mirror of https://github.com/ArduPilot/ardupilot
1641 lines
52 KiB
Plaintext
1641 lines
52 KiB
Plaintext
/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
|
|
|
|
#define THISFIRMWARE "ArduPlane V3.3.0beta2"
|
|
/*
|
|
Lead developer: Andrew Tridgell
|
|
|
|
Authors: Doug Weibel, Jose Julio, Jordi Munoz, Jason Short, Randy Mackay, Pat Hickey, John Arne Birkeland, Olivier Adler, Amilcar Lucas, Gregory Fletcher, Paul Riseborough, Brandon Jones, Jon Challinger
|
|
Thanks to: Chris Anderson, Michael Oborne, Paul Mather, Bill Premerlani, James Cohen, JB from rotorFX, Automatik, Fefenin, Peter Meister, Remzibi, Yury Smirnov, Sandro Benigno, Max Levine, Roberto Navoni, Lorenz Meier, Yury MonZon
|
|
|
|
Please contribute your ideas! See http://dev.ardupilot.com for details
|
|
|
|
This program is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Header includes
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
#include <math.h>
|
|
#include <stdarg.h>
|
|
#include <stdio.h>
|
|
|
|
#include <AP_HAL.h>
|
|
#include <AP_Common.h>
|
|
#include <AP_Progmem.h>
|
|
#include <AP_Menu.h>
|
|
#include <AP_Param.h>
|
|
#include <StorageManager.h>
|
|
#include <AP_GPS.h> // ArduPilot GPS library
|
|
#include <AP_Baro.h> // ArduPilot barometer library
|
|
#include <AP_Compass.h> // ArduPilot Mega Magnetometer Library
|
|
#include <AP_Math.h> // ArduPilot Mega Vector/Matrix math Library
|
|
#include <AP_ADC.h> // ArduPilot Mega Analog to Digital Converter Library
|
|
#include <AP_ADC_AnalogSource.h>
|
|
#include <AP_InertialSensor.h> // Inertial Sensor Library
|
|
#include <AP_AHRS.h> // ArduPilot Mega DCM Library
|
|
#include <RC_Channel.h> // RC Channel Library
|
|
#include <AP_RangeFinder.h> // Range finder library
|
|
#include <Filter.h> // Filter library
|
|
#include <AP_Buffer.h> // APM FIFO Buffer
|
|
#include <AP_Relay.h> // APM relay
|
|
#include <AP_Camera.h> // Photo or video camera
|
|
#include <AP_Airspeed.h>
|
|
#include <AP_Terrain.h>
|
|
|
|
#include <APM_OBC.h>
|
|
#include <APM_Control.h>
|
|
#include <AP_AutoTune.h>
|
|
#include <GCS.h>
|
|
#include <GCS_MAVLink.h> // MAVLink GCS definitions
|
|
#include <AP_SerialManager.h> // Serial manager library
|
|
#include <AP_Mount.h> // Camera/Antenna mount
|
|
#include <AP_Declination.h> // ArduPilot Mega Declination Helper Library
|
|
#include <DataFlash.h>
|
|
#include <SITL.h>
|
|
#include <AP_Scheduler.h> // main loop scheduler
|
|
|
|
#include <AP_Navigation.h>
|
|
#include <AP_L1_Control.h>
|
|
#include <AP_RCMapper.h> // RC input mapping library
|
|
|
|
#include <AP_Vehicle.h>
|
|
#include <AP_SpdHgtControl.h>
|
|
#include <AP_TECS.h>
|
|
#include <AP_NavEKF.h>
|
|
#include <AP_Mission.h> // Mission command library
|
|
|
|
#include <AP_Notify.h> // Notify library
|
|
#include <AP_BattMonitor.h> // Battery monitor library
|
|
|
|
#include <AP_Arming.h>
|
|
#include <AP_BoardConfig.h>
|
|
#include <AP_Frsky_Telem.h>
|
|
#include <AP_ServoRelayEvents.h>
|
|
|
|
#include <AP_Rally.h>
|
|
|
|
#include <AP_OpticalFlow.h> // Optical Flow library
|
|
|
|
// Pre-AP_HAL compatibility
|
|
#include "compat.h"
|
|
|
|
// Configuration
|
|
#include "config.h"
|
|
|
|
// Local modules
|
|
#include "defines.h"
|
|
|
|
// key aircraft parameters passed to multiple libraries
|
|
static AP_Vehicle::FixedWing aparm;
|
|
|
|
#include "Parameters.h"
|
|
|
|
#include <AP_HAL_AVR.h>
|
|
#include <AP_HAL_AVR_SITL.h>
|
|
#include <AP_HAL_PX4.h>
|
|
#include <AP_HAL_FLYMAPLE.h>
|
|
#include <AP_HAL_Linux.h>
|
|
#include <AP_HAL_Empty.h>
|
|
#include <AP_HAL_VRBRAIN.h>
|
|
|
|
AP_HAL::BetterStream* cliSerial;
|
|
|
|
const AP_HAL::HAL& hal = AP_HAL_BOARD_DRIVER;
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// the rate we run the main loop at
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
static const AP_InertialSensor::Sample_rate ins_sample_rate = AP_InertialSensor::RATE_50HZ;
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Parameters
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// Global parameters are all contained within the 'g' class.
