
frontend._fusionModeGPS = 3;
|
||
//#error writing to a tuning parameter
|
||
return 2;
|
||
} else {
|
||
return 1;
|
||
}
|
||
}
|
||
|
||
|
||
/********************************************************
|
||
* READ SENSORS *
|
||
********************************************************/
|
||
|
||
bool NavEKF2_core::readDeltaVelocity(uint8_t ins_index, Vector3f &dVel, float &dVel_dt) {
|
||
const AP_InertialSensor &ins = _ahrs->get_ins();
|
||
|
||
if (ins_index < ins.get_accel_count()) {
|
||
ins.get_delta_velocity(ins_index,dVel);
|
||
dVel_dt = max(ins.get_delta_velocity_dt(ins_index),1.0e-4f);
|
||
return true;
|
||
}
|
||
return false;
|
||
}
|
||
|
||
// check for new valid GPS data and update stored measurement if available
|
||
void NavEKF2_core::readGpsData()
|
||
{
|
||
// check for new GPS data
|
||
if ((_ahrs->get_gps().last_message_time_ms() != lastTimeGpsReceived_ms) &&
|
||
(_ahrs->get_gps().status() >= AP_GPS::GPS_OK_FIX_3D))
|
||
{
|
||
// store fix time from previous read
|
||
secondLastGpsTime_ms = lastTimeGpsReceived_ms;
|
||
|
||
// get current fix time
|
||
lastTimeGpsReceived_ms = _ahrs->get_gps().last_message_time_ms();
|
||
|
||
// estimate when the GPS fix was valid, allowing for GPS processing and other delays
|
||
// ideally we should be using a timing signal from the GPS receiver to set this time
|
||
gpsDataNew.time_ms = lastTimeGpsReceived_ms - frontend._gpsDelay_ms;
|
||
|
||
// read the NED velocity from the GPS
|
||
gpsDataNew.vel = _ahrs->get_gps().velocity();
|
||
|
||
// Use the speed accuracy from the GPS if available, otherwise set it to zero.
|
||
// Apply a decaying envelope filter with a 5 second time constant to the raw speed accuracy data
|
||
float alpha = constrain_float(0.0002f * (lastTimeGpsReceived_ms - secondLastGpsTime_ms),0.0f,1.0f);
|
||
gpsSpdAccuracy *= (1.0f - alpha);
|
||
float gpsSpdAccRaw;
|
||
if (!_ahrs->get_gps().speed_accuracy(gpsSpdAccRaw)) {
|
||
gpsSpdAccuracy = 0.0f;
|
||
} else {
|
||
gpsSpdAccuracy = max(gpsSpdAccuracy,gpsSpdAccRaw);
|
||
}
|
||
|
||
// check if we have enough GPS satellites and increase the gps noise scaler if we don't
|
||
if (_ahrs->get_gps().num_sats() >= 6 && (PV_AidingMode == AID_ABSOLUTE)) {
|
||
gpsNoiseScaler = 1.0f;
|
||
} else if (_ahrs->get_gps().num_sats() == 5 && (PV_AidingMode == AID_ABSOLUTE)) {
|
||
gpsNoiseScaler = 1.4f;
|
||
} else { // <= 4 satellites or in constant position mode
|
||
gpsNoiseScaler = 2.0f;
|
||
}
|
||
|
||
// Check if GPS can output vertical velocity and set GPS fusion mode accordingly
|
||
if (_ahrs->get_gps().have_vertical_velocity() && frontend._fusionModeGPS == 0) {
|
||
useGpsVertVel = true;
|
||
} else {
|
||
useGpsVertVel = false;
|
||
}
|
||
|
||
// Monitor quality of the GPS velocity data for alignment
|
||
if (PV_AidingMode != AID_ABSOLUTE) {
|
||
gpsQualGood = calcGpsGoodToAlign();
|
||
}
|
||
|
||
// read latitutde and longitude from GPS and convert to local NE position relative to the stored origin
|
||
// If we don't have an origin, then set it to the current GPS coordinates
|
||
const struct Location &gpsloc = _ahrs->get_gps().location();
|
||
if (validOrigin) {
|
||
gpsDataNew.pos = location_diff(EKF_origin, gpsloc);
|
||
} else if (gpsQualGood) {
|
||
// Set the NE origin to the current GPS position
|
||
setOrigin();
|
||
// Now we know the location we have an estimate for the magnetic field declination and adjust the earth field accordingly
|
||
alignMagStateDeclination();
|
||
// Set the height of the NED origin to ‘height of baro height datum relative to GPS height datum'
|
||
EKF_origin.alt = gpsloc.alt - baroDataNew.hgt;
|
||
// We are by definition at the origin at the instant of alignment so set NE position to zero
|
||
gpsDataNew.pos.zero();
|
||
// If GPS useage isn't explicitly prohibited, we switch to absolute position mode
|
||
if (isAiding && frontend._fusionModeGPS != 3) {
|
||
PV_AidingMode = AID_ABSOLUTE;
|
||
// Initialise EKF position and velocity states
|
||
ResetPosition();
|
||
ResetVelocity();
|
||
}
|
||
}
|
||
|
||
// calculate a position offset which is applied to NE position and velocity wherever it is used throughout code to allow GPS position jumps to be accommodated gradually
|
||
decayGpsOffset();
|
||
|
||
// save measurement to buffer to be fused later
|
||
StoreGPS();
|
||
|
||
// declare GPS available for use
|
||
gpsNotAvailable = false;
|
||
}
|
||
|
||
// We need to handle the case where GPS is lost for a period of time that is too long to dead-reckon
|
||
// If that happens we need to put the filter into a constant position mode, reset the velocity states to zero
|
||
// and use the last estimated position as a synthetic GPS position
|
||
|
||
// check if we can use opticalflow as a backup
|
||
bool optFlowBackupAvailable = (flowDataValid && !hgtTimeout);
|
||
|
||
// Set GPS time-out threshold depending on whether we have an airspeed sensor to constrain drift
|
||
uint16_t gpsRetryTimeout_ms = useAirspeed() ? frontend.gpsRetryTimeUseTAS_ms : frontend.gpsRetryTimeNoTAS_ms;
|
||
|
||
// Set the time that copters will fly without a GPS lock before failing the GPS and switching to a non GPS mode
|
||
uint16_t gpsFailTimeout_ms = optFlowBackupAvailable ? frontend.gpsFailTimeWithFlow_ms : gpsRetryTimeout_ms;
|
||
|
||
// If we haven't received GPS data for a while and we are using it for aiding, then declare the position and velocity data as being timed out
|
||
if (imuSampleTime_ms - lastTimeGpsReceived_ms > gpsFailTimeout_ms) {
|
||
|
||
// Let other processes know that GPS i snota vailable and that a timeout has occurred
|
||
posTimeout = true;
|
||
velTimeout = true;
|
||
gpsNotAvailable = true;
|
||
|
||
// If we are currently reliying on GPS for navigation, then we need to switch to a non-GPS mode of operation
|
||
if (PV_AidingMode == AID_ABSOLUTE) {
|
||
|
||
// If we don't have airspeed or sideslip assumption or optical flow to constrain drift, then go into constant position mode.
|
||
// If we can do optical flow nav (valid flow data and height above ground estimate), then go into flow nav mode.
|
||
if (!useAirspeed() && !assume_zero_sideslip()) {
|
||
if (optFlowBackupAvailable) {
|
||
// we can do optical flow only nav
|
||
frontend._fusionModeGPS = 3;
|
||
PV_AidingMode = AID_RELATIVE;
|
||
} else {
|
||
// store the current position
|
||
lastKnownPositionNE.x = stateStruct.position.x;
|
||
lastKnownPositionNE.y = stateStruct.position.y;
|
||
|
||
// put the filter into constant position mode
|
||
PV_AidingMode = AID_NONE;
|
||
|
||
// reset all glitch states
|
||
gpsPosGlitchOffsetNE.zero();
|
||
gpsVelGlitchOffset.zero();
|
||
|
||
// Reset the velocity and position states
|
||
ResetVelocity();
|
||
ResetPosition();
|
||
|
||
// Reset the normalised innovation to avoid false failing the bad position fusion test
|
||
velTestRatio = 0.0f;
|
||
posTestRatio = 0.0f;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
// If not aiding we synthesise the GPS measurements at the last known position
|
||
if (PV_AidingMode == AID_NONE) {
|
||
if (imuSampleTime_ms - gpsDataNew.time_ms > 200) {
|
||
gpsDataNew.pos.x = lastKnownPositionNE.x;
|
||
gpsDataNew.pos.y = lastKnownPositionNE.y;
|
||
gpsDataNew.time_ms = imuSampleTime_ms-frontend._gpsDelay_ms;
|
||
// save measurement to buffer to be fused later
|
||
StoreGPS();
|
||
}
|
||
}
|
||
|
||
}
|
||
|
||
|
||
// store GPS data in a history array
|
||
void NavEKF2_core::StoreGPS()
|
||
{
|
||
if (gpsStoreIndex >= OBS_BUFFER_LENGTH) {
|
||
gpsStoreIndex = 0;
|
||
}
|
||
storedGPS[gpsStoreIndex] = gpsDataNew;
|
||
gpsStoreIndex += 1;
|
||
}
|
||
|
||
// return newest un-used GPS data that has fallen behind the fusion time horizon
|
||
// if no un-used data is available behind the fusion horizon, return false
|
||
bool NavEKF2_core::RecallGPS()
|
||
{
|
||
gps_elements dataTemp;
|
||
gps_elements dataTempZero;
|
||
dataTempZero.time_ms = 0;
|
||
uint32_t temp_ms = 0;
|
||
for (uint8_t i=0; i<OBS_BUFFER_LENGTH; i++) {
|
||
dataTemp = storedGPS[i];
|
||
// find a measurement older than the fusion time horizon that we haven't checked before
|
||
if (dataTemp.time_ms != 0 && dataTemp.time_ms <= imuDataDelayed.time_ms) {
|
||
// zero the time stamp so we won't use it again
|
||
storedGPS[i]=dataTempZero;
|
||
// Find the most recent non-stale measurement that meets the time horizon criteria
|
||
if (((imuDataDelayed.time_ms - dataTemp.time_ms) < 500) && dataTemp.time_ms > temp_ms) {
|
||
gpsDataDelayed = dataTemp;
|
||
temp_ms = dataTemp.time_ms;
|
||
}
|
||
}
|
||
}
|
||
if (temp_ms != 0) {
|
||
return true;
|
||
} else {
