mirror of
https://github.com/ArduPilot/ardupilot
synced 2025-01-15 05:08:41 -04:00
158 lines
7.0 KiB
C++
158 lines
7.0 KiB
C++
#pragma once
|
|
|
|
#include <AP_Common/AP_Common.h>
|
|
#include <AP_Param/AP_Param.h>
|
|
#include <AP_Math/AP_Math.h>
|
|
#include <AC_AttitudeControl/AC_AttitudeControl.h> // Attitude controller library for sqrt controller
|
|
|
|
#define AC_AVOID_ACCEL_CMSS_MAX 100.0f // maximum acceleration/deceleration in cm/s/s used to avoid hitting fence
|
|
|
|
// bit masks for enabled fence types.
|
|
#define AC_AVOID_DISABLED 0 // avoidance disabled
|
|
#define AC_AVOID_STOP_AT_FENCE 1 // stop at fence
|
|
#define AC_AVOID_USE_PROXIMITY_SENSOR 2 // stop based on proximity sensor output
|
|
#define AC_AVOID_STOP_AT_BEACON_FENCE 4 // stop based on beacon perimeter
|
|
#define AC_AVOID_DEFAULT (AC_AVOID_STOP_AT_FENCE | AC_AVOID_USE_PROXIMITY_SENSOR)
|
|
|
|
// definitions for non-GPS avoidance
|
|
#define AC_AVOID_NONGPS_DIST_MAX_DEFAULT 5.0f // objects over 5m away are ignored (default value for DIST_MAX parameter)
|
|
#define AC_AVOID_ANGLE_MAX_PERCENT 0.75f // object avoidance max lean angle as a percentage (expressed in 0 ~ 1 range) of total vehicle max lean angle
|
|
|
|
/*
|
|
* This class prevents the vehicle from leaving a polygon fence in
|
|
* 2 dimensions by limiting velocity (adjust_velocity).
|
|
*/
|
|
class AC_Avoid {
|
|
public:
|
|
AC_Avoid();
|
|
|
|
/* Do not allow copies */
|
|
AC_Avoid(const AC_Avoid &other) = delete;
|
|
AC_Avoid &operator=(const AC_Avoid&) = delete;
|
|
|
|
// get singleton instance
|
|
static AC_Avoid *get_singleton() {
|
|
return _singleton;
|
|
}
|
|
|
|
// return true if any avoidance feature is enabled
|
|
bool enabled() const { return _enabled != AC_AVOID_DISABLED; }
|
|
|
|
/*
|
|
* Adjusts the desired velocity so that the vehicle can stop
|
|
* before the fence/object.
|
|
* Note: Vector3f version is for convenience and only adjusts x and y axis
|
|
*/
|
|
void adjust_velocity(float kP, float accel_cmss, Vector2f &desired_vel_cms, float dt);
|
|
void adjust_velocity(float kP, float accel_cmss, Vector3f &desired_vel_cms, float dt);
|
|
|
|
// adjust desired horizontal speed so that the vehicle stops before the fence or object
|
|
// accel (maximum acceleration/deceleration) is in m/s/s
|
|
// heading is in radians
|
|
// speed is in m/s
|
|
// kP should be zero for linear response, non-zero for non-linear response
|
|
// dt is the time since the last call in seconds
|
|
void adjust_speed(float kP, float accel, float heading, float &speed, float dt);
|
|
|
|
// adjust vertical climb rate so vehicle does not break the vertical fence
|
|
void adjust_velocity_z(float kP, float accel_cmss, float& climb_rate_cms, float dt);
|
|
|
|
// adjust roll-pitch to push vehicle away from objects
|
|
// roll and pitch value are in centi-degrees
|
|
// angle_max is the user defined maximum lean angle for the vehicle in centi-degrees
|
|
void adjust_roll_pitch(float &roll, float &pitch, float angle_max);
|
|
|
|
// enable/disable proximity based avoidance
|
|
void proximity_avoidance_enable(bool on_off) { _proximity_enabled = on_off; }
|
|
bool proximity_avoidance_enabled() { return _proximity_enabled; }
|
|
|
|
// helper functions
|
|
|
|
// Limits the component of desired_vel_cms in the direction of the unit vector
|
|
// limit_direction to be at most the maximum speed permitted by the limit_distance_cm.