|
|
//
|
|
static Parameters g;
|
|
|
|
// main loop scheduler
|
|
static AP_Scheduler scheduler;
|
|
|
|
// mapping between input channels
|
|
static RCMapper rcmap;
|
|
|
|
// board specific config
|
|
static AP_BoardConfig BoardConfig;
|
|
|
|
// primary control channels
|
|
static RC_Channel *channel_roll;
|
|
static RC_Channel *channel_pitch;
|
|
static RC_Channel *channel_throttle;
|
|
static RC_Channel *channel_rudder;
|
|
|
|
// notification object for LEDs, buzzers etc (parameter set to false disables external leds)
|
|
static AP_Notify notify;
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// prototypes
|
|
static void update_events(void);
|
|
void gcs_send_text_fmt(const prog_char_t *fmt, ...);
|
|
static void print_flight_mode(AP_HAL::BetterStream *port, uint8_t mode);
|
|
static bool arm_motors(AP_Arming::ArmingMethod method);
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// DataFlash
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
#if CONFIG_HAL_BOARD == HAL_BOARD_APM1
|
|
static DataFlash_APM1 DataFlash;
|
|
#elif CONFIG_HAL_BOARD == HAL_BOARD_APM2
|
|
static DataFlash_APM2 DataFlash;
|
|
#elif defined(HAL_BOARD_LOG_DIRECTORY)
|
|
static DataFlash_File DataFlash(HAL_BOARD_LOG_DIRECTORY);
|
|
#else
|
|
// no dataflash driver
|
|
DataFlash_Empty DataFlash;
|
|
#endif
|
|
|
|
// has a log download started?
|
|
static bool in_log_download;
|
|
|
|
// scaled roll limit based on pitch
|
|
static int32_t roll_limit_cd;
|
|
static int32_t pitch_limit_min_cd;
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Sensors
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// There are three basic options related to flight sensor selection.
|
|
//
|
|
// - Normal flight mode. Real sensors are used.
|
|
// - HIL Attitude mode. Most sensors are disabled, as the HIL
|
|
// protocol supplies attitude information directly.
|
|
// - HIL Sensors mode. Synthetic sensors are configured that
|
|
// supply data from the simulation.
|
|
//
|
|
|
|
// GPS driver
|
|
static AP_GPS gps;
|
|
static RangeFinder rng;
|
|
|
|
// flight modes convenience array
|
|
static AP_Int8 *flight_modes = &g.flight_mode1;
|
|
|
|
static AP_Baro barometer;
|
|
|
|
Compass compass;
|
|
|
|
#if CONFIG_HAL_BOARD == HAL_BOARD_APM1
|
|
AP_ADC_ADS7844 apm1_adc;
|
|
#endif
|
|
|
|
AP_InertialSensor ins;
|
|
|
|
// Inertial Navigation EKF
|
|
#if AP_AHRS_NAVEKF_AVAILABLE
|
|
AP_AHRS_NavEKF ahrs(ins, barometer, gps, rng);
|
|
#else
|
|
AP_AHRS_DCM ahrs(ins, barometer, gps);
|
|
#endif
|
|
|
|
static AP_L1_Control L1_controller(ahrs);
|
|
static AP_TECS TECS_controller(ahrs, aparm);
|
|
|
|
// Attitude to servo controllers
|
|
static AP_RollController rollController(ahrs, aparm, DataFlash);
|
|
static AP_PitchController pitchController(ahrs, aparm, DataFlash);
|
|
static AP_YawController yawController(ahrs, aparm);
|
|
static AP_SteerController steerController(ahrs);
|
|
|
|
#if CONFIG_HAL_BOARD == HAL_BOARD_AVR_SITL
|
|
SITL sitl;
|
|
#endif
|
|
|
|
// Training mode
|
|
static bool training_manual_roll; // user has manual roll control
|
|
static bool training_manual_pitch; // user has manual pitch control
|
|
|
|
/*
|
|
keep steering and rudder control separated until we update servos,
|
|
to allow for a separate wheel servo from rudder servo
|
|
*/
|
|
static struct {
|
|
bool ground_steering; // are we doing ground steering?