|
||
return false;
|
||
}
|
||
}
|
||
|
||
// check for new altitude measurement data and update stored measurement if available
|
||
void NavEKF2_core::readHgtData()
|
||
{
|
||
// check to see if baro measurement has changed so we know if a new measurement has arrived
|
||
if (_baro.get_last_update() != lastHgtReceived_ms) {
|
||
// Don't use Baro height if operating in optical flow mode as we use range finder instead
|
||
if (frontend._fusionModeGPS == 3 && frontend._altSource == 1) {
|
||
if ((imuSampleTime_ms - rngValidMeaTime_ms) < 2000) {
|
||
// adjust range finder measurement to allow for effect of vehicle tilt and height of sensor
|
||
baroDataNew.hgt = max(rngMea * Tnb_flow.c.z, rngOnGnd);
|
||
// calculate offset to baro data that enables baro to be used as a backup
|
||
// filter offset to reduce effect of baro noise and other transient errors on estimate
|
||
baroHgtOffset = 0.1f * (_baro.get_altitude() + stateStruct.position.z) + 0.9f * baroHgtOffset;
|
||
} else if (isAiding && takeOffDetected) {
|
||
// use baro measurement and correct for baro offset - failsafe use only as baro will drift
|
||
baroDataNew.hgt = max(_baro.get_altitude() - baroHgtOffset, rngOnGnd);
|
||
} else {
|
||
// If we are on ground and have no range finder reading, assume the nominal on-ground height
|
||
baroDataNew.hgt = rngOnGnd;
|
||
// calculate offset to baro data that enables baro to be used as a backup
|
||
// filter offset to reduce effect of baro noise and other transient errors on estimate
|
||
baroHgtOffset = 0.1f * (_baro.get_altitude() + stateStruct.position.z) + 0.9f * baroHgtOffset;
|
||
}
|
||
} else {
|
||
// use baro measurement and correct for baro offset
|
||
baroDataNew.hgt = _baro.get_altitude();
|
||
}
|
||
|
||
// filtered baro data used to provide a reference for takeoff
|
||
// it is is reset to last height measurement on disarming in performArmingChecks()
|
||
if (!getTakeoffExpected()) {
|
||
const float gndHgtFiltTC = 0.5f;
|
||
const float dtBaro = frontend.hgtAvg_ms*1.0e-3f;
|
||
float alpha = constrain_float(dtBaro / (dtBaro+gndHgtFiltTC),0.0f,1.0f);
|
||
meaHgtAtTakeOff += (baroDataDelayed.hgt-meaHgtAtTakeOff)*alpha;
|
||
} else if (isAiding && getTakeoffExpected()) {
|
||
// If we are in takeoff mode, the height measurement is limited to be no less than the measurement at start of takeoff
|
||
// This prevents negative baro disturbances due to copter downwash corrupting the EKF altitude during initial ascent
|
||
baroDataNew.hgt = max(baroDataNew.hgt, meaHgtAtTakeOff);
|
||
}
|
||
|
||
// time stamp used to check for new measurement
|
||
lastHgtReceived_ms = _baro.get_last_update();
|
||
|
||
// estimate of time height measurement was taken, allowing for delays
|
||
hgtMeasTime_ms = lastHgtReceived_ms - frontend._hgtDelay_ms;
|
||
|
||
// save baro measurement to buffer to be fused later
|
||
baroDataNew.time_ms = hgtMeasTime_ms;
|
||
StoreBaro();
|
||
}
|
||
}
|
||
|
||
// store baro in a history array
|
||
void NavEKF2_core::StoreBaro()
|
||
{
|
||
if (baroStoreIndex >= OBS_BUFFER_LENGTH) {
|
||
baroStoreIndex = 0;
|
||
}
|
||
storedBaro[baroStoreIndex] = baroDataNew;
|
||
baroStoreIndex += 1;
|
||
}
|
||
|
||
// return newest un-used baro data that has fallen behind the fusion time horizon
|
||
// if no un-used data is available behind the fusion horizon, return false
|
||
bool NavEKF2_core::RecallBaro()
|
||
{
|
||
baro_elements dataTemp;
|
||
baro_elements dataTempZero;
|
||
dataTempZero.time_ms = 0;
|
||
uint32_t temp_ms = 0;
|
||
for (uint8_t i=0; i<OBS_BUFFER_LENGTH; i++) {
|
||
dataTemp = storedBaro[i];
|
||
// find a measurement older than the fusion time horizon that we haven't checked before
|
||
if (dataTemp.time_ms != 0 && dataTemp.time_ms <= imuDataDelayed.time_ms) {
|
||
// zero the time stamp so we won't use it again
|
||
storedBaro[i]=dataTempZero;
|
||
// Find the most recent non-stale measurement that meets the time horizon criteria
|
||
if (((imuDataDelayed.time_ms - dataTemp.time_ms) < 500) && dataTemp.time_ms > temp_ms) {
|
||
baroDataDelayed = dataTemp;
|
||
temp_ms = dataTemp.time_ms;
|
||
}
|
||
}
|
||
}
|
||
if (temp_ms != 0) {
|
||
return true;
|
||
} else {
|
||
return false;
|
||
}
|
||
}
|
||
|
||
|
||
// Read the range finder and take new measurements if available
|
||
// Read at 20Hz and apply a median filter
|
||
void NavEKF2_core::readRangeFinder(void)
|
||
{
|
||
uint8_t midIndex;
|
||
uint8_t maxIndex;
|
||
uint8_t minIndex;
|
||
// get theoretical correct range when the vehicle is on the ground
|
||
rngOnGnd = _rng.ground_clearance_cm() * 0.01f;
|
||
if (_rng.status() == RangeFinder::RangeFinder_Good && (imuSampleTime_ms - lastRngMeasTime_ms) > 50) {
|
||
// store samples and sample time into a ring buffer
|
||
rngMeasIndex ++;
|
||
if (rngMeasIndex > 2) {
|
||
rngMeasIndex = 0;
|
||
}
|
||
storedRngMeasTime_ms[rngMeasIndex] = imuSampleTime_ms;
|
||
storedRngMeas[rngMeasIndex] = _rng.distance_cm() * 0.01f;
|
||
// check for three fresh samples and take median
|
||
bool sampleFresh[3];
|
||
for (uint8_t index = 0; index <= 2; index++) {
|
||
sampleFresh[index] = (imuSampleTime_ms - storedRngMeasTime_ms[index]) < 500;
|
||
}
|
||
if (sampleFresh[0] && sampleFresh[1] && sampleFresh[2]) {
|
||
if (storedRngMeas[0] > storedRngMeas[1]) {
|
||
minIndex = 1;
|
||
maxIndex = 0;
|
||
} else {
|
||
maxIndex = 0;
|
||
minIndex = 1;
|
||
}
|
||
if (storedRngMeas[2] > storedRngMeas[maxIndex]) {
|
||
midIndex = maxIndex;
|
||
} else if (storedRngMeas[2] < storedRngMeas[minIndex]) {
|
||
midIndex = minIndex;
|
||
} else {
|
||
midIndex = 2;
|
||
}
|
||
rngMea = max(storedRngMeas[midIndex],rngOnGnd);
|
||
newDataRng = true;
|
||
rngValidMeaTime_ms = imuSampleTime_ms;
|
||
} else if (onGround) {
|
||
// if on ground and no return, we assume on ground range
|
||
rngMea = rngOnGnd;
|
||
newDataRng = true;
|
||
rngValidMeaTime_ms = imuSampleTime_ms;
|
||
} else {
|
||
newDataRng = false;
|
||
}
|
||
lastRngMeasTime_ms = imuSampleTime_ms;
|
||
}
|
||
}
|
||
|
||
// write the raw optical flow measurements
|
||
// this needs to be called externally.
|
||
void NavEKF2_core::writeOptFlowMeas(uint8_t &rawFlowQuality, Vector2f &rawFlowRates, Vector2f &rawGyroRates, uint32_t &msecFlowMeas)
|
||
{
|
||
// The raw measurements need to be optical flow rates in radians/second averaged across the time since the last update
|
||
// The PX4Flow sensor outputs flow rates with the following axis and sign conventions:
|
||
// A positive X rate is produced by a positive sensor rotation about the X axis
|
||
// A positive Y rate is produced by a positive sensor rotation about the Y axis
|
||
// This filter uses a different definition of optical flow rates to the sensor with a positive optical flow rate produced by a
|
||
// negative rotation about that axis. For example a positive rotation of the flight vehicle about its X (roll) axis would produce a negative X flow rate
|
||
flowMeaTime_ms = imuSampleTime_ms;
|
||
// calculate bias errors on flow sensor gyro rates, but protect against spikes in data
|
||
// reset the accumulated body delta angle and time
|
||
// don't do the calculation if not enough time lapsed for a reliable body rate measurement
|
||
if (delTimeOF > 0.01f) {
|
||
flowGyroBias.x = 0.99f * flowGyroBias.x + 0.01f * constrain_float((rawGyroRates.x - delAngBodyOF.x/delTimeOF),-0.1f,0.1f);
|
||
flowGyroBias.y = 0.99f * flowGyroBias.y + 0.01f * constrain_float((rawGyroRates.y - delAngBodyOF.y/delTimeOF),-0.1f,0.1f);
|
||
delAngBodyOF.zero();
|
||
delTimeOF = 0.0f;
|
||
}
|
||
// check for takeoff if relying on optical flow and zero measurements until takeoff detected
|
||
// if we haven't taken off - constrain position and velocity states
|
||
if (frontend._fusionModeGPS == 3) {
|
||
detectOptFlowTakeoff();
|
||
}
|
||
// calculate rotation matrices at mid sample time for flow observations
|
||
stateStruct.quat.rotation_matrix(Tbn_flow);
|
||
Tnb_flow = Tbn_flow.transposed();
|
||
// don't use data with a low quality indicator or extreme rates (helps catch corrupt sensor data)
|
||
if ((rawFlowQuality > 0) && rawFlowRates.length() < 4.2f && rawGyroRates.length() < 4.2f) {
|
||
// correct flow sensor rates for bias
|
||
omegaAcrossFlowTime.x = rawGyroRates.x - flowGyroBias.x;
|
||
omegaAcrossFlowTime.y = rawGyroRates.y - flowGyroBias.y;
|
||
// write uncorrected flow rate measurements that will be used by the focal length scale factor estimator
|
||
// note correction for different axis and sign conventions used by the px4flow sensor
|
||
ofDataNew.flowRadXY = - rawFlowRates; // raw (non motion compensated) optical flow angular rate about the X axis (rad/sec)
