ardupilot/libraries/AP_HAL_QURT/Scheduler.cpp

283 lines
6.4 KiB
C++

#include <AP_HAL/AP_HAL.h>
#if CONFIG_HAL_BOARD == HAL_BOARD_QURT
#include "AP_HAL_QURT.h"
#include "Scheduler.h"
#include <sys/stat.h>
#include <sys/types.h>
#include <unistd.h>
#include <stdlib.h>
#include <sched.h>
#include <errno.h>
#include <stdio.h>
#include <dspal/include/pthread.h>
#include <dspal_types.h>
#include "UARTDriver.h"
#include "Storage.h"
#include "RCOutput.h"
#include <AP_Scheduler/AP_Scheduler.h>
using namespace QURT;
extern const AP_HAL::HAL& hal;
Scheduler::Scheduler()
{
}
void Scheduler::init()
{
_main_task_pid = getpid();
// setup the timer thread - this will call tasks at 1kHz
pthread_attr_t thread_attr;
struct sched_param param;
pthread_attr_init(&thread_attr);
pthread_attr_setstacksize(&thread_attr, 40960);
param.sched_priority = APM_TIMER_PRIORITY;
(void)pthread_attr_setschedparam(&thread_attr, &param);
pthread_create(&_timer_thread_ctx, &thread_attr, &Scheduler::_timer_thread, this);
// the UART thread runs at a medium priority
pthread_attr_init(&thread_attr);
pthread_attr_setstacksize(&thread_attr, 40960);
param.sched_priority = APM_UART_PRIORITY;
(void)pthread_attr_setschedparam(&thread_attr, &param);
pthread_create(&_uart_thread_ctx, &thread_attr, &Scheduler::_uart_thread, this);
// the IO thread runs at lower priority
pthread_attr_init(&thread_attr);
pthread_attr_setstacksize(&thread_attr, 40960);
param.sched_priority = APM_IO_PRIORITY;
(void)pthread_attr_setschedparam(&thread_attr, &param);
pthread_create(&_io_thread_ctx, &thread_attr, &Scheduler::_io_thread, this);
}
void Scheduler::delay_microseconds(uint16_t usec)
{
//pthread_yield();
usleep(usec);
}
void Scheduler::delay(uint16_t ms)
{
if (!in_main_thread()) {
::printf("ERROR: delay() from timer process\n");
return;
}
uint64_t start = AP_HAL::micros64();
uint64_t now;
while (((now=AP_HAL::micros64()) - start)/1000 < ms) {
delay_microseconds(1000);
if (_min_delay_cb_ms <= ms) {
if (_delay_cb) {
_delay_cb();
}
}
}
}
void Scheduler::register_delay_callback(AP_HAL::Proc proc,
uint16_t min_time_ms)
{
_delay_cb = proc;
_min_delay_cb_ms = min_time_ms;
}
void Scheduler::register_timer_process(AP_HAL::MemberProc proc)
{
for (uint8_t i = 0; i < _num_timer_procs; i++) {
if (_timer_proc[i] == proc) {
return;
}
}
if (_num_timer_procs < QURT_SCHEDULER_MAX_TIMER_PROCS) {
_timer_proc[_num_timer_procs] = proc;
_num_timer_procs++;
} else {
hal.console->printf("Out of timer processes\n");
}
}
void Scheduler::register_io_process(AP_HAL::MemberProc proc)
{
for (uint8_t i = 0; i < _num_io_procs; i++) {
if (_io_proc[i] == proc) {
return;
}
}
if (_num_io_procs < QURT_SCHEDULER_MAX_TIMER_PROCS) {
_io_proc[_num_io_procs] = proc;
_num_io_procs++;
} else {
hal.console->printf("Out of IO processes\n");
}
}
void Scheduler::register_timer_failsafe(AP_HAL::Proc failsafe, uint32_t period_us)
{
_failsafe = failsafe;
}
void Scheduler::suspend_timer_procs()
{
_timer_suspended = true;
}
void Scheduler::resume_timer_procs()
{
_timer_suspended = false;
if (_timer_event_missed == true) {
_run_timers(false);
_timer_event_missed = false;
}
}
void Scheduler::reboot(bool hold_in_bootloader)
{
HAP_PRINTF("**** REBOOT REQUESTED ****");
usleep(2000000);
exit(1);
}
void Scheduler::_run_timers(bool called_from_timer_thread)
{
if (_in_timer_proc) {
return;
}
_in_timer_proc = true;
if (!_timer_suspended) {
// now call the timer based drivers
for (int i = 0; i < _num_timer_procs; i++) {
if (_timer_proc[i]) {
_timer_proc[i]();
}
}
} else if (called_from_timer_thread) {
_timer_event_missed = true;
}
// and the failsafe, if one is setup
if (_failsafe != nullptr) {
_failsafe();
}
_in_timer_proc = false;
}
extern bool qurt_ran_overtime;
void *Scheduler::_timer_thread(void *arg)
{
Scheduler *sched = (Scheduler *)arg;
uint32_t last_ran_overtime = 0;
while (!sched->_hal_initialized) {
sched->delay_microseconds(1000);
}
while (true) {
sched->delay_microseconds(1000);
// run registered timers
sched->_run_timers(true);
// process any pending RC output requests
((RCOutput *)hal.rcout)->timer_update();
if (qurt_ran_overtime && AP_HAL::millis() - last_ran_overtime > 2000) {
last_ran_overtime = AP_HAL::millis();
printf("Overtime in task %d\n", (int)AP_Scheduler::current_task);
hal.console->printf("Overtime in task %d\n", (int)AP_Scheduler::current_task);
}
}
return nullptr;
}
void Scheduler::_run_io(void)
{
if (_in_io_proc) {
return;
}
_in_io_proc = true;
if (!_timer_suspended) {
// now call the IO based drivers
for (int i = 0; i < _num_io_procs; i++) {
if (_io_proc[i]) {
_io_proc[i]();
}
}
}
_in_io_proc = false;
}
void *Scheduler::_uart_thread(void *arg)
{
Scheduler *sched = (Scheduler *)arg;
while (!sched->_hal_initialized) {
sched->delay_microseconds(1000);
}
while (true) {
sched->delay_microseconds(1000);
// process any pending serial bytes
//((UARTDriver *)hal.uartA)->timer_tick();
((UARTDriver *)hal.uartB)->timer_tick();
((UARTDriver *)hal.uartC)->timer_tick();
((UARTDriver *)hal.uartD)->timer_tick();
((UARTDriver *)hal.uartE)->timer_tick();
}
return nullptr;
}
void *Scheduler::_io_thread(void *arg)
{
Scheduler *sched = (Scheduler *)arg;
while (!sched->_hal_initialized) {
sched->delay_microseconds(1000);
}
while (true) {
sched->delay_microseconds(1000);
// run registered IO processes
sched->_run_io();
}
return nullptr;
}
bool Scheduler::in_main_thread()
{
return getpid() == _main_task_pid;
}
void Scheduler::system_initialized() {
if (_initialized) {
AP_HAL::panic("PANIC: scheduler::system_initialized called"
"more than once");
}
_initialized = true;
}
void Scheduler::hal_initialized(void)
{
HAP_PRINTF("HAL is initialised");
_hal_initialized = true;
}
#endif