|
|
int16_t steering; // value for nose/tail wheel
|
|
int16_t rudder; // value for rudder
|
|
} steering_control;
|
|
|
|
// should throttle be pass-thru in guided?
|
|
static bool guided_throttle_passthru;
|
|
|
|
// are we doing calibration? This is used to allow heartbeat to
|
|
// external failsafe boards during baro and airspeed calibration
|
|
static bool in_calibration;
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// GCS selection
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
static AP_SerialManager serial_manager;
|
|
static const uint8_t num_gcs = MAVLINK_COMM_NUM_BUFFERS;
|
|
static GCS_MAVLINK gcs[MAVLINK_COMM_NUM_BUFFERS];
|
|
|
|
// selected navigation controller
|
|
static AP_Navigation *nav_controller = &L1_controller;
|
|
|
|
// selected navigation controller
|
|
static AP_SpdHgtControl *SpdHgt_Controller = &TECS_controller;
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Analog Inputs
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
// a pin for reading the receiver RSSI voltage.
|
|
static AP_HAL::AnalogSource *rssi_analog_source;
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// rangefinder
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
static RangeFinder rangefinder;
|
|
|
|
static struct {
|
|
bool in_range;
|
|
float correction;
|
|
uint32_t last_correction_time_ms;
|
|
uint8_t in_range_count;
|
|
} rangefinder_state;
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Relay
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
static AP_Relay relay;
|
|
|
|
// handle servo and relay events
|
|
static AP_ServoRelayEvents ServoRelayEvents(relay);
|
|
|
|
// Camera
|
|
#if CAMERA == ENABLED
|
|
static AP_Camera camera(&relay);
|
|
#endif
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Optical flow sensor
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
static OpticalFlow optflow;
|
|
|
|
//Rally Ponints
|
|
static AP_Rally rally(ahrs);
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Global variables
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
// remember if USB is connected, so we can adjust baud rate
|
|
static bool usb_connected;
|
|
|
|
/* Radio values
|
|
* Channel assignments
|
|
* 1 Ailerons
|
|
* 2 Elevator
|
|
* 3 Throttle
|
|
* 4 Rudder
|
|
* 5 Aux5
|
|
* 6 Aux6
|
|
* 7 Aux7
|
|
* 8 Aux8/Mode
|
|
* Each Aux channel can be configured to have any of the available auxiliary functions assigned to it.
|
|
* See libraries/RC_Channel/RC_Channel_aux.h for more information
|
|
*/
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Radio
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// This is the state of the flight control system
|
|
// There are multiple states defined such as MANUAL, FBW-A, AUTO
|
|
static enum FlightMode control_mode = INITIALISING;
|
|
static enum FlightMode previous_mode = INITIALISING;
|
|
|
|
// Used to maintain the state of the previous control switch position
|
|
// This is set to 254 when we need to re-read the switch
|
|
static uint8_t oldSwitchPosition = 254;
|
|
|
|
// This is used to enable the inverted flight feature
|
|
static bool inverted_flight = false;
|
|
|
|
// This is used to enable the PX4IO override for testing
|
|
static bool px4io_override_enabled = false;
|
|
|
|
static struct {
|
|
// These are trim values used for elevon control
|
|
// For elevons radio_in[CH_ROLL] and radio_in[CH_PITCH] are
|
|
// equivalent aileron and elevator, not left and right elevon
|
|
uint16_t trim1;
|
|
uint16_t trim2;
|
|
// These are used in the calculation of elevon1_trim and elevon2_trim
|
|
uint16_t ch1_temp;
|
|
uint16_t ch2_temp;
|
|
} elevon = {
|
|
trim1 : 1500,
|
|
trim2 : 1500,
|
|
ch1_temp : 1500,
|
|
ch2_temp : 1500
|
|
};
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Failsafe
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
static struct {
|
|
|
|
// Used to track if the value on channel 3 (throtttle) has fallen below the failsafe threshold
|
|
// RC receiver should be set up to output a low throttle value when signal is lost
|
|
uint8_t ch3_failsafe:1;
|
|
|
|
// has the saved mode for failsafe been set?