|
||
// write flow rate measurements corrected for body rates
|
||
ofDataNew.flowRadXYcomp.x = ofDataNew.flowRadXY.x + omegaAcrossFlowTime.x;
|
||
ofDataNew.flowRadXYcomp.y = ofDataNew.flowRadXY.y + omegaAcrossFlowTime.y;
|
||
// record time last observation was received so we can detect loss of data elsewhere
|
||
flowValidMeaTime_ms = imuSampleTime_ms;
|
||
// estimate sample time of the measurement
|
||
ofDataNew.time_ms = imuSampleTime_ms - frontend._flowDelay_ms - frontend.flowTimeDeltaAvg_ms/2;
|
||
// Save data to buffer
|
||
StoreOF();
|
||
// Check for data at the fusion time horizon
|
||
newDataFlow = RecallOF();
|
||
}
|
||
}
|
||
|
||
// store OF data in a history array
|
||
void NavEKF2_core::StoreOF()
|
||
{
|
||
if (ofStoreIndex >= OBS_BUFFER_LENGTH) {
|
||
ofStoreIndex = 0;
|
||
}
|
||
storedOF[ofStoreIndex] = ofDataNew;
|
||
ofStoreIndex += 1;
|
||
}
|
||
|
||
// return newest un-used optical flow data that has fallen behind the fusion time horizon
|
||
// if no un-used data is available behind the fusion horizon, return false
|
||
bool NavEKF2_core::RecallOF()
|
||
{
|
||
of_elements dataTemp;
|
||
of_elements dataTempZero;
|
||
dataTempZero.time_ms = 0;
|
||
uint32_t temp_ms = 0;
|
||
for (uint8_t i=0; i<OBS_BUFFER_LENGTH; i++) {
|
||
dataTemp = storedOF[i];
|
||
// find a measurement older than the fusion time horizon that we haven't checked before
|
||
if (dataTemp.time_ms != 0 && dataTemp.time_ms <= imuDataDelayed.time_ms) {
|
||
// zero the time stamp so we won't use it again
|
||
storedOF[i]=dataTempZero;
|
||
// Find the most recent non-stale measurement that meets the time horizon criteria
|
||
if (((imuDataDelayed.time_ms - dataTemp.time_ms) < 500) && dataTemp.time_ms > temp_ms) {
|
||
ofDataDelayed = dataTemp;
|
||
temp_ms = dataTemp.time_ms;
|
||
}
|
||
}
|
||
}
|
||
if (temp_ms != 0) {
|
||
return true;
|
||
} else {
|
||
return false;
|
||
}
|
||
}
|
||
|
||
/********************************************************
|
||
* FUSE MEASURED_DATA *
|
||
********************************************************/
|
||
// select fusion of velocity, position and height measurements
|
||
void NavEKF2_core::SelectVelPosFusion()
|
||
{
|
||
// check for and read new GPS data
|
||
readGpsData();
|
||
|
||
// Determine if we need to fuse position and velocity data on this time step
|
||
if (RecallGPS() && PV_AidingMode != AID_RELATIVE) {
|
||
// Don't fuse velocity data if GPS doesn't support it
|
||
// If no aiding is avaialble, then we use zeroed GPS position and elocity data to constrain
|
||
// tilt errors assuming that the vehicle is not accelerating
|
||
if (frontend._fusionModeGPS <= 1 || PV_AidingMode == AID_NONE) {
|
||
fuseVelData = true;
|
||
} else {
|
||
fuseVelData = false;
|
||
}
|
||
fusePosData = true;
|
||
} else {
|
||
fuseVelData = false;
|
||
fusePosData = false;
|
||
}
|
||
|
||
// check for and read new height data
|
||
readHgtData();
|
||
|
||
// If we haven't received height data for a while, then declare the height data as being timed out
|
||
// set timeout period based on whether we have vertical GPS velocity available to constrain drift
|
||
hgtRetryTime_ms = (useGpsVertVel && !velTimeout) ? frontend.hgtRetryTimeMode0_ms : frontend.hgtRetryTimeMode12_ms;
|
||
if (imuSampleTime_ms - lastHgtReceived_ms > hgtRetryTime_ms) {
|
||
hgtTimeout = true;
|
||
}
|
||
|
||
// command fusion of height data
|
||
// wait until the EKF time horizon catches up with the measurement
|
||
if (RecallBaro()) {
|
||
// enable fusion
|
||
fuseHgtData = true;
|
||
}
|
||
|
||
// perform fusion
|
||
if (fuseVelData || fusePosData || fuseHgtData) {
|
||
// ensure that the covariance prediction is up to date before fusing data
|
||
if (!covPredStep) CovariancePrediction();
|
||
FuseVelPosNED();
|
||
}
|
||
}
|
||
|
||
// fuse selected position, velocity and height measurements
|
||
void NavEKF2_core::FuseVelPosNED()
|
||
{
|
||
// start performance timer
|
||
perf_begin(_perf_FuseVelPosNED);
|
||
|
||
// health is set bad until test passed
|
||
velHealth = false;
|
||
posHealth = false;
|
||
hgtHealth = false;
|
||
|
||
// declare variables used to check measurement errors
|
||
Vector3f velInnov;
|
||
|
||
// declare variables used to control access to arrays
|
||
bool fuseData[6] = {false,false,false,false,false,false};
|
||
uint8_t stateIndex;
|
||
uint8_t obsIndex;
|
||
|
||
// declare variables used by state and covariance update calculations
|
||
float posErr;
|
||
Vector6 R_OBS; // Measurement variances used for fusion
|
||
Vector6 R_OBS_DATA_CHECKS; // Measurement variances used for data checks only
|
||
Vector6 observation;
|
||
float SK;
|
||
|
||
// perform sequential fusion of GPS measurements. This assumes that the
|
||
// errors in the different velocity and position components are
|
||
// uncorrelated which is not true, however in the absence of covariance
|
||
// data from the GPS receiver it is the only assumption we can make
|
||
// so we might as well take advantage of the computational efficiencies
|
||
// associated with sequential fusion
|
||
if (fuseVelData || fusePosData || fuseHgtData) {
|
||
|
||
// set the GPS data timeout depending on whether airspeed data is present
|
||
uint32_t gpsRetryTime;
|
||
if (useAirspeed()) gpsRetryTime = frontend.gpsRetryTimeUseTAS_ms;
|
||
else gpsRetryTime = frontend.gpsRetryTimeNoTAS_ms;
|
||
|
||
// form the observation vector and zero velocity and horizontal position observations if in constant position mode
|
||
// If in constant velocity mode, hold the last known horizontal velocity vector
|
||
if (PV_AidingMode == AID_ABSOLUTE) {
|
||
observation[0] = gpsDataDelayed.vel.x + gpsVelGlitchOffset.x;
|
||
observation[1] = gpsDataDelayed.vel.y + gpsVelGlitchOffset.y;
|
||
observation[2] = gpsDataDelayed.vel.z;
|
||
observation[3] = gpsDataDelayed.pos.x + gpsPosGlitchOffsetNE.x;
|
||
observation[4] = gpsDataDelayed.pos.y + gpsPosGlitchOffsetNE.y;
|
||
} else if (PV_AidingMode == AID_NONE) {
|
||
for (uint8_t i=0; i<=4; i++) observation[i] = 0.0f;
|
||
}
|
||
observation[5] = -baroDataDelayed.hgt;
|
||
|
||
// calculate additional error in GPS position caused by manoeuvring
|
||
posErr = frontend.gpsPosVarAccScale * accNavMag;
|
||
|
||
// estimate the GPS Velocity, GPS horiz position and height measurement variances.
|
||
// if the GPS is able to report a speed error, we use it to adjust the observation noise for GPS velocity
|
||
// otherwise we scale it using manoeuvre acceleration
|
||
if (gpsSpdAccuracy > 0.0f) {
|
||
// use GPS receivers reported speed accuracy - floor at value set by gps noise parameter
|
||
R_OBS[0] = sq(constrain_float(gpsSpdAccuracy, frontend._gpsHorizVelNoise, 50.0f));
|
||
R_OBS[2] = sq(constrain_float(gpsSpdAccuracy, frontend._gpsVertVelNoise, 50.0f));
|
||
} else {
|
||
// calculate additional error in GPS velocity caused by manoeuvring
|
||
R_OBS[0] = sq(constrain_float(frontend._gpsHorizVelNoise, 0.05f, 5.0f)) + sq(frontend.gpsNEVelVarAccScale * accNavMag);
|
||
R_OBS[2] = sq(constrain_float(frontend._gpsVertVelNoise, 0.05f, 5.0f)) + sq(frontend.gpsDVelVarAccScale * accNavMag);
|
||
}
|
||
R_OBS[1] = R_OBS[0];
|
||
R_OBS[3] = sq(constrain_float(frontend._gpsHorizPosNoise, 0.1f, 10.0f)) + sq(posErr);
|
||
R_OBS[4] = R_OBS[3];
|
||
R_OBS[5] = sq(constrain_float(frontend._baroAltNoise, 0.1f, 10.0f));
|
||
|
||
// reduce weighting (increase observation noise) on baro if we are likely to be in ground effect
|
||
if (getTakeoffExpected() || getTouchdownExpected()) {
|
||
R_OBS[5] *= frontend.gndEffectBaroScaler;
|
||
}
|
||
|
||
// For data integrity checks we use the same measurement variances as used to calculate the Kalman gains for all measurements except GPS horizontal velocity
|
||
// For horizontal GPs velocity we don't want the acceptance radius to increase with reported GPS accuracy so we use a value based on best GPs perfomrance
|
||
// plus a margin for manoeuvres. It is better to reject GPS horizontal velocity errors early
|
||
for (uint8_t i=0; i<=1; i++) R_OBS_DATA_CHECKS[i] = sq(constrain_float(frontend._gpsHorizVelNoise, 0.05f, 5.0f)) + sq(frontend.gpsNEVelVarAccScale * accNavMag);
|
||
for (uint8_t i=2; i<=5; i++) R_OBS_DATA_CHECKS[i] = R_OBS[i];
|
||
|
||
|
||
// if vertical GPS velocity data is being used, check to see if the GPS vertical velocity and barometer
|
||
// innovations have the same sign and are outside limits. If so, then it is likely aliasing is affecting
|
||
// the accelerometers and we should disable the GPS and barometer innovation consistency checks.
