ardupilot/libraries/AP_IMU/AP_IMU_INS.h
2012-08-21 19:03:13 -07:00

117 lines
4.3 KiB
C++

// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
/// @file AP_IMU_INS.h
/// @brief IMU driver on top of an AP_InertialSensor (INS) driver.
// Provides offset calibration for for the gyro and accel.
#ifndef __AP_IMU_INS_H__
#define __AP_IMU_INS_H__
#include "../AP_Common/AP_Common.h"
#include "../AP_Math/AP_Math.h"
#include "../AP_InertialSensor/AP_InertialSensor.h"
#include <inttypes.h>
#include "IMU.h"
class AP_IMU_INS : public IMU
{
public:
/// Constructor
///
/// Saves the ADC pointer and constructs the calibration data variable.
///
/// @param adc Pointer to the AP_ADC instance that is connected to the gyro and accelerometer.
/// @param key The AP_Var::key value we will use when loading/saving calibration data.
///
AP_IMU_INS(AP_InertialSensor *ins) :
_ins(ins)
{
_product_id = AP_PRODUCT_ID_NONE; // set during hardware init
}
/// Do warm or cold start.
///
/// @note For a partial-warmstart where e.g. the accelerometer calibration should be preserved
/// but the gyro cal needs to be re-performed, start with ::init(WARM_START) to load the
/// previous calibration settings, then force a re-calibration of the gyro with ::init_gyro.
///
/// @param style Selects the initialisation style.
/// COLD_START performs calibration of both the accelerometer and gyro.
/// WARM_START loads accelerometer and gyro calibration from a previous cold start.
///
virtual void init( Start_style style = COLD_START,
void (*delay_cb)(unsigned long t) = delay,
void (*flash_leds_cb)(bool on) = NULL,
AP_PeriodicProcess * scheduler = NULL );
virtual void save();
virtual void init_accel(void (*delay_cb)(unsigned long t) = delay,
void (*flash_leds_cb)(bool on) = NULL);
virtual void init_gyro(void (*delay_cb)(unsigned long t) = delay,
void (*flash_leds_cb)(bool on) = NULL);
virtual bool update(void);
virtual bool new_data_available(void);
// for jason
virtual float gx() {
return _sensor_cal[0];
}
virtual float gy() {
return _sensor_cal[1];
}
virtual float gz() {
return _sensor_cal[2];
}
virtual float ax() {
return _sensor_cal[3];
}
virtual float ay() {
return _sensor_cal[4];
}
virtual float az() {
return _sensor_cal[5];
}
virtual void gx(const float v) {
_sensor_cal[0] = v;
}
virtual void gy(const float v) {
_sensor_cal[1] = v;
}
virtual void gz(const float v) {
_sensor_cal[2] = v;
}
virtual void ax(const float v) {
_sensor_cal[3] = v;
}
virtual void ay(const float v) {
_sensor_cal[4] = v;
}
virtual void az(const float v) {
_sensor_cal[5] = v;
}
virtual float get_gyro_drift_rate(void);
private:
AP_InertialSensor * _ins; ///< INS provides an axis and unit correct sensor source.
virtual void _init_accel(void (*delay_cb)(unsigned long t),
void (*flash_leds_cb)(bool on) = NULL); ///< no-save implementation
virtual void _init_gyro(void (*delay_cb)(unsigned long t),
void (*flash_leds_cb)(bool on) = NULL); ///< no-save implementation
float _calibrated(uint8_t channel, float ins_value);
// Gyro and Accelerometer calibration criteria
//
static const float _accel_total_cal_change = 4.0;
static const float _accel_max_cal_offset = 250.0;
};
#endif