|
|
uint8_t saved_mode_set:1;
|
|
|
|
// flag to hold whether battery low voltage threshold has been breached
|
|
uint8_t low_battery:1;
|
|
|
|
// saved flight mode
|
|
enum FlightMode saved_mode;
|
|
|
|
// A tracking variable for type of failsafe active
|
|
// Used for failsafe based on loss of RC signal or GCS signal
|
|
int16_t state;
|
|
|
|
// number of low ch3 values
|
|
uint8_t ch3_counter;
|
|
|
|
// the time when the last HEARTBEAT message arrived from a GCS
|
|
uint32_t last_heartbeat_ms;
|
|
|
|
// A timer used to track how long we have been in a "short failsafe" condition due to loss of RC signal
|
|
uint32_t ch3_timer_ms;
|
|
|
|
uint32_t last_valid_rc_ms;
|
|
} failsafe;
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// GPS variables
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// This is used to scale GPS values for EEPROM storage
|
|
// 10^7 times Decimal GPS means 1 == 1cm
|
|
// This approximation makes calculations integer and it's easy to read
|
|
static const float t7 = 10000000.0f;
|
|
// We use atan2 and other trig techniques to calaculate angles
|
|
// A counter used to count down valid gps fixes to allow the gps estimate to settle
|
|
// before recording our home position (and executing a ground start if we booted with an air start)
|
|
static uint8_t ground_start_count = 5;
|
|
|
|
// true if we have a position estimate from AHRS
|
|
static bool have_position;
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Airspeed
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// The calculated airspeed to use in FBW-B. Also used in higher modes for insuring min ground speed is met.
|
|
// Also used for flap deployment criteria. Centimeters per second.
|
|
static int32_t target_airspeed_cm;
|
|
|
|
// The difference between current and desired airspeed. Used in the pitch controller. Centimeters per second.
|
|
static float airspeed_error_cm;
|
|
|
|
// An amount that the airspeed should be increased in auto modes based on the user positioning the
|
|
// throttle stick in the top half of the range. Centimeters per second.
|
|
static int16_t airspeed_nudge_cm;
|
|
|
|
// Similar to airspeed_nudge, but used when no airspeed sensor.
|
|
// 0-(throttle_max - throttle_cruise) : throttle nudge in Auto mode using top 1/2 of throttle stick travel
|
|
static int16_t throttle_nudge = 0;
|
|
|
|
// receiver RSSI
|
|
static uint8_t receiver_rssi;
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Ground speed
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// The amount current ground speed is below min ground speed. Centimeters per second
|
|
static int32_t groundspeed_undershoot = 0;
|
|
|
|
// Difference between current altitude and desired altitude. Centimeters
|
|
static int32_t altitude_error_cm;
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Battery Sensors
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
static AP_BattMonitor battery;
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// FrSky telemetry support
|
|
#if FRSKY_TELEM_ENABLED == ENABLED
|
|
static AP_Frsky_Telem frsky_telemetry(ahrs, battery);
|
|
#endif
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Airspeed Sensors
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
AP_Airspeed airspeed(aparm);
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// ACRO controller state
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
static struct {
|
|
bool locked_roll;
|
|
bool locked_pitch;
|
|
float locked_roll_err;
|
|
int32_t locked_pitch_cd;
|
|
} acro_state;
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// CRUISE controller state
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
static struct {
|
|
bool locked_heading;
|
|
int32_t locked_heading_cd;
|
|
uint32_t lock_timer_ms;
|
|
} cruise_state;
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// ground steering controller state
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
static struct {
|
|
// Direction held during phases of takeoff and landing centidegrees
|
|
// A value of -1 indicates the course has not been set/is not in use
|
|
// this is a 0..36000 value, or -1 for disabled
|
|
int32_t hold_course_cd;
|
|
|
|
// locked_course and locked_course_cd are used in stabilize mode
|
|
// when ground steering is active, and for steering in auto-takeoff
|
|
bool locked_course;
|
|
float locked_course_err;
|
|
} steer_state = {
|
|
hold_course_cd : -1,
|
|
locked_course : false,
|
|
locked_course_err : 0
|
|
};
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// flight mode specific
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
static struct {
|
|
// Flag for using gps ground course instead of INS yaw. Set false when takeoff command in process.