|
||
if (useGpsVertVel && fuseVelData && (imuSampleTime_ms - lastHgtReceived_ms) < (2 * frontend.hgtAvg_ms)) {
|
||
// calculate innovations for height and vertical GPS vel measurements
|
||
float hgtErr = stateStruct.position.z - observation[5];
|
||
float velDErr = stateStruct.velocity.z - observation[2];
|
||
// check if they are the same sign and both more than 3-sigma out of bounds
|
||
if ((hgtErr*velDErr > 0.0f) && (sq(hgtErr) > 9.0f * (P[8][8] + R_OBS_DATA_CHECKS[5])) && (sq(velDErr) > 9.0f * (P[5][5] + R_OBS_DATA_CHECKS[2]))) {
|
||
badIMUdata = true;
|
||
} else {
|
||
badIMUdata = false;
|
||
}
|
||
}
|
||
|
||
// calculate innovations and check GPS data validity using an innovation consistency check
|
||
// test position measurements
|
||
if (fusePosData) {
|
||
// test horizontal position measurements
|
||
innovVelPos[3] = stateStruct.position.x - observation[3];
|
||
innovVelPos[4] = stateStruct.position.y - observation[4];
|
||
varInnovVelPos[3] = P[6][6] + R_OBS_DATA_CHECKS[3];
|
||
varInnovVelPos[4] = P[7][7] + R_OBS_DATA_CHECKS[4];
|
||
// apply an innovation consistency threshold test, but don't fail if bad IMU data
|
||
float maxPosInnov2 = sq(frontend._gpsPosInnovGate)*(varInnovVelPos[3] + varInnovVelPos[4]);
|
||
posTestRatio = (sq(innovVelPos[3]) + sq(innovVelPos[4])) / maxPosInnov2;
|
||
posHealth = ((posTestRatio < 1.0f) || badIMUdata);
|
||
// declare a timeout condition if we have been too long without data or not aiding
|
||
posTimeout = (((imuSampleTime_ms - lastPosPassTime_ms) > gpsRetryTime) || PV_AidingMode == AID_NONE);
|
||
// use position data if healthy, timed out, or in constant position mode
|
||
if (posHealth || posTimeout || (PV_AidingMode == AID_NONE)) {
|
||
posHealth = true;
|
||
// only reset the failed time and do glitch timeout checks if we are doing full aiding
|
||
if (PV_AidingMode == AID_ABSOLUTE) {
|
||
lastPosPassTime_ms = imuSampleTime_ms;
|
||
// if timed out or outside the specified uncertainty radius, increment the offset applied to GPS data to compensate for large GPS position jumps
|
||
if (posTimeout || ((varInnovVelPos[3] + varInnovVelPos[4]) > sq(float(frontend._gpsGlitchRadiusMax)))) {
|
||
gpsPosGlitchOffsetNE.x += innovVelPos[3];
|
||
gpsPosGlitchOffsetNE.y += innovVelPos[4];
|
||
// limit the radius of the offset and decay the offset to zero radially
|
||
decayGpsOffset();
|
||
// reset the position to the current GPS position which will include the glitch correction offset
|
||
ResetPosition();
|
||
// reset the velocity to the GPS velocity
|
||
ResetVelocity();
|
||
// don't fuse data on this time step
|
||
fusePosData = false;
|
||
// Reset the normalised innovation to avoid false failing the bad position fusion test
|
||
posTestRatio = 0.0f;
|
||
velTestRatio = 0.0f;
|
||
}
|
||
}
|
||
} else {
|
||
posHealth = false;
|
||
}
|
||
}
|
||
|
||
// test velocity measurements
|
||
if (fuseVelData) {
|
||
// test velocity measurements
|
||
uint8_t imax = 2;
|
||
if (frontend._fusionModeGPS == 1) {
|
||
imax = 1;
|
||
}
|
||
float innovVelSumSq = 0; // sum of squares of velocity innovations
|
||
float varVelSum = 0; // sum of velocity innovation variances
|
||
for (uint8_t i = 0; i<=imax; i++) {
|
||
// velocity states start at index 3
|
||
stateIndex = i + 3;
|
||
// calculate innovations using blended and single IMU predicted states
|
||
velInnov[i] = stateStruct.velocity[i] - observation[i]; // blended
|
||
// calculate innovation variance
|
||
varInnovVelPos[i] = P[stateIndex][stateIndex] + R_OBS_DATA_CHECKS[i];
|
||
// sum the innovation and innovation variances
|
||
innovVelSumSq += sq(velInnov[i]);
|
||
varVelSum += varInnovVelPos[i];
|
||
}
|
||
// apply an innovation consistency threshold test, but don't fail if bad IMU data
|
||
// calculate the test ratio
|
||
velTestRatio = innovVelSumSq / (varVelSum * sq(frontend._gpsVelInnovGate));
|
||
// fail if the ratio is greater than 1
|
||
velHealth = ((velTestRatio < 1.0f) || badIMUdata);
|
||
// declare a timeout if we have not fused velocity data for too long or not aiding
|
||
velTimeout = (((imuSampleTime_ms - lastVelPassTime_ms) > gpsRetryTime) || PV_AidingMode == AID_NONE);
|
||
// if data is healthy or in constant velocity mode we fuse it
|
||
if (velHealth || velTimeout) {
|
||
velHealth = true;
|
||
// restart the timeout count
|
||
lastVelPassTime_ms = imuSampleTime_ms;
|
||
} else if (velTimeout && !posHealth && PV_AidingMode == AID_ABSOLUTE) {
|
||
// if data is not healthy and timed out and position is unhealthy and we are using aiding, we reset the velocity, but do not fuse data on this time step
|
||
ResetVelocity();
|
||
fuseVelData = false;
|
||
// Reset the normalised innovation to avoid false failing the bad position fusion test
|
||
velTestRatio = 0.0f;
|
||
} else {
|
||
// if data is unhealthy and position is healthy, we do not fuse it
|
||
velHealth = false;
|
||
}
|
||
}
|
||
|
||
// test height measurements
|
||
if (fuseHgtData) {
|
||
// calculate height innovations
|
||
innovVelPos[5] = stateStruct.position.z - observation[5];
|
||
|
||
varInnovVelPos[5] = P[8][8] + R_OBS_DATA_CHECKS[5];
|
||
// calculate the innovation consistency test ratio
|
||
hgtTestRatio = sq(innovVelPos[5]) / (sq(frontend._hgtInnovGate) * varInnovVelPos[5]);
|
||
// fail if the ratio is > 1, but don't fail if bad IMU data
|
||
hgtHealth = ((hgtTestRatio < 1.0f) || badIMUdata);
|
||
hgtTimeout = (imuSampleTime_ms - lastHgtPassTime_ms) > hgtRetryTime_ms;
|
||
// Fuse height data if healthy or timed out or in constant position mode
|
||
if (hgtHealth || hgtTimeout || (PV_AidingMode == AID_NONE)) {
|
||
hgtHealth = true;
|
||
lastHgtPassTime_ms = imuSampleTime_ms;
|
||
// if timed out, reset the height, but do not fuse data on this time step
|
||
if (hgtTimeout) {
|
||
ResetHeight();
|
||
fuseHgtData = false;
|
||
}
|
||
}
|
||
else {
|
||
hgtHealth = false;
|
||
}
|
||
}
|
||
|
||
// set range for sequential fusion of velocity and position measurements depending on which data is available and its health
|
||
if (fuseVelData && velHealth) {
|
||
fuseData[0] = true;
|
||
fuseData[1] = true;
|
||
if (useGpsVertVel) {
|
||
fuseData[2] = true;
|
||
}
|
||
tiltErrVec.zero();
|
||
}
|
||
if (fusePosData && posHealth) {
|
||
fuseData[3] = true;
|
||
fuseData[4] = true;
|
||
tiltErrVec.zero();
|
||
}
|
||
if (fuseHgtData && hgtHealth) {
|
||
fuseData[5] = true;
|
||
}
|
||
|
||
// fuse measurements sequentially
|
||
for (obsIndex=0; obsIndex<=5; obsIndex++) {
|
||
if (fuseData[obsIndex]) {
|
||
stateIndex = 3 + obsIndex;
|
||
// calculate the measurement innovation, using states from a different time coordinate if fusing height data
|
||
// adjust scaling on GPS measurement noise variances if not enough satellites
|
||
if (obsIndex <= 2)
|
||
{
|
||
innovVelPos[obsIndex] = stateStruct.velocity[obsIndex] - observation[obsIndex];
|
||
R_OBS[obsIndex] *= sq(gpsNoiseScaler);
|
||
}
|
||
else if (obsIndex == 3 || obsIndex == 4) {
|
||
innovVelPos[obsIndex] = stateStruct.position[obsIndex-3] - observation[obsIndex];
|
||
R_OBS[obsIndex] *= sq(gpsNoiseScaler);
|
||
} else {
|
||
innovVelPos[obsIndex] = stateStruct.position[obsIndex-3] - observation[obsIndex];
|
||
if (obsIndex == 5) {
|
||
const float gndMaxBaroErr = 4.0f;
|
||
const float gndBaroInnovFloor = -0.5f;
|
||
|
||
if(getTouchdownExpected()) {
|
||
// when a touchdown is expected, floor the barometer innovation at gndBaroInnovFloor
|
||
// constrain the correction between 0 and gndBaroInnovFloor+gndMaxBaroErr
|
||
// this function looks like this:
|
||
// |/
|
||
//---------|---------
|
||
// ____/|
|
||
// / |
|
||
// / |
|
||
innovVelPos[5] += constrain_float(-innovVelPos[5]+gndBaroInnovFloor, 0.0f, gndBaroInnovFloor+gndMaxBaroErr);
|
||
}
|
||
}
|
||
}
|
||
|
||
// calculate the Kalman gain and calculate innovation variances
|
||
varInnovVelPos[obsIndex] = P[stateIndex][stateIndex] + R_OBS[obsIndex];
|
||
SK = 1.0f/varInnovVelPos[obsIndex];
|
||
for (uint8_t i= 0; i<=15; i++) {
|
||
Kfusion[i] = P[i][stateIndex]*SK;
|
||
}
|
||
|
||
// inhibit magnetic field state estimation by setting Kalman gains to zero
|
||
if (!inhibitMagStates) {
|
||
for (uint8_t i = 16; i<=21; i++) {
|
||
Kfusion[i] = P[i][stateIndex]*SK;
|
||
}
|
||
} else {
|
||
for (uint8_t i = 16; i<=21; i++) {
|
||
Kfusion[i] = 0.0f;
|
||
}
|
||
}
|
||
|
||
// inhibit wind state estimation by setting Kalman gains to zero
|
||
if (!inhibitWindStates) {
|
||
Kfusion[22] = P[22][stateIndex]*SK;
|
||
Kfusion[23] = P[23][stateIndex]*SK;
|
||
} else {
|
||
Kfusion[22] = 0.0f;
|
||
Kfusion[23] = 0.0f;
|
||
}
|
||
|
||
// zero the attitude error state - by definition it is assumed to be zero before each observaton fusion
|
||
stateStruct.angErr.zero();
|
||
|
||
// calculate state corrections and re-normalise the quaternions for states predicted using the blended IMU data
|
||
// Don't apply corrections to Z bias state as this has been done already as part of the single IMU calculations
|
||
for (uint8_t i = 0; i<=stateIndexLim; i++) {
|
||
statesArray[i] = statesArray[i] - Kfusion[i] * innovVelPos[obsIndex];
|
||
}
|
||
|
||
// the first 3 states represent the angular misalignment vector. This is
|
||
// is used to correct the estimated quaternion
|
||
stateStruct.quat.rotate(stateStruct.angErr);
|
||
|
||
// sum the attitude error from velocity and position fusion only
|
||
// used as a metric for convergence monitoring
|
||
if (obsIndex != 5) {
|
||
tiltErrVec += stateStruct.angErr;
|
||
}
|
||
|
||
// update the covariance - take advantage of direct observation of a single state at index = stateIndex to reduce computations
|
||
// this is a numerically optimised implementation of standard equation P = (I - K*H)*P;
|
||
for (uint8_t i= 0; i<=stateIndexLim; i++) {
|
||
for (uint8_t j= 0; j<=stateIndexLim; j++)
|
||
{
|
||
KHP[i][j] = Kfusion[i] * P[stateIndex][j];
|
||
}
|
||
}
|
||
for (uint8_t i= 0; i<=stateIndexLim; i++) {
|
||
for (uint8_t j= 0; j<=stateIndexLim; j++) {
|
||
P[i][j] = P[i][j] - KHP[i][j];
|
||
}
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
// force the covariance matrix to be symmetrical and limit the variances to prevent ill-condiioning.
