ardupilot/libraries/SITL/SIM_Aircraft.cpp
Tom Pittenger 1f714ed75d SITL: handle negative throttle
- negative throttle was causing negative offsets
2016-02-09 14:18:01 +11:00

373 lines
9.4 KiB
C++

/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/*
parent class for aircraft simulators
*/
#include "SIM_Aircraft.h"
#include <stdio.h>
#include <sys/time.h>
#include <unistd.h>
#ifdef __CYGWIN__
#include <windows.h>
#include <time.h>
#include <Mmsystem.h>
#endif
namespace SITL {
/*
parent class for all simulator types
*/
Aircraft::Aircraft(const char *home_str, const char *frame_str) :
ground_level(0),
frame_height(0),
dcm(),
gyro(),
velocity_ef(),
mass(0),
accel_body(0, 0, -GRAVITY_MSS),
time_now_us(0),
gyro_noise(radians(0.1f)),
accel_noise(0.3),
rate_hz(1200),
autotest_dir(NULL),
frame(frame_str),
#ifdef __CYGWIN__
min_sleep_time(20000)
#else
min_sleep_time(5000)
#endif
{
parse_home(home_str, home, home_yaw);
location = home;
ground_level = home.alt*0.01;
dcm.from_euler(0, 0, radians(home_yaw));
set_speedup(1);
last_wall_time_us = get_wall_time_us();
frame_counter = 0;
}
/*
parse a home string into a location and yaw
*/
bool Aircraft::parse_home(const char *home_str, Location &loc, float &yaw_degrees)
{
char *saveptr=NULL;
char *s = strdup(home_str);
if (!s) {
return false;
}
char *lat_s = strtok_r(s, ",", &saveptr);
if (!lat_s) {
return false;
}
char *lon_s = strtok_r(NULL, ",", &saveptr);
if (!lon_s) {
return false;
}
char *alt_s = strtok_r(NULL, ",", &saveptr);
if (!alt_s) {
return false;
}
char *yaw_s = strtok_r(NULL, ",", &saveptr);
if (!yaw_s) {
return false;
}
memset(&loc, 0, sizeof(loc));
loc.lat = strtof(lat_s, NULL) * 1.0e7;
loc.lng = strtof(lon_s, NULL) * 1.0e7;
loc.alt = strtof(alt_s, NULL) * 1.0e2;
yaw_degrees = strtof(yaw_s, NULL);
free(s);
return true;
}
/*
return true if we are on the ground
*/
bool Aircraft::on_ground(const Vector3f &pos) const
{
return (-pos.z) + home.alt*0.01f <= ground_level + frame_height;
}
/*
update location from position
*/
void Aircraft::update_position(void)
{
float bearing = degrees(atan2f(position.y, position.x));
float distance = sqrtf(sq(position.x) + sq(position.y));
location = home;
location_update(location, bearing, distance);
location.alt = home.alt - position.z*100.0f;
// we only advance time if it hasn't been advanced already by the
// backend
if (last_time_us == time_now_us) {
time_now_us += frame_time_us;
}
last_time_us = time_now_us;
if (use_time_sync) {
sync_frame_time();
}
}
/*
rotate to the given yaw
*/
void Aircraft::set_yaw_degrees(float yaw_degrees)
{
float roll, pitch, yaw;
dcm.to_euler(&roll, &pitch, &yaw);
yaw = radians(yaw_degrees);
dcm.from_euler(roll, pitch, yaw);
}
/* advance time by deltat in seconds */
void Aircraft::time_advance(float deltat)
{
time_now_us += deltat * 1.0e6f;
}
/* setup the frame step time */
void Aircraft::setup_frame_time(float new_rate, float new_speedup)
{
rate_hz = new_rate;
target_speedup = new_speedup;
frame_time_us = 1.0e6f/rate_hz;
scaled_frame_time_us = frame_time_us/target_speedup;
last_wall_time_us = get_wall_time_us();
achieved_rate_hz = rate_hz;
}
/* adjust frame_time calculation */
void Aircraft::adjust_frame_time(float new_rate)
{
if (rate_hz != new_rate) {
rate_hz = new_rate;
frame_time_us = 1.0e6f/rate_hz;
scaled_frame_time_us = frame_time_us/target_speedup;
}
}
/*
try to synchronise simulation time with wall clock time, taking
into account desired speedup
This tries to take account of possible granularity of
get_wall_time_us() so it works reasonably well on windows
*/
void Aircraft::sync_frame_time(void)
{
frame_counter++;
uint64_t now = get_wall_time_us();
if (frame_counter >= 40 &&
now > last_wall_time_us) {
float rate = frame_counter * 1.0e6f/(now - last_wall_time_us);
achieved_rate_hz = (0.99f*achieved_rate_hz) + (0.01f*rate);
if (achieved_rate_hz < rate_hz * target_speedup) {
scaled_frame_time_us *= 0.999f;
} else {
scaled_frame_time_us /= 0.999f;