|
|
bool takeoff_complete:1;
|
|
|
|
// Flag to indicate if we have landed.
|
|
// Set land_complete if we are within 2 seconds distance or within 3 meters altitude of touchdown
|
|
bool land_complete:1;
|
|
|
|
// should we fly inverted?
|
|
bool inverted_flight:1;
|
|
|
|
// should we disable cross-tracking for the next waypoint?
|
|
bool next_wp_no_crosstrack:1;
|
|
|
|
// should we use cross-tracking for this waypoint?
|
|
bool no_crosstrack:1;
|
|
|
|
// in FBWA taildragger takeoff mode
|
|
bool fbwa_tdrag_takeoff_mode:1;
|
|
|
|
// have we checked for an auto-land?
|
|
bool checked_for_autoland:1;
|
|
|
|
// denotes if a go-around has been commanded for landing
|
|
bool commanded_go_around:1;
|
|
|
|
// Altitude threshold to complete a takeoff command in autonomous
|
|
// modes. Centimeters above home
|
|
int32_t takeoff_altitude_rel_cm;
|
|
|
|
// Minimum pitch to hold during takeoff command execution. Hundredths of a degree
|
|
int16_t takeoff_pitch_cd;
|
|
|
|
// the highest airspeed we have reached since entering AUTO. Used
|
|
// to control ground takeoff
|
|
float highest_airspeed;
|
|
|
|
// initial pitch. Used to detect if nose is rising in a tail dragger
|
|
int16_t initial_pitch_cd;
|
|
|
|
// turn angle for next leg of mission
|
|
float next_turn_angle;
|
|
|
|
// filtered sink rate for landing
|
|
float land_sink_rate;
|
|
|
|
// time when we first pass min GPS speed on takeoff
|
|
uint32_t takeoff_speed_time_ms;
|
|
|
|
// distance to next waypoint
|
|
float wp_distance;
|
|
|
|
// proportion to next waypoint
|
|
float wp_proportion;
|
|
|
|
// last time is_flying() returned true in milliseconds
|
|
uint32_t last_flying_ms;
|
|
} auto_state = {
|
|
takeoff_complete : true,
|
|
land_complete : false,
|
|
inverted_flight : false,
|
|
next_wp_no_crosstrack : true,
|
|
no_crosstrack : true,
|
|
fbwa_tdrag_takeoff_mode : false,
|
|
checked_for_autoland : false,
|
|
commanded_go_around : false,
|
|
takeoff_altitude_rel_cm : 0,
|
|
takeoff_pitch_cd : 0,
|
|
highest_airspeed : 0,
|
|
initial_pitch_cd : 0,
|
|
next_turn_angle : 90.0f,
|
|
land_sink_rate : 0,
|
|
takeoff_speed_time_ms : 0,
|
|
wp_distance : 0,
|
|
wp_proportion : 0,
|
|
last_flying_ms : 0
|
|
};
|
|
|
|
// true if we are in an auto-throttle mode, which means
|
|
// we need to run the speed/height controller
|
|
static bool auto_throttle_mode;
|
|
|
|
// this controls throttle suppression in auto modes
|
|
static bool throttle_suppressed;
|
|
|
|
AP_SpdHgtControl::FlightStage flight_stage = AP_SpdHgtControl::FLIGHT_NORMAL;
|
|
|
|
// probability of aircraft is currently in flight. range from 0 to 1 where 1 is 100% sure we're in flight
|
|
static float isFlyingProbability = 0;
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Loiter management
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Navigation control variables
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// The instantaneous desired bank angle. Hundredths of a degree
|
|
static int32_t nav_roll_cd;
|
|
|
|
// The instantaneous desired pitch angle. Hundredths of a degree
|
|
static int32_t nav_pitch_cd;
|
|
|
|
// we separate out rudder input to allow for RUDDER_ONLY=1
|
|
static int16_t rudder_input;
|
|
|
|
// the aerodymamic load factor. This is calculated from the demanded
|
|
// roll before the roll is clipped, using 1/sqrt(cos(nav_roll))
|
|
static float aerodynamic_load_factor = 1.0f;
|
|
|
|
// a smoothed airspeed estimate, used for limiting roll angle
|
|
static float smoothed_airspeed;
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Mission library
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// forward declations needed for functions with : in arguments
|
|
static bool verify_command_callback(const AP_Mission::Mission_Command &cmd);
|
|
static bool start_command_callback(const AP_Mission::Mission_Command &cmd);
|
|
AP_Mission mission(ahrs,
|
|
&start_command_callback,
|
|
&verify_command_callback,
|
|
&exit_mission_callback);
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// terrain handling
|
|
#if AP_TERRAIN_AVAILABLE
|
|
AP_Terrain terrain(ahrs, mission, rally);
|
|
#endif
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Outback Challenge Failsafe Support
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
#if OBC_FAILSAFE == ENABLED
|
|
APM_OBC obc(mission, barometer, gps, rcmap);
|
|
#endif
|
|
|
|
/*
|
|
meta data to support counting the number of circles in a loiter
|
|
*/
|
|
static struct {
|
|
// previous target bearing, used to update sum_cd
|
|
int32_t old_target_bearing_cd;
|
|
|
|
// Total desired rotation in a loiter. Used for Loiter Turns commands.