|
||
ForceSymmetry();
|
||
ConstrainVariances();
|
||
|
||
// stop performance timer
|
||
perf_end(_perf_FuseVelPosNED);
|
||
}
|
||
|
||
// select fusion of optical flow measurements
|
||
void NavEKF2_core::SelectFlowFusion()
|
||
{
|
||
// start performance timer
|
||
perf_begin(_perf_FuseOptFlow);
|
||
// Perform Data Checks
|
||
// Check if the optical flow data is still valid
|
||
flowDataValid = ((imuSampleTime_ms - flowValidMeaTime_ms) < 1000);
|
||
// Check if the optical flow sensor has timed out
|
||
bool flowSensorTimeout = ((imuSampleTime_ms - flowValidMeaTime_ms) > 5000);
|
||
// Check if the fusion has timed out (flow measurements have been rejected for too long)
|
||
bool flowFusionTimeout = ((imuSampleTime_ms - prevFlowFuseTime_ms) > 5000);
|
||
// check is the terrain offset estimate is still valid
|
||
gndOffsetValid = ((imuSampleTime_ms - gndHgtValidTime_ms) < 5000);
|
||
// Perform tilt check
|
||
bool tiltOK = (Tnb_flow.c.z > frontend.DCM33FlowMin);
|
||
// Constrain measurements to zero if we are using optical flow and are on the ground
|
||
if (frontend._fusionModeGPS == 3 && !takeOffDetected && isAiding) {
|
||
ofDataDelayed.flowRadXYcomp.zero();
|
||
ofDataDelayed.flowRadXY.zero();
|
||
flowDataValid = true;
|
||
}
|
||
|
||
// If the flow measurements have been rejected for too long and we are relying on them, then revert to constant position mode
|
||
if ((flowSensorTimeout || flowFusionTimeout) && PV_AidingMode == AID_RELATIVE) {
|
||
PV_AidingMode = AID_NONE;
|
||
// reset the velocity
|
||
ResetVelocity();
|
||
// store the current position to be used to as a sythetic position measurement
|
||
lastKnownPositionNE.x = stateStruct.position.x;
|
||
lastKnownPositionNE.y = stateStruct.position.y;
|
||
// reset the position
|
||
ResetPosition();
|
||
}
|
||
|
||
// if we do have valid flow measurements, fuse data into a 1-state EKF to estimate terrain height
|
||
// we don't do terrain height estimation in optical flow only mode as the ground becomes our zero height reference
|
||
if ((newDataFlow || newDataRng) && tiltOK) {
|
||
// fuse range data into the terrain estimator if available
|
||
fuseRngData = newDataRng;
|
||
// fuse optical flow data into the terrain estimator if available and if there is no range data (range data is better)
|
||
fuseOptFlowData = (newDataFlow && !fuseRngData);
|
||
// Estimate the terrain offset (runs a one state EKF)
|
||
EstimateTerrainOffset();
|
||
// Indicate we have used the range data
|
||
newDataRng = false;
|
||
}
|
||
|
||
// Fuse optical flow data into the main filter if not excessively tilted and we are in the correct mode
|
||
if (newDataFlow && tiltOK && PV_AidingMode == AID_RELATIVE)
|
||
{
|
||
// Set the flow noise used by the fusion processes
|
||
R_LOS = sq(max(frontend._flowNoise, 0.05f));
|
||
// ensure that the covariance prediction is up to date before fusing data
|
||
if (!covPredStep) CovariancePrediction();
|
||
// Fuse the optical flow X and Y axis data into the main filter sequentially
|
||
FuseOptFlow();
|
||
// reset flag to indicate that no new flow data is available for fusion
|
||
newDataFlow = false;
|
||
}
|
||
|
||
// stop the performance timer
|
||
perf_end(_perf_FuseOptFlow);
|
||
}
|
||
|
||
/*
|
||
Estimation of terrain offset using a single state EKF
|
||
The filter can fuse motion compensated optiocal flow rates and range finder measurements
|
||
*/
|
||
void NavEKF2_core::EstimateTerrainOffset()
|
||
{
|
||
// start performance timer
|
||
perf_begin(_perf_OpticalFlowEKF);
|
||
|
||
// constrain height above ground to be above range measured on ground
|
||
float heightAboveGndEst = max((terrainState - stateStruct.position.z), rngOnGnd);
|
||
|
||
// calculate a predicted LOS rate squared
|
||
float velHorizSq = sq(stateStruct.velocity.x) + sq(stateStruct.velocity.y);
|
||
float losRateSq = velHorizSq / sq(heightAboveGndEst);
|
||
|
||
// don't update terrain offset state if there is no range finder and not generating enough LOS rate, or without GPS, as it is poorly observable
|
||
if (!fuseRngData && (gpsNotAvailable || PV_AidingMode == AID_RELATIVE || velHorizSq < 25.0f || losRateSq < 0.01f)) {
|
||
inhibitGndState = true;
|
||
} else {
|
||
inhibitGndState = false;
|
||
// record the time we last updated the terrain offset state
|
||
gndHgtValidTime_ms = imuSampleTime_ms;
|
||
|
||
// propagate ground position state noise each time this is called using the difference in position since the last observations and an RMS gradient assumption
|
||
// limit distance to prevent intialisation afer bad gps causing bad numerical conditioning
|
||
float distanceTravelledSq = sq(stateStruct.position[0] - prevPosN) + sq(stateStruct.position[1] - prevPosE);
|
||
distanceTravelledSq = min(distanceTravelledSq, 100.0f);
|
||
prevPosN = stateStruct.position[0];
|
||
prevPosE = stateStruct.position[1];
|
||
|
||
// in addition to a terrain gradient error model, we also have a time based error growth that is scaled using the gradient parameter
|
||
float timeLapsed = min(0.001f * (imuSampleTime_ms - timeAtLastAuxEKF_ms), 1.0f);
|
||
float Pincrement = (distanceTravelledSq * sq(0.01f*float(frontend.gndGradientSigma))) + sq(float(frontend.gndGradientSigma) * timeLapsed);
|
||
Popt += Pincrement;
|
||
timeAtLastAuxEKF_ms = imuSampleTime_ms;
|
||
|
||
// fuse range finder data
|
||
if (fuseRngData) {
|
||
// predict range
|
||
float predRngMeas = max((terrainState - stateStruct.position[2]),rngOnGnd) / Tnb_flow.c.z;
|
||
|
||
// Copy required states to local variable names
|
||
float q0 = stateStruct.quat[0]; // quaternion at optical flow measurement time
|
||
float q1 = stateStruct.quat[1]; // quaternion at optical flow measurement time
|
||
float q2 = stateStruct.quat[2]; // quaternion at optical flow measurement time
|
||
float q3 = stateStruct.quat[3]; // quaternion at optical flow measurement time
|
||
|
||
// Set range finder measurement noise variance. TODO make this a function of range and tilt to allow for sensor, alignment and AHRS errors
|
||
float R_RNG = frontend._rngNoise;
|
||
|
||
// calculate Kalman gain
|
||
float SK_RNG = sq(q0) - sq(q1) - sq(q2) + sq(q3);
|
||
float K_RNG = Popt/(SK_RNG*(R_RNG + Popt/sq(SK_RNG)));
|
||
|
||
// Calculate the innovation variance for data logging
|
||
varInnovRng = (R_RNG + Popt/sq(SK_RNG));
|
||
|
||
// constrain terrain height to be below the vehicle
|
||
terrainState = max(terrainState, stateStruct.position[2] + rngOnGnd);
|
||
|
||
// Calculate the measurement innovation
|
||
innovRng = predRngMeas - rngMea;
|
||
|
||
// calculate the innovation consistency test ratio
|
||
auxRngTestRatio = sq(innovRng) / (sq(frontend._rngInnovGate) * varInnovRng);
|
||
|
||
// Check the innovation for consistency and don't fuse if > 5Sigma
|
||
if ((sq(innovRng)*SK_RNG) < 25.0f)
|
||
{
|
||
// correct the state
|
||
terrainState -= K_RNG * innovRng;
|
||
|
||
// constrain the state
|
||
terrainState = max(terrainState, stateStruct.position[2] + rngOnGnd);
|
||
|
||
// correct the covariance
|
||
Popt = Popt - sq(Popt)/(SK_RNG*(R_RNG + Popt/sq(SK_RNG))*(sq(q0) - sq(q1) - sq(q2) + sq(q3)));
|
||
|
||
// prevent the state variance from becoming negative
|
||
Popt = max(Popt,0.0f);
|
||
|
||
}
|
||
}
|
||
|
||
if (fuseOptFlowData) {
|
||
|
||
Vector3f vel; // velocity of sensor relative to ground in NED axes
|
||
Vector3f relVelSensor; // velocity of sensor relative to ground in sensor axes
|
||
float losPred; // predicted optical flow angular rate measurement
|
||
float q0 = stateStruct.quat[0]; // quaternion at optical flow measurement time
|
||
float q1 = stateStruct.quat[1]; // quaternion at optical flow measurement time
|
||
float q2 = stateStruct.quat[2]; // quaternion at optical flow measurement time
|
||
float q3 = stateStruct.quat[3]; // quaternion at optical flow measurement time
|
||
float K_OPT;
|
||
float H_OPT;
|
||
|
||
// Correct velocities for GPS glitch recovery offset
|
||
vel.x = stateStruct.velocity[0] - gpsVelGlitchOffset.x;
|
||
vel.y = stateStruct.velocity[1] - gpsVelGlitchOffset.y;
|
||
vel.z = stateStruct.velocity[2];
|
||
|
||
// predict range to centre of image
|
||
float flowRngPred = max((terrainState - stateStruct.position[2]),rngOnGnd) / Tnb_flow.c.z;
|
||
|
||
// constrain terrain height to be below the vehicle
|
||
terrainState = max(terrainState, stateStruct.position[2] + rngOnGnd);
|
||
|
||
// calculate relative velocity in sensor frame
|
||
relVelSensor = Tnb_flow*vel;
|
||
|
||
// divide velocity by range, subtract body rates and apply scale factor to
|
||
// get predicted sensed angular optical rates relative to X and Y sensor axes
|
||
losPred = relVelSensor.length()/flowRngPred;
|
||
|
||
// calculate innovations
|
||
auxFlowObsInnov = losPred - sqrtf(sq(flowRadXYcomp[0]) + sq(flowRadXYcomp[1]));
|
||
|
||
// calculate observation jacobian
|
||
float t3 = sq(q0);
|
||
float t4 = sq(q1);
|
||
float t5 = sq(q2);
|
||
float t6 = sq(q3);
|
||
float t10 = q0*q3*2.0f;
|
||
float t11 = q1*q2*2.0f;
|
||
float t14 = t3+t4-t5-t6;
|
||
float t15 = t14*vel.x;
|
||
float t16 = t10+t11;
|
||
float t17 = t16*vel.y;
|
||
float t18 = q0*q2*2.0f;
|
||
float t19 = q1*q3*2.0f;
|
||
float t20 = t18-t19;
|
||
float t21 = t20*vel.z;
|
||
float t2 = t15+t17-t21;
|
||
float t7 = t3-t4-t5+t6;
|
||
float t8 = stateStruct.position[2]-terrainState;
|
||
float t9 = 1.0f/sq(t8);
|
||
float t24 = t3-t4+t5-t6;
|
||
float t25 = t24*vel.y;
|
||
float t26 = t10-t11;
|
||
float t27 = t26*vel.x;
|
||
float t28 = q0*q1*2.0f;
|
||
float t29 = q2*q3*2.0f;
|
||
float t30 = t28+t29;
|
||
float t31 = t30*vel.z;
|
||
float t12 = t25-t27+t31;
|
||
float t13 = sq(t7);
|
||
float t22 = sq(t2);
|
||
float t23 = 1.0f/(t8*t8*t8);
|
||
float t32 = sq(t12);
|
||
H_OPT = 0.5f*(t13*t22*t23*2.0f+t13*t23*t32*2.0f)/sqrtf(t9*t13*t22+t9*t13*t32);
|
||
|
||
// calculate innovation variances
|
||
auxFlowObsInnovVar = H_OPT*Popt*H_OPT + R_LOS;
|
||
|
||
// calculate Kalman gain
|
||
K_OPT = Popt*H_OPT/auxFlowObsInnovVar;
|
||
|
||
// calculate the innovation consistency test ratio
|
||
auxFlowTestRatio = sq(auxFlowObsInnov) / (sq(frontend._flowInnovGate) * auxFlowObsInnovVar);
|
||
|
||
// don't fuse if optical flow data is outside valid range
|
||
if (max(flowRadXY[0],flowRadXY[1]) < frontend._maxFlowRate) {
|
||
|
||
// correct the state
|
||
terrainState -= K_OPT * auxFlowObsInnov;
|
||
|
||
// constrain the state
|
||
terrainState = max(terrainState, stateStruct.position[2] + rngOnGnd);
|
||
|
||
// correct the covariance
|
||
Popt = Popt - K_OPT * H_OPT * Popt;
|
||
|
||
// prevent the state variances from becoming negative
|
||
Popt = max(Popt,0.0f);
|
||
}
|
||
}
|
||
}
|
||
|
||
// stop the performance timer
|
||
perf_end(_perf_OpticalFlowEKF);
|
||
}
|
||
|
||
/*
|
||
Fuse angular motion compensated optical flow rates into the main filter.