|
|
// uses velocity adjustment idea from Randy's second email on this thread:
|
|
// https://groups.google.com/forum/#!searchin/drones-discuss/obstacle/drones-discuss/QwUXz__WuqY/qo3G8iTLSJAJ
|
|
void limit_velocity(float kP, float accel_cmss, Vector2f &desired_vel_cms, const Vector2f& limit_direction, float limit_distance_cm, float dt) const;
|
|
|
|
// compute the speed such that the stopping distance of the vehicle will
|
|
// be exactly the input distance.
|
|
// kP should be non-zero for Copter which has a non-linear response
|
|
float get_max_speed(float kP, float accel_cmss, float distance_cm, float dt) const;
|
|
|
|
// return margin (in meters) that the vehicle should stay from objects
|
|
float get_margin() const { return _margin; }
|
|
|
|
static const struct AP_Param::GroupInfo var_info[];
|
|
|
|
private:
|
|
// behaviour types (see BEHAVE parameter)
|
|
enum BehaviourType {
|
|
BEHAVIOR_SLIDE = 0,
|
|
BEHAVIOR_STOP = 1
|
|
};
|
|
|
|
/*
|
|
* Adjusts the desired velocity for the circular fence.
|
|
*/
|
|
void adjust_velocity_circle_fence(float kP, float accel_cmss, Vector2f &desired_vel_cms, float dt);
|
|
|
|
/*
|
|
* Adjusts the desired velocity for inclusion and exclusion polygon fences
|
|
*/
|
|
void adjust_velocity_inclusion_and_exclusion_polygons(float kP, float accel_cmss, Vector2f &desired_vel_cms, float dt);
|
|
|
|
/*
|
|
* Adjusts the desired velocity for the inclusion and exclusion circles
|
|
*/
|
|
void adjust_velocity_inclusion_circles(float kP, float accel_cmss, Vector2f &desired_vel_cms, float dt);
|
|
void adjust_velocity_exclusion_circles(float kP, float accel_cmss, Vector2f &desired_vel_cms, float dt);
|
|
|
|
/*
|
|
* Adjusts the desired velocity for the beacon fence.
|
|
*/
|
|
void adjust_velocity_beacon_fence(float kP, float accel_cmss, Vector2f &desired_vel_cms, float dt);
|
|
|
|
/*
|
|
* Adjusts the desired velocity based on output from the proximity sensor
|
|
*/
|
|
void adjust_velocity_proximity(float kP, float accel_cmss, Vector2f &desired_vel_cms, float dt);
|
|
|
|
/*
|
|
* Adjusts the desired velocity given an array of boundary points
|
|
* earth_frame should be true if boundary is in earth-frame, false for body-frame
|
|
* margin is the distance (in meters) that the vehicle should stop short of the polygon
|
|
* stay_inside should be true for fences, false for exclusion polygons
|
|
*/
|
|
void adjust_velocity_polygon(float kP, float accel_cmss, Vector2f &desired_vel_cms, const Vector2f* boundary, uint16_t num_points, bool earth_frame, float margin, float dt, bool stay_inside);
|
|
|
|
/*
|
|
* Computes distance required to stop, given current speed.
|
|
*/
|
|
float get_stopping_distance(float kP, float accel_cmss, float speed_cms) const;
|
|
|
|
/*
|
|
* methods for avoidance in non-GPS flight modes
|
|
*/
|
|
|
|
// convert distance (in meters) to a lean percentage (in 0~1 range) for use in manual flight modes
|
|
float distance_to_lean_pct(float dist_m);
|
|
|
|
// returns the maximum positive and negative roll and pitch percentages (in -1 ~ +1 range) based on the proximity sensor
|
|
void get_proximity_roll_pitch_pct(float &roll_positive, float &roll_negative, float &pitch_positive, float &pitch_negative);
|
|
|
|
// parameters
|
|
AP_Int8 _enabled;
|
|
AP_Int16 _angle_max; // maximum lean angle to avoid obstacles (only used in non-GPS flight modes)
|
|
AP_Float _dist_max; // distance (in meters) from object at which obstacle avoidance will begin in non-GPS modes
|
|
AP_Float _margin; // vehicle will attempt to stay this distance (in meters) from objects while in GPS modes
|
|
AP_Int8 _behavior; // avoidance behaviour (slide or stop)
|
|
|
|
bool _proximity_enabled = true; // true if proximity sensor based avoidance is enabled (used to allow pilot to enable/disable)
|
|
|
|
static AC_Avoid *_singleton;
|
|
};
|
|
|
|
namespace AP {
|
|
AC_Avoid *ac_avoid();
|
|
};
|