|
|
int32_t total_cd;
|
|
|
|
// total angle completed in the loiter so far
|
|
int32_t sum_cd;
|
|
|
|
// Direction for loiter. 1 for clockwise, -1 for counter-clockwise
|
|
int8_t direction;
|
|
|
|
// start time of the loiter. Milliseconds.
|
|
uint32_t start_time_ms;
|
|
|
|
// The amount of time we should stay in a loiter for the Loiter Time command. Milliseconds.
|
|
uint32_t time_max_ms;
|
|
} loiter;
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Conditional command
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// A value used in condition commands (eg delay, change alt, etc.)
|
|
// For example in a change altitude command, it is the altitude to change to.
|
|
static int32_t condition_value;
|
|
// Sometimes there is a second condition required:
|
|
static int32_t condition_value2;
|
|
// A starting value used to check the status of a conditional command.
|
|
// For example in a delay command the condition_start records that start time for the delay
|
|
static uint32_t condition_start;
|
|
// A value used in condition commands. For example the rate at which to change altitude.
|
|
static int16_t condition_rate;
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// 3D Location vectors
|
|
// Location structure defined in AP_Common
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// reference to AHRS home
|
|
static const struct Location &home = ahrs.get_home();
|
|
|
|
// Flag for if we have g_gps lock and have set the home location in AHRS
|
|
static enum HomeState home_is_set;
|
|
// The location of the previous waypoint. Used for track following and altitude ramp calculations
|
|
static Location prev_WP_loc;
|
|
// The plane's current location
|
|
static struct Location current_loc;
|
|
// The location of the current/active waypoint. Used for altitude ramp, track following and loiter calculations.
|
|
static Location next_WP_loc;
|
|
// The location of the active waypoint in Guided mode.
|
|
static struct Location guided_WP_loc;
|
|
// special purpose command used only after mission completed to return vehicle to home or rally point
|
|
static struct AP_Mission::Mission_Command auto_rtl_command;
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Altitude control
|
|
static struct {
|
|
// target altitude above sea level in cm. Used for barometric
|
|
// altitude navigation
|
|
int32_t amsl_cm;
|
|
|
|
// Altitude difference between previous and current waypoint in
|
|
// centimeters. Used for glide slope handling
|
|
int32_t offset_cm;
|
|
|
|
#if AP_TERRAIN_AVAILABLE
|
|
// are we trying to follow terrain?
|
|
bool terrain_following;
|
|
|
|
// target altitude above terrain in cm, valid if terrain_following
|
|
// is set
|
|
int32_t terrain_alt_cm;
|
|
|
|
// lookahead value for height error reporting
|
|
float lookahead;
|
|
#endif
|
|
} target_altitude;
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// INS variables
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// The main loop execution time. Seconds
|
|
//This is the time between calls to the DCM algorithm and is the Integration time for the gyros.
|
|
static float G_Dt = 0.02f;
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Performance monitoring
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Timer used to accrue data and trigger recording of the performanc monitoring log message
|
|
static uint32_t perf_mon_timer;
|
|
// The maximum and minimum main loop execution time recorded in the current performance monitoring interval
|
|
static uint32_t G_Dt_max = 0;
|
|
static uint32_t G_Dt_min = 0;
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// System Timers
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Time in microseconds of start of main control loop
|
|
static uint32_t fast_loopTimer_us;
|
|
|
|
// Number of milliseconds used in last main loop cycle
|
|
static uint32_t delta_us_fast_loop;
|
|
|
|
// Counter of main loop executions. Used for performance monitoring and failsafe processing
|
|
static uint16_t mainLoop_count;
|
|
|
|
// Camera/Antenna mount tracking and stabilisation stuff
|
|
// --------------------------------------
|
|
#if MOUNT == ENABLED
|
|
// current_loc uses the baro/gps soloution for altitude rather than gps only.