|
||
Requires a valid terrain height estimate.
|
||
*/
|
||
void NavEKF2_core::FuseOptFlow()
|
||
{
|
||
Vector24 H_LOS;
|
||
Vector3f velNED_local;
|
||
Vector3f relVelSensor;
|
||
Vector14 SH_LOS;
|
||
Vector2 losPred;
|
||
|
||
// Copy required states to local variable names
|
||
float q0 = stateStruct.quat[0];
|
||
float q1 = stateStruct.quat[1];
|
||
float q2 = stateStruct.quat[2];
|
||
float q3 = stateStruct.quat[3];
|
||
float vn = stateStruct.velocity.x;
|
||
float ve = stateStruct.velocity.y;
|
||
float vd = stateStruct.velocity.z;
|
||
float pd = stateStruct.position.z;
|
||
|
||
// Correct velocities for GPS glitch recovery offset
|
||
velNED_local.x = vn - gpsVelGlitchOffset.x;
|
||
velNED_local.y = ve - gpsVelGlitchOffset.y;
|
||
velNED_local.z = vd;
|
||
|
||
// constrain height above ground to be above range measured on ground
|
||
float heightAboveGndEst = max((terrainState - pd), rngOnGnd);
|
||
float ptd = pd + heightAboveGndEst;
|
||
|
||
// Calculate common expressions for observation jacobians
|
||
SH_LOS[0] = sq(q0) - sq(q1) - sq(q2) + sq(q3);
|
||
SH_LOS[1] = vn*(sq(q0) + sq(q1) - sq(q2) - sq(q3)) - vd*(2*q0*q2 - 2*q1*q3) + ve*(2*q0*q3 + 2*q1*q2);
|
||
SH_LOS[2] = ve*(sq(q0) - sq(q1) + sq(q2) - sq(q3)) + vd*(2*q0*q1 + 2*q2*q3) - vn*(2*q0*q3 - 2*q1*q2);
|
||
SH_LOS[3] = 1/(pd - ptd);
|
||
SH_LOS[4] = vd*SH_LOS[0] - ve*(2*q0*q1 - 2*q2*q3) + vn*(2*q0*q2 + 2*q1*q3);
|
||
SH_LOS[5] = 2.0f*q0*q2 - 2.0f*q1*q3;
|
||
SH_LOS[6] = 2.0f*q0*q1 + 2.0f*q2*q3;
|
||
SH_LOS[7] = q0*q0;
|
||
SH_LOS[8] = q1*q1;
|
||
SH_LOS[9] = q2*q2;
|
||
SH_LOS[10] = q3*q3;
|
||
SH_LOS[11] = q0*q3*2.0f;
|
||
SH_LOS[12] = pd-ptd;
|
||
SH_LOS[13] = 1.0f/(SH_LOS[12]*SH_LOS[12]);
|
||
|
||
// Fuse X and Y axis measurements sequentially assuming observation errors are uncorrelated
|
||
for (uint8_t obsIndex=0; obsIndex<=1; obsIndex++) { // fuse X axis data first
|
||
// calculate range from ground plain to centre of sensor fov assuming flat earth
|
||
float range = constrain_float((heightAboveGndEst/Tnb_flow.c.z),rngOnGnd,1000.0f);
|
||
|
||
// calculate relative velocity in sensor frame
|
||
relVelSensor = Tnb_flow*velNED_local;
|
||
|
||
// divide velocity by range to get predicted angular LOS rates relative to X and Y axes
|
||
losPred[0] = relVelSensor.y/range;
|
||
losPred[1] = -relVelSensor.x/range;
|
||
|
||
// calculate observation jacobians and Kalman gains
|
||
memset(&H_LOS[0], 0, sizeof(H_LOS));
|
||
if (obsIndex == 0) {
|
||
H_LOS[0] = SH_LOS[3]*SH_LOS[2]*SH_LOS[6]-SH_LOS[3]*SH_LOS[0]*SH_LOS[4];
|
||
H_LOS[1] = SH_LOS[3]*SH_LOS[2]*SH_LOS[5];
|
||
H_LOS[2] = SH_LOS[3]*SH_LOS[0]*SH_LOS[1];
|
||
H_LOS[3] = SH_LOS[3]*SH_LOS[0]*(SH_LOS[11]-q1*q2*2.0f);
|
||
H_LOS[4] = -SH_LOS[3]*SH_LOS[0]*(SH_LOS[7]-SH_LOS[8]+SH_LOS[9]-SH_LOS[10]);
|
||
H_LOS[5] = -SH_LOS[3]*SH_LOS[0]*SH_LOS[6];
|
||
H_LOS[8] = SH_LOS[2]*SH_LOS[0]*SH_LOS[13];
|
||
|
||
float t2 = SH_LOS[3];
|
||
float t3 = SH_LOS[0];
|
||
float t4 = SH_LOS[2];
|
||
float t5 = SH_LOS[6];
|
||
float t100 = t2 * t3 * t5;
|
||
float t6 = SH_LOS[4];
|
||
float t7 = t2*t3*t6;
|
||
float t9 = t2*t4*t5;
|
||
float t8 = t7-t9;
|
||
float t10 = q0*q3*2.0f;
|
||
float t21 = q1*q2*2.0f;
|
||
float t11 = t10-t21;
|
||
float t101 = t2 * t3 * t11;
|
||
float t12 = pd-ptd;
|
||
float t13 = 1.0f/(t12*t12);
|
||
float t104 = t3 * t4 * t13;
|
||
float t14 = SH_LOS[5];
|
||
float t102 = t2 * t4 * t14;
|
||
float t15 = SH_LOS[1];
|
||
float t103 = t2 * t3 * t15;
|
||
float t16 = q0*q0;
|
||
float t17 = q1*q1;
|
||
float t18 = q2*q2;
|
||
float t19 = q3*q3;
|
||
float t20 = t16-t17+t18-t19;
|
||
float t105 = t2 * t3 * t20;
|
||
float t22 = P[1][1]*t102;
|
||
float t23 = P[3][0]*t101;
|
||
float t24 = P[8][0]*t104;
|
||
float t25 = P[1][0]*t102;
|
||
float t26 = P[2][0]*t103;
|
||
float t63 = P[0][0]*t8;
|
||
float t64 = P[5][0]*t100;
|
||
float t65 = P[4][0]*t105;
|
||
float t27 = t23+t24+t25+t26-t63-t64-t65;
|
||
float t28 = P[3][3]*t101;
|
||
float t29 = P[8][3]*t104;
|
||
float t30 = P[1][3]*t102;
|
||
float t31 = P[2][3]*t103;
|
||
float t67 = P[0][3]*t8;
|
||
float t68 = P[5][3]*t100;
|
||
float t69 = P[4][3]*t105;
|
||
float t32 = t28+t29+t30+t31-t67-t68-t69;
|
||
float t33 = t101*t32;
|
||
float t34 = P[3][8]*t101;
|
||
float t35 = P[8][8]*t104;
|
||
float t36 = P[1][8]*t102;
|
||
float t37 = P[2][8]*t103;
|
||
float t70 = P[0][8]*t8;
|
||
float t71 = P[5][8]*t100;
|
||
float t72 = P[4][8]*t105;
|
||
float t38 = t34+t35+t36+t37-t70-t71-t72;
|
||
float t39 = t104*t38;
|
||
float t40 = P[3][1]*t101;
|
||
float t41 = P[8][1]*t104;
|
||
float t42 = P[2][1]*t103;
|
||
float t73 = P[0][1]*t8;
|
||
float t74 = P[5][1]*t100;
|
||
float t75 = P[4][1]*t105;
|
||
float t43 = t22+t40+t41+t42-t73-t74-t75;
|
||
float t44 = t102*t43;
|
||
float t45 = P[3][2]*t101;
|
||
float t46 = P[8][2]*t104;
|
||
float t47 = P[1][2]*t102;
|
||
float t48 = P[2][2]*t103;
|
||
float t76 = P[0][2]*t8;
|
||
float t77 = P[5][2]*t100;
|
||
float t78 = P[4][2]*t105;
|
||
float t49 = t45+t46+t47+t48-t76-t77-t78;
|
||
float t50 = t103*t49;
|
||
float t51 = P[3][5]*t101;
|
||
float t52 = P[8][5]*t104;
|
||
float t53 = P[1][5]*t102;
|
||
float t54 = P[2][5]*t103;
|
||
float t79 = P[0][5]*t8;
|
||
float t80 = P[5][5]*t100;
|
||
float t81 = P[4][5]*t105;
|
||
float t55 = t51+t52+t53+t54-t79-t80-t81;
|
||
float t56 = P[3][4]*t101;
|
||
float t57 = P[8][4]*t104;
|
||
float t58 = P[1][4]*t102;
|
||
float t59 = P[2][4]*t103;
|
||
float t83 = P[0][4]*t8;
|
||
float t84 = P[5][4]*t100;
|
||
float t85 = P[4][4]*t105;
|
||
float t60 = t56+t57+t58+t59-t83-t84-t85;
|
||
float t66 = t8*t27;
|
||
float t82 = t100*t55;
|
||
float t86 = t105*t60;
|
||
float t61 = R_LOS+t33+t39+t44+t50-t66-t82-t86;
|
||
float t62 = 1.0f/t61;
|
||
|
||
// calculate innovation variance for X axis observation and protect against a badly conditioned calculation
|
||
if (t61 > R_LOS) {
|
||
t62 = 1.0f/t61;
|
||
} else {
|
||
t61 = 0.0f;
|
||
t62 = 1.0f/R_LOS;
|
||
}
|
||
varInnovOptFlow[0] = t61;
|
||
|
||
// calculate innovation for X axis observation
|
||
innovOptFlow[0] = losPred[0] - ofDataDelayed.flowRadXYcomp.x;
|
||
|
||
// calculate Kalman gains for X-axis observation
|
||
Kfusion[0] = t62*(-P[0][0]*t8-P[0][5]*t100+P[0][3]*t101+P[0][1]*t102+P[0][2]*t103+P[0][8]*t104-P[0][4]*t105);
|
||
Kfusion[1] = t62*(t22-P[1][0]*t8-P[1][5]*t100+P[1][3]*t101+P[1][2]*t103+P[1][8]*t104-P[1][4]*t105);
|
||
Kfusion[2] = t62*(t48-P[2][0]*t8-P[2][5]*t100+P[2][3]*t101+P[2][1]*t102+P[2][8]*t104-P[2][4]*t105);
|
||
Kfusion[3] = t62*(t28-P[3][0]*t8-P[3][5]*t100+P[3][1]*t102+P[3][2]*t103+P[3][8]*t104-P[3][4]*t105);
