mirror of
https://github.com/ArduPilot/ardupilot
synced 2025-01-25 01:58:29 -04:00
78 lines
3.0 KiB
Matlab
78 lines
3.0 KiB
Matlab
%% Set initial conditions
|
|
clear all;
|
|
dt = 1/100;
|
|
duration = 10;
|
|
indexLimit = round(duration/dt);
|
|
statesLog = zeros(10,indexLimit);
|
|
eulLog = zeros(4,indexLimit);
|
|
velInnovLog = zeros(4,indexLimit);
|
|
decInnovLog = zeros(2,indexLimit);
|
|
velInnovVarLog = velInnovLog;
|
|
decInnovVarLog = decInnovLog;
|
|
angErrLog = zeros(2,indexLimit);
|
|
% Use a random initial orientation
|
|
quatTruth = [rand;randn;randn;randn];
|
|
quatLength = sqrt(quatTruth(1)^2 + quatTruth(2)^2 + quatTruth(3)^2 + quatTruth(4)^2);
|
|
quatTruth = quatTruth / quatLength;
|
|
TbnTruth = Quat2Tbn(quatTruth);
|
|
% initialise the filter to level
|
|
quat = [1;0;0;0];
|
|
states = zeros(9,1);
|
|
Tbn = Quat2Tbn(quat);
|
|
% define the earths truth magnetic field
|
|
magEarthTruth = [0.3;0.1;-0.5];
|
|
% define the assumed declination using th etruth field plus location
|
|
% variation
|
|
measDec = atan2(magEarthTruth(2),magEarthTruth(1)) + 2*pi/180*randn;
|
|
% define the magnetometer bias errors
|
|
magMeasBias = 0.02*[randn;randn;randn];
|
|
% define the state covariances with the exception of the quaternion covariances
|
|
Sigma_velNED = 0.5; % 1 sigma uncertainty in horizontal velocity components
|
|
Sigma_dAngBias = 1*pi/180*dt; % 1 Sigma uncertainty in delta angle bias
|
|
Sigma_angErr = 1; % 1 Sigma uncertainty in angular misalignment (rad)
|
|
covariance = single(diag([Sigma_angErr*[1;1;1];Sigma_velNED*[1;1;1];Sigma_dAngBias*[1;1;1]].^2));
|
|
%% Main Loop
|
|
headingAligned=0;
|
|
time = 0;
|
|
for index = 1:indexLimit
|
|
time=time+dt;
|
|
% synthesise IMU measurements
|
|
angRate = 0*[randn;randn;randn];
|
|
accel = 0*[randn;randn;randn] + transpose(TbnTruth)*[0;0;-9.81];
|
|
% predict states
|
|
[quat, states, Tbn, delAng, delVel] = PredictStates(quat,states,angRate,accel,dt);
|
|
statesLog(1,index) = time;
|
|
statesLog(2:10,index) = states;
|
|
eulLog(1,index) = time;
|
|
eulLog(2:4,index) = QuatToEul(quat);
|
|
% predict covariance matrix
|
|
covariance = PredictCovariance(delAng,delVel,quat,states,covariance,dt);
|
|
% synthesise velocity measurements
|
|
measVel = [0;0;0];
|
|
% fuse velocity measurements
|
|
[quat,states,angErr,covariance,velInnov,velInnovVar] = FuseVelocity(quat,states,covariance,measVel);
|
|
velInnovLog(1,index) = time;
|
|
velInnovLog(2:4,index) = velInnov;
|
|
velInnovVarLog(1,index) = time;
|
|
velInnovVarLog(2:4,index) = velInnovVar;
|
|
angErrLog(1,index) = time;
|
|
angErrLog(2,index) = angErr;
|
|
% synthesise magnetometer measurements adding sensor bias
|
|
magBody = transpose(TbnTruth)*magEarthTruth + magMeasBias;
|
|
% fuse magnetometer measurements
|
|
if (index > 500 && headingAligned==0 && angErr < 1e-4)
|
|
quat = AlignHeading(quat,magBody,measDec);
|
|
headingAligned = 1;
|
|
end
|
|
if (headingAligned == 1)
|
|
[quat,states,covariance,decInnov,decInnovVar] = FuseMagnetometer(quat,states,covariance,magBody,measDec,Tbn);
|
|
decInnovLog(1,index) = time;
|
|
decInnovLog(2,index) = decInnov;
|
|
decInnovVarLog(1,index) = time;
|
|
decInnovVarLog(2,index) = decInnovVar;
|
|
end
|
|
|
|
end
|
|
|
|
%% Generate Plots
|
|
PlotData; |