|
|
// mabe one could use current_loc for lat/lon too and eliminate g_gps alltogether?
|
|
static AP_Mount camera_mount(ahrs, current_loc);
|
|
#endif
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Arming/Disarming mangement class
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
static AP_Arming arming(ahrs, barometer, compass, home_is_set, gcs_send_text_P);
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Top-level logic
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
/*
|
|
scheduler table - all regular tasks are listed here, along with how
|
|
often they should be called (in 20ms units) and the maximum time
|
|
they are expected to take (in microseconds)
|
|
*/
|
|
static const AP_Scheduler::Task scheduler_tasks[] PROGMEM = {
|
|
{ read_radio, 1, 700 }, // 0
|
|
{ check_short_failsafe, 1, 1000 },
|
|
{ ahrs_update, 1, 6400 },
|
|
{ update_speed_height, 1, 1600 },
|
|
{ update_flight_mode, 1, 1400 },
|
|
{ stabilize, 1, 3500 },
|
|
{ set_servos, 1, 1600 },
|
|
{ read_control_switch, 7, 1000 },
|
|
{ gcs_retry_deferred, 1, 1000 },
|
|
{ update_GPS_50Hz, 1, 2500 },
|
|
{ update_GPS_10Hz, 5, 2500 }, // 10
|
|
{ navigate, 5, 3000 },
|
|
{ update_compass, 5, 1200 },
|
|
{ read_airspeed, 5, 1200 },
|
|
{ update_alt, 5, 3400 },
|
|
{ adjust_altitude_target, 5, 1000 },
|
|
{ obc_fs_check, 5, 1000 },
|
|
{ gcs_update, 1, 1700 },
|
|
{ gcs_data_stream_send, 1, 3000 },
|
|
{ update_events, 1, 1500 }, // 20
|
|
{ check_usb_mux, 5, 300 },
|
|
{ read_battery, 5, 1000 },
|
|
{ compass_accumulate, 1, 1500 },
|
|
{ barometer_accumulate, 1, 900 },
|
|
{ update_notify, 1, 300 },
|
|
{ read_rangefinder, 1, 500 },
|
|
#if OPTFLOW == ENABLED
|
|
{ update_optical_flow, 1, 500 },
|
|
#endif
|
|
{ one_second_loop, 50, 1000 },
|
|
{ check_long_failsafe, 15, 1000 },
|
|
{ read_receiver_rssi, 5, 1000 },
|
|
{ airspeed_ratio_update, 50, 1000 }, // 30
|
|
{ update_mount, 1, 1500 },
|
|
{ log_perf_info, 500, 1000 },
|
|
{ compass_save, 3000, 2500 },
|
|
{ update_logging1, 5, 1700 },
|
|
{ update_logging2, 5, 1700 },
|
|
#if FRSKY_TELEM_ENABLED == ENABLED
|
|
{ frsky_telemetry_send, 10, 100 },
|
|
#endif
|
|
{ terrain_update, 5, 500 },
|
|
};
|
|
|
|
// setup the var_info table
|
|
AP_Param param_loader(var_info);
|
|
|
|
void setup() {
|
|
cliSerial = hal.console;
|
|
|
|
// load the default values of variables listed in var_info[]
|
|
AP_Param::setup_sketch_defaults();
|
|
|
|
AP_Notify::flags.failsafe_battery = false;
|
|
|
|
notify.init(false);
|
|
|
|
rssi_analog_source = hal.analogin->channel(ANALOG_INPUT_NONE);
|
|
|
|
init_ardupilot();
|
|
|
|
// initialise the main loop scheduler
|
|
scheduler.init(&scheduler_tasks[0], sizeof(scheduler_tasks)/sizeof(scheduler_tasks[0]));
|
|
}
|
|
|
|
void loop()
|
|
{
|
|
// wait for an INS sample
|
|
ins.wait_for_sample();
|
|
|
|
uint32_t timer = hal.scheduler->micros();
|
|
|
|
delta_us_fast_loop = timer - fast_loopTimer_us;
|
|
G_Dt = delta_us_fast_loop * 1.0e-6f;
|
|
|
|
if (delta_us_fast_loop > G_Dt_max && fast_loopTimer_us != 0) {
|
|
G_Dt_max = delta_us_fast_loop;
|
|
}
|
|
|
|
if (delta_us_fast_loop < G_Dt_min || G_Dt_min == 0) {
|
|
G_Dt_min = delta_us_fast_loop;
|
