ardupilot/ArduCopterMega/flight_control.pde

140 lines
2.9 KiB
Plaintext

/*************************************************************
throttle control
****************************************************************/
// user input:
// -----------
void output_manual_throttle()
{
rc_3.servo_out = rc_3.control_in;
rc_3.servo_out = (float)rc_3.servo_out * angle_boost();
}
// Autopilot
// ---------
void output_auto_throttle()
{
rc_3.servo_out = (float)nav_throttle * angle_boost();
rc_3.servo_out = max(rc_3.servo_out, 1);
}
void calc_nav_throttle()
{
long err = constrain (altitude_error, -150, 150); //+-1.5 meters
long temp = pid_throttle.get_pid(err, deltaMiliSeconds, 1.0);
nav_throttle = (float)(throttle_cruise + temp) * angle_boost();
}
float angle_boost()
{
//static byte flipper;
float temp = 1 / (cos(dcm.roll) * cos(dcm.pitch));
//temp *= .5;
if(temp > 1.2)
temp = 1.2;
return temp;
}
/*************************************************************
yaw control
****************************************************************/
void input_yaw_hold_2()
{
if(rc_3.control_in == 0){
// Reset the yaw hold
nav_yaw = yaw_sensor;
}else if(rc_4.control_in == 0){
// do nothing
}else{
// create up to 60° of yaw error
nav_yaw = yaw_sensor + rc_4.control_in;
nav_yaw = wrap_360(nav_yaw);
}
}
void input_yaw_hold()
{
if(rc_3.control_in == 0){
// Reset the yaw hold
nav_yaw = yaw_sensor;
}else if(rc_4.control_in == 0){
// do nothing
}else{
// create up to 60° of yaw error
nav_yaw += ((long)rc_4.control_in * (long)deltaMiliSeconds) / 500; // we'll get 60° * 2 or 120° per second
nav_yaw = wrap_360(nav_yaw);
}
}
/*void output_yaw_stabilize()
{
rc_4.servo_out = rc_4.control_in;
rc_4.servo_out = constrain(rc_4.servo_out, -MAX_SERVO_OUTPUT, MAX_SERVO_OUTPUT);
}*/
/*************************************************************
picth and roll control
****************************************************************/
// how hard to tilt towards the target
// -----------------------------------
void calc_nav_pid()
{
nav_angle = pid_nav.get_pid(wp_distance * 100, dTnav, 1.0);
nav_angle = constrain(nav_angle, -pitch_max, pitch_max);
}
// distribute the pitch angle based on our orientation
// ---------------------------------------------------
void calc_nav_pitch()
{
long b_err = bearing_error;
bool rev = false;
float roll_out;
if(b_err > 18000){
b_err -= 18000;
rev = true;
}
roll_out = abs(b_err - 18000);
roll_out = (9000.0 - roll_out) / 9000.0;
roll_out = (rev) ? roll_out : -roll_out;
nav_pitch = (float)nav_angle * roll_out;
}
// distribute the roll angle based on our orientation
// --------------------------------------------------
void calc_nav_roll()
{
long b_err = bearing_error;
bool rev = false;
float roll_out;
if(b_err > 18000){
b_err -= 18000;
rev = true;
}
roll_out = abs(b_err - 9000);
roll_out = (9000.0 - roll_out) / 9000.0;
roll_out = (rev) ? -roll_out : roll_out;
nav_roll = (float)nav_angle * roll_out;
}