|
||
Kfusion[4] = t62*(-t85-P[4][0]*t8-P[4][5]*t100+P[4][3]*t101+P[4][1]*t102+P[4][2]*t103+P[4][8]*t104);
|
||
Kfusion[5] = t62*(-t80-P[5][0]*t8+P[5][3]*t101+P[5][1]*t102+P[5][2]*t103+P[5][8]*t104-P[5][4]*t105);
|
||
Kfusion[6] = t62*(-P[6][0]*t8-P[6][5]*t100+P[6][3]*t101+P[6][1]*t102+P[6][2]*t103+P[6][8]*t104-P[6][4]*t105);
|
||
Kfusion[7] = t62*(-P[7][0]*t8-P[7][5]*t100+P[7][3]*t101+P[7][1]*t102+P[7][2]*t103+P[7][8]*t104-P[7][4]*t105);
|
||
Kfusion[8] = t62*(t35-P[8][0]*t8-P[8][5]*t100+P[8][3]*t101+P[8][1]*t102+P[8][2]*t103-P[8][4]*t105);
|
||
Kfusion[9] = t62*(-P[9][0]*t8-P[9][5]*t100+P[9][3]*t101+P[9][1]*t102+P[9][2]*t103+P[9][8]*t104-P[9][4]*t105);
|
||
Kfusion[10] = t62*(-P[10][0]*t8-P[10][5]*t100+P[10][3]*t101+P[10][1]*t102+P[10][2]*t103+P[10][8]*t104-P[10][4]*t105);
|
||
Kfusion[11] = t62*(-P[11][0]*t8-P[11][5]*t100+P[11][3]*t101+P[11][1]*t102+P[11][2]*t103+P[11][8]*t104-P[11][4]*t105);
|
||
Kfusion[12] = t62*(-P[12][0]*t8-P[12][5]*t100+P[12][3]*t101+P[12][1]*t102+P[12][2]*t103+P[12][8]*t104-P[12][4]*t105);
|
||
Kfusion[13] = t62*(-P[13][0]*t8-P[13][5]*t100+P[13][3]*t101+P[13][1]*t102+P[13][2]*t103+P[13][8]*t104-P[13][4]*t105);
|
||
Kfusion[14] = t62*(-P[14][0]*t8-P[14][5]*t100+P[14][3]*t101+P[14][1]*t102+P[14][2]*t103+P[14][8]*t104-P[14][4]*t105);
|
||
Kfusion[15] = t62*(-P[15][0]*t8-P[15][5]*t100+P[15][3]*t101+P[15][1]*t102+P[15][2]*t103+P[15][8]*t104-P[15][4]*t105);
|
||
if (!inhibitWindStates) {
|
||
Kfusion[22] = t62*(-P[22][0]*t8-P[22][5]*t100+P[22][3]*t101+P[22][1]*t102+P[22][2]*t103+P[22][8]*t104-P[22][4]*t105);
|
||
Kfusion[23] = t62*(-P[23][0]*t8-P[23][5]*t100+P[23][3]*t101+P[23][1]*t102+P[23][2]*t103+P[23][8]*t104-P[23][4]*t105);
|
||
} else {
|
||
Kfusion[22] = 0.0f;
|
||
Kfusion[23] = 0.0f;
|
||
}
|
||
if (!inhibitMagStates) {
|
||
Kfusion[16] = t62*(-P[16][0]*t8-P[16][5]*t100+P[16][3]*t101+P[16][1]*t102+P[16][2]*t103+P[16][8]*t104-P[16][4]*t105);
|
||
Kfusion[17] = t62*(-P[17][0]*t8-P[17][5]*t100+P[17][3]*t101+P[17][1]*t102+P[17][2]*t103+P[17][8]*t104-P[17][4]*t105);
|
||
Kfusion[18] = t62*(-P[18][0]*t8-P[18][5]*t100+P[18][3]*t101+P[18][1]*t102+P[18][2]*t103+P[18][8]*t104-P[18][4]*t105);
|
||
Kfusion[19] = t62*(-P[19][0]*t8-P[19][5]*t100+P[19][3]*t101+P[19][1]*t102+P[19][2]*t103+P[19][8]*t104-P[19][4]*t105);
|
||
Kfusion[20] = t62*(-P[20][0]*t8-P[20][5]*t100+P[20][3]*t101+P[20][1]*t102+P[20][2]*t103+P[20][8]*t104-P[20][4]*t105);
|
||
Kfusion[21] = t62*(-P[21][0]*t8-P[21][5]*t100+P[21][3]*t101+P[21][1]*t102+P[21][2]*t103+P[21][8]*t104-P[21][4]*t105);
|
||
} else {
|
||
for (uint8_t i = 16; i <= 21; i++) {
|
||
Kfusion[i] = 0.0f;
|
||
}
|
||
}
|
||
|
||
} else {
|
||
|
||
H_LOS[0] = -SH_LOS[3]*SH_LOS[6]*SH_LOS[1];
|
||
H_LOS[1] = -SH_LOS[3]*SH_LOS[0]*SH_LOS[4]-SH_LOS[3]*SH_LOS[1]*SH_LOS[5];
|
||
H_LOS[2] = SH_LOS[3]*SH_LOS[2]*SH_LOS[0];
|
||
H_LOS[3] = SH_LOS[3]*SH_LOS[0]*(SH_LOS[7]+SH_LOS[8]-SH_LOS[9]-SH_LOS[10]);
|
||
H_LOS[4] = SH_LOS[3]*SH_LOS[0]*(SH_LOS[11]+q1*q2*2.0f);
|
||
H_LOS[5] = -SH_LOS[3]*SH_LOS[0]*SH_LOS[5];
|
||
H_LOS[8] = -SH_LOS[0]*SH_LOS[1]*SH_LOS[13];
|
||
|
||
float t2 = SH_LOS[3];
|
||
float t3 = SH_LOS[0];
|
||
float t4 = SH_LOS[1];
|
||
float t5 = SH_LOS[5];
|
||
float t100 = t2 * t3 * t5;
|
||
float t6 = SH_LOS[4];
|
||
float t7 = t2*t3*t6;
|
||
float t8 = t2*t4*t5;
|
||
float t9 = t7+t8;
|
||
float t10 = q0*q3*2.0f;
|
||
float t11 = q1*q2*2.0f;
|
||
float t12 = t10+t11;
|
||
float t101 = t2 * t3 * t12;
|
||
float t13 = pd-ptd;
|
||
float t14 = 1.0f/(t13*t13);
|
||
float t104 = t3 * t4 * t14;
|
||
float t15 = SH_LOS[6];
|
||
float t105 = t2 * t4 * t15;
|
||
float t16 = SH_LOS[2];
|
||
float t102 = t2 * t3 * t16;
|
||
float t17 = q0*q0;
|
||
float t18 = q1*q1;
|
||
float t19 = q2*q2;
|
||
float t20 = q3*q3;
|
||
float t21 = t17+t18-t19-t20;
|
||
float t103 = t2 * t3 * t21;
|
||
float t22 = P[0][0]*t105;
|
||
float t23 = P[1][1]*t9;
|
||
float t24 = P[8][1]*t104;
|
||
float t25 = P[0][1]*t105;
|
||
float t26 = P[5][1]*t100;
|
||
float t64 = P[4][1]*t101;
|
||
float t65 = P[2][1]*t102;
|
||
float t66 = P[3][1]*t103;
|
||
float t27 = t23+t24+t25+t26-t64-t65-t66;
|
||
float t28 = t9*t27;
|
||
float t29 = P[1][4]*t9;
|
||
float t30 = P[8][4]*t104;
|
||
float t31 = P[0][4]*t105;
|
||
float t32 = P[5][4]*t100;
|
||
float t67 = P[4][4]*t101;
|
||
float t68 = P[2][4]*t102;
|
||
float t69 = P[3][4]*t103;
|
||
float t33 = t29+t30+t31+t32-t67-t68-t69;
|
||
float t34 = P[1][8]*t9;
|
||
float t35 = P[8][8]*t104;
|
||
float t36 = P[0][8]*t105;
|
||
float t37 = P[5][8]*t100;
|
||
float t71 = P[4][8]*t101;
|
||
float t72 = P[2][8]*t102;
|
||
float t73 = P[3][8]*t103;
|
||
float t38 = t34+t35+t36+t37-t71-t72-t73;
|
||
float t39 = t104*t38;
|
||
float t40 = P[1][0]*t9;
|
||
float t41 = P[8][0]*t104;
|
||
float t42 = P[5][0]*t100;
|
||
float t74 = P[4][0]*t101;
|
||
float t75 = P[2][0]*t102;
|
||
float t76 = P[3][0]*t103;
|
||
float t43 = t22+t40+t41+t42-t74-t75-t76;
|
||
float t44 = t105*t43;
|
||
float t45 = P[1][2]*t9;
|
||
float t46 = P[8][2]*t104;
|
||
float t47 = P[0][2]*t105;
|
||
float t48 = P[5][2]*t100;
|
||
float t63 = P[2][2]*t102;
|
||
float t77 = P[4][2]*t101;
|
||
float t78 = P[3][2]*t103;
|
||
float t49 = t45+t46+t47+t48-t63-t77-t78;
|
||
float t50 = P[1][5]*t9;
|
||
float t51 = P[8][5]*t104;
|
||
float t52 = P[0][5]*t105;
|
||
float t53 = P[5][5]*t100;
|
||
float t80 = P[4][5]*t101;
|
||
float t81 = P[2][5]*t102;
|
||
float t82 = P[3][5]*t103;
|
||
float t54 = t50+t51+t52+t53-t80-t81-t82;
|
||
float t55 = t100*t54;
|
||
float t56 = P[1][3]*t9;
|
||
float t57 = P[8][3]*t104;
|
||
float t58 = P[0][3]*t105;
|
||
float t59 = P[5][3]*t100;
|
||
float t83 = P[4][3]*t101;
|
||
float t84 = P[2][3]*t102;
|
||
float t85 = P[3][3]*t103;
|
||
float t60 = t56+t57+t58+t59-t83-t84-t85;
|
||
float t70 = t101*t33;
|
||
float t79 = t102*t49;
|
||
float t86 = t103*t60;
|
||
float t61 = R_LOS+t28+t39+t44+t55-t70-t79-t86;
|
||
float t62 = 1.0f/t61;
|
||
|
||
// calculate innovation variance for X axis observation and protect against a badly conditioned calculation
|
||
if (t61 > R_LOS) {
|
||
t62 = 1.0f/t61;
|
||
} else {
|
||
t61 = 0.0f;
|
||
t62 = 1.0f/R_LOS;
|
||
}
|
||
varInnovOptFlow[1] = t61;
|
||
|
||
// calculate innovation for Y observation
|
||
innovOptFlow[1] = losPred[1] - ofDataDelayed.flowRadXYcomp.y;
|
||
|
||
// calculate Kalman gains for the Y-axis observation
|
||
Kfusion[0] = -t62*(t22+P[0][1]*t9+P[0][5]*t100-P[0][4]*t101-P[0][2]*t102-P[0][3]*t103+P[0][8]*t104);
|
||
Kfusion[1] = -t62*(t23+P[1][5]*t100+P[1][0]*t105-P[1][4]*t101-P[1][2]*t102-P[1][3]*t103+P[1][8]*t104);