}
#if 0
::printf("achieved_rate_hz=%.3f rate=%.2f rate_hz=%.3f sft=%.1f\n",
(double)achieved_rate_hz,
(double)rate,
(double)rate_hz,
(double)scaled_frame_time_us);
#endif
uint32_t sleep_time = scaled_frame_time_us*frame_counter;
if (sleep_time > min_sleep_time) {
usleep(sleep_time);
}
last_wall_time_us = now;
frame_counter = 0;
}
}
/* add noise based on throttle level (from 0..1) */
void Aircraft::add_noise(float throttle)
{
gyro += Vector3f(rand_normal(0, 1),
rand_normal(0, 1),
rand_normal(0, 1)) * gyro_noise * fabsf(throttle);
accel_body += Vector3f(rand_normal(0, 1),
rand_normal(0, 1),
rand_normal(0, 1)) * accel_noise * fabsf(throttle);
}
/*
normal distribution random numbers
See
http://en.literateprograms.org/index.php?title=Special:DownloadCode/Box-Muller_transform_%28C%29&oldid=7011
*/
double Aircraft::rand_normal(double mean, double stddev)
{
static double n2 = 0.0;
static int n2_cached = 0;
if (!n2_cached)
{
double x, y, r;
do
{
x = 2.0*rand()/RAND_MAX - 1;
y = 2.0*rand()/RAND_MAX - 1;
r = x*x + y*y;
}
while (r == 0.0 || r > 1.0);
{
double d = sqrt(-2.0*log(r)/r);
double n1 = x*d;
n2 = y*d;
double result = n1*stddev + mean;
n2_cached = 1;
return result;
}
}
else
{
n2_cached = 0;
return n2*stddev + mean;
}
}
/*
fill a sitl_fdm structure from the simulator state
*/
void Aircraft::fill_fdm(struct sitl_fdm &fdm) const
{
fdm.timestamp_us = time_now_us;
fdm.latitude = location.lat * 1.0e-7;
fdm.longitude = location.lng * 1.0e-7;
fdm.altitude = location.alt * 1.0e-2;
fdm.heading = degrees(atan2f(velocity_ef.y, velocity_ef.x));
fdm.speedN = velocity_ef.x;
fdm.speedE = velocity_ef.y;
fdm.speedD = velocity_ef.z;
fdm.xAccel = accel_body.x;
fdm.yAccel = accel_body.y;
fdm.zAccel = accel_body.z;
fdm.rollRate = degrees(gyro.x);
fdm.pitchRate = degrees(gyro.y);
fdm.yawRate = degrees(gyro.z);
float r, p, y;
dcm.to_euler(&r, &p, &y);
fdm.rollDeg = degrees(r);
fdm.pitchDeg = degrees(p);
fdm.yawDeg = degrees(y);
fdm.airspeed = airspeed;
fdm.battery_voltage = battery_voltage;
fdm.battery_current = battery_current;
fdm.rpm1 = rpm1;
fdm.rpm2 = rpm2;
}
uint64_t Aircraft::get_wall_time_us() const
{
#ifdef __CYGWIN__
static DWORD tPrev;
static uint64_t last_ret_us;
if (tPrev == 0) {
tPrev = timeGetTime();
return 0;
}
DWORD now = timeGetTime();
last_ret_us += (uint64_t)((now - tPrev)*1000UL);
tPrev = now;
return last_ret_us;
#else
struct timeval tp;
gettimeofday(&tp,NULL);
return tp.tv_sec*1.0e6 + tp.tv_usec;
#endif
}
/*
set simulation speedup
*/
void Aircraft::set_speedup(float speedup)
{
setup_frame_time(rate_hz, speedup);
}
/*
update the simulation attitude and relative position
*/
void Aircraft::update_dynamics(const Vector3f &rot_accel)
{
float delta_time = frame_time_us * 1.0e-6f;
// update rotational rates in body frame
gyro += rot_accel * delta_time;
// update attitude
dcm.rotate(gyro * delta_time);
dcm.normalize();
Vector3f accel_earth = dcm * accel_body;
accel_earth += Vector3f(0, 0, GRAVITY_MSS);
// if we're on the ground, then our vertical acceleration is limited
// to zero. This effectively adds the force of the ground on the aircraft
if (on_ground(position) && accel_earth.z > 0) {
accel_earth.z = 0;
}
// work out acceleration as seen by the accelerometers. It sees the kinematic
// acceleration (ie. real movement), plus gravity
accel_body = dcm.transposed() * (accel_earth + Vector3f(0, 0, -GRAVITY_MSS));
// new velocity vector
velocity_ef += accel_earth * delta_time;
// new position vector
Vector3f old_position = position;
position += velocity_ef * delta_time;
// assume zero wind for now
airspeed = velocity_ef.length();
// constrain height to the ground
if (on_ground(position)) {
if (!on_ground(old_position) && AP_HAL::millis() - last_ground_contact_ms > 1000) {
printf("Hit ground at %f m/s\n", velocity_ef.z);
last_ground_contact_ms = AP_HAL::millis();
}
position.z = -(ground_level + frame_height - home.alt*0.01f);
}
}
} // namespace SITL