|
||
Kfusion[2] = -t62*(-t63+P[2][1]*t9+P[2][5]*t100+P[2][0]*t105-P[2][4]*t101-P[2][3]*t103+P[2][8]*t104);
|
||
Kfusion[3] = -t62*(-t85+P[3][1]*t9+P[3][5]*t100+P[3][0]*t105-P[3][4]*t101-P[3][2]*t102+P[3][8]*t104);
|
||
Kfusion[4] = -t62*(-t67+P[4][1]*t9+P[4][5]*t100+P[4][0]*t105-P[4][2]*t102-P[4][3]*t103+P[4][8]*t104);
|
||
Kfusion[5] = -t62*(t53+P[5][1]*t9+P[5][0]*t105-P[5][4]*t101-P[5][2]*t102-P[5][3]*t103+P[5][8]*t104);
|
||
Kfusion[6] = -t62*(P[6][1]*t9+P[6][5]*t100+P[6][0]*t105-P[6][4]*t101-P[6][2]*t102-P[6][3]*t103+P[6][8]*t104);
|
||
Kfusion[7] = -t62*(P[7][1]*t9+P[7][5]*t100+P[7][0]*t105-P[7][4]*t101-P[7][2]*t102-P[7][3]*t103+P[7][8]*t104);
|
||
Kfusion[8] = -t62*(t35+P[8][1]*t9+P[8][5]*t100+P[8][0]*t105-P[8][4]*t101-P[8][2]*t102-P[8][3]*t103);
|
||
Kfusion[9] = -t62*(P[9][1]*t9+P[9][5]*t100+P[9][0]*t105-P[9][4]*t101-P[9][2]*t102-P[9][3]*t103+P[9][8]*t104);
|
||
Kfusion[10] = -t62*(P[10][1]*t9+P[10][5]*t100+P[10][0]*t105-P[10][4]*t101-P[10][2]*t102-P[10][3]*t103+P[10][8]*t104);
|
||
Kfusion[11] = -t62*(P[11][1]*t9+P[11][5]*t100+P[11][0]*t105-P[11][4]*t101-P[11][2]*t102-P[11][3]*t103+P[11][8]*t104);
|
||
Kfusion[12] = -t62*(P[12][1]*t9+P[12][5]*t100+P[12][0]*t105-P[12][4]*t101-P[12][2]*t102-P[12][3]*t103+P[12][8]*t104);
|
||
Kfusion[13] = -t62*(P[13][1]*t9+P[13][5]*t100+P[13][0]*t105-P[13][4]*t101-P[13][2]*t102-P[13][3]*t103+P[13][8]*t104);
|
||
Kfusion[14] = -t62*(P[14][1]*t9+P[14][5]*t100+P[14][0]*t105-P[14][4]*t101-P[14][2]*t102-P[14][3]*t103+P[14][8]*t104);
|
||
Kfusion[15] = -t62*(P[15][1]*t9+P[15][5]*t100+P[15][0]*t105-P[15][4]*t101-P[15][2]*t102-P[15][3]*t103+P[15][8]*t104);
|
||
if (!inhibitWindStates) {
|
||
Kfusion[22] = -t62*(P[22][1]*t9+P[22][5]*t100+P[22][0]*t105-P[22][4]*t101-P[22][2]*t102-P[22][3]*t103+P[22][8]*t104);
|
||
Kfusion[23] = -t62*(P[23][1]*t9+P[23][5]*t100+P[23][0]*t105-P[23][4]*t101-P[23][2]*t102-P[23][3]*t103+P[23][8]*t104);
|
||
} else {
|
||
Kfusion[22] = 0.0f;
|
||
Kfusion[23] = 0.0f;
|
||
}
|
||
if (!inhibitMagStates) {
|
||
Kfusion[16] = -t62*(P[16][1]*t9+P[16][5]*t100+P[16][0]*t105-P[16][4]*t101-P[16][2]*t102-P[16][3]*t103+P[16][8]*t104);
|
||
Kfusion[17] = -t62*(P[17][1]*t9+P[17][5]*t100+P[17][0]*t105-P[17][4]*t101-P[17][2]*t102-P[17][3]*t103+P[17][8]*t104);
|
||
Kfusion[18] = -t62*(P[18][1]*t9+P[18][5]*t100+P[18][0]*t105-P[18][4]*t101-P[18][2]*t102-P[18][3]*t103+P[18][8]*t104);
|
||
Kfusion[19] = -t62*(P[19][1]*t9+P[19][5]*t100+P[19][0]*t105-P[19][4]*t101-P[19][2]*t102-P[19][3]*t103+P[19][8]*t104);
|
||
Kfusion[20] = -t62*(P[20][1]*t9+P[20][5]*t100+P[20][0]*t105-P[20][4]*t101-P[20][2]*t102-P[20][3]*t103+P[20][8]*t104);
|
||
Kfusion[21] = -t62*(P[21][1]*t9+P[21][5]*t100+P[21][0]*t105-P[21][4]*t101-P[21][2]*t102-P[21][3]*t103+P[21][8]*t104);
|
||
} else {
|
||
for (uint8_t i = 16; i <= 21; i++) {
|
||
Kfusion[i] = 0.0f;
|
||
}
|
||
}
|
||
}
|
||
|
||
// calculate the innovation consistency test ratio
|
||
flowTestRatio[obsIndex] = sq(innovOptFlow[obsIndex]) / (sq(frontend._flowInnovGate) * varInnovOptFlow[obsIndex]);
|
||
|
||
// Check the innovation for consistency and don't fuse if out of bounds or flow is too fast to be reliable
|
||
if ((flowTestRatio[obsIndex]) < 1.0f && (ofDataDelayed.flowRadXY.x < frontend._maxFlowRate) && (ofDataDelayed.flowRadXY.y < frontend._maxFlowRate)) {
|
||
// record the last time observations were accepted for fusion
|
||
prevFlowFuseTime_ms = imuSampleTime_ms;
|
||
|
||
// zero the attitude error state - by definition it is assumed to be zero before each observaton fusion
|
||
stateStruct.angErr.zero();
|
||
|
||
// correct the state vector
|
||
for (uint8_t j= 0; j<=stateIndexLim; j++) {
|
||
statesArray[j] = statesArray[j] - Kfusion[j] * innovOptFlow[obsIndex];
|
||
}
|
||
|
||
// the first 3 states represent the angular misalignment vector. This is
|
||
// is used to correct the estimated quaternion on the current time step
|
||
stateStruct.quat.rotate(stateStruct.angErr);
|
||
|
||
// correct the covariance P = (I - K*H)*P
|
||
// take advantage of the empty columns in KH to reduce the
|
||
// number of operations
|
||
for (uint8_t i = 0; i<=stateIndexLim; i++) {
|
||
for (uint8_t j = 0; j<=5; j++) {
|
||
KH[i][j] = Kfusion[i] * H_LOS[j];
|
||
}
|
||
for (uint8_t j = 6; j<=7; j++) {
|
||
KH[i][j] = 0.0f;
|
||
}
|
||
KH[i][8] = Kfusion[i] * H_LOS[8];
|
||
for (uint8_t j = 9; j<=23; j++) {
|
||
KH[i][j] = 0.0f;
|
||
}
|
||
}
|
||
for (uint8_t i = 0; i<=stateIndexLim; i++) {
|
||
for (uint8_t j = 0; j<=stateIndexLim; j++) {
|
||
KHP[i][j] = 0;
|
||
for (uint8_t k = 0; k<=5; k++) {
|
||
KHP[i][j] = KHP[i][j] + KH[i][k] * P[k][j];
|
||
}
|
||
KHP[i][j] = KHP[i][j] + KH[i][8] * P[8][j];
|
||
}
|
||
}
|
||
for (uint8_t i = 0; i<=stateIndexLim; i++) {
|
||
for (uint8_t j = 0; j<=stateIndexLim; j++) {
|
||
P[i][j] = P[i][j] - KHP[i][j];
|
||
}
|
||
}
|
||
}
|
||
|
||
// fix basic numerical errors
|
||
ForceSymmetry();
|
||
ConstrainVariances();
|
||
|
||
}
|
||
}
|
||
|
||
/********************************************************
|
||
* MISC FUNCTIONS *
|
||
********************************************************/
|
||
|
||
// decay GPS horizontal position offset to close to zero at a rate of 1 m/s for copters and 5 m/s for planes
|
||
// limit radius to a maximum of 50m
|
||
void NavEKF2_core::decayGpsOffset()
|
||
{
|
||
float offsetDecaySpd;
|
||
if (assume_zero_sideslip()) {
|
||
offsetDecaySpd = 5.0f;
|
||
} else {
|
||
offsetDecaySpd = 1.0f;
|
||
}
|
||
float lapsedTime = 0.001f*float(imuSampleTime_ms - lastDecayTime_ms);
|
||
lastDecayTime_ms = imuSampleTime_ms;
|
||
float offsetRadius = pythagorous2(gpsPosGlitchOffsetNE.x, gpsPosGlitchOffsetNE.y);
|
||
// decay radius if larger than offset decay speed multiplied by lapsed time (plus a margin to prevent divide by zero)
|
||
if (offsetRadius > (offsetDecaySpd * lapsedTime + 0.1f)) {
|
||
// Calculate the GPS velocity offset required. This is necessary to prevent the position measurement being rejected for inconsistency when the radius is being pulled back in.
|
||
gpsVelGlitchOffset = -gpsPosGlitchOffsetNE*offsetDecaySpd/offsetRadius;
|
||
// calculate scale factor to be applied to both offset components
|
||
float scaleFactor = constrain_float((offsetRadius - offsetDecaySpd * lapsedTime), 0.0f, 50.0f) / offsetRadius;
|
||
gpsPosGlitchOffsetNE.x *= scaleFactor;
|
||
gpsPosGlitchOffsetNE.y *= scaleFactor;
|
||
} else {
|
||
gpsVelGlitchOffset.zero();
|
||
gpsPosGlitchOffsetNE.zero();
|
||
}
|
||
}
|
||
|
||
|
||
#endif // HAL_CPU_CLASS
|