|
}
|
|
fast_loopTimer_us = timer;
|
|
|
|
mainLoop_count++;
|
|
|
|
// tell the scheduler one tick has passed
|
|
scheduler.tick();
|
|
|
|
// run all the tasks that are due to run. Note that we only
|
|
// have to call this once per loop, as the tasks are scheduled
|
|
// in multiples of the main loop tick. So if they don't run on
|
|
// the first call to the scheduler they won't run on a later
|
|
// call until scheduler.tick() is called again
|
|
uint32_t remaining = (timer + 20000) - hal.scheduler->micros();
|
|
if (remaining > 19500) {
|
|
remaining = 19500;
|
|
}
|
|
scheduler.run(remaining);
|
|
}
|
|
|
|
// update AHRS system
|
|
static void ahrs_update()
|
|
{
|
|
hal.util->set_soft_armed(arming.is_armed() &&
|
|
hal.util->safety_switch_state() != AP_HAL::Util::SAFETY_DISARMED);
|
|
|
|
if (g.hil_mode == 1) {
|
|
// update hil before AHRS update
|
|
gcs_update();
|
|
}
|
|
|
|
ahrs.update();
|
|
|
|
if (should_log(MASK_LOG_ATTITUDE_FAST)) {
|
|
Log_Write_Attitude();
|
|
}
|
|
|
|
if (should_log(MASK_LOG_IMU))
|
|
Log_Write_IMU();
|
|
|
|
// calculate a scaled roll limit based on current pitch
|
|
roll_limit_cd = g.roll_limit_cd * cosf(ahrs.pitch);
|
|
pitch_limit_min_cd = aparm.pitch_limit_min_cd * fabsf(cosf(ahrs.roll));
|
|
|
|
// updated the summed gyro used for ground steering and
|
|
// auto-takeoff. Dot product of DCM.c with gyro vector gives earth
|
|
// frame yaw rate
|
|
steer_state.locked_course_err += ahrs.get_yaw_rate_earth() * G_Dt;
|
|
steer_state.locked_course_err = wrap_PI(steer_state.locked_course_err);
|
|
}
|
|
|
|
/*
|
|
update 50Hz speed/height controller
|
|
*/
|
|
static void update_speed_height(void)
|
|
{
|
|
if (auto_throttle_mode) {
|
|
// Call TECS 50Hz update. Note that we call this regardless of
|
|
// throttle suppressed, as this needs to be running for
|
|
// takeoff detection
|
|
SpdHgt_Controller->update_50hz(tecs_hgt_afe());
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
update camera mount
|
|
*/
|
|
static void update_mount(void)
|
|
{
|
|
#if MOUNT == ENABLED
|
|
camera_mount.update();
|
|
#endif
|
|
|
|
#if CAMERA == ENABLED
|
|
camera.trigger_pic_cleanup();
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
read and update compass
|
|
*/
|
|
static void update_compass(void)
|
|
{
|
|
if (g.compass_enabled && compass.read()) {
|
|
ahrs.set_compass(&compass);
|
|
compass.learn_offsets();
|
|
if (should_log(MASK_LOG_COMPASS)) {
|
|
DataFlash.Log_Write_Compass(compass);
|
|
}
|
|
} else {
|
|
ahrs.set_compass(NULL);
|
|
}
|
|
}
|
|
|
|
/*
|
|
if the compass is enabled then try to accumulate a reading
|
|
*/
|
|
static void compass_accumulate(void)
|
|
{
|
|
if (g.compass_enabled) {
|
|
compass.accumulate();
|
|
}
|
|
}
|
|
|
|
/*
|
|
try to accumulate a baro reading
|
|
*/
|
|
static void barometer_accumulate(void)
|
|
{
|
|
barometer.accumulate();
|
|
}
|
|
|
|
/*
|
|
do 10Hz logging
|
|
*/
|
|
static void update_logging1(void)
|
|
{
|
|
if (should_log(MASK_LOG_ATTITUDE_MED) && !should_log(MASK_LOG_ATTITUDE_FAST)) {
|
|
Log_Write_Attitude();
|
|
}
|
|
|
|
if (should_log(MASK_LOG_ATTITUDE_MED) && !should_log(MASK_LOG_IMU))
|
|
Log_Write_IMU();
|
|
}
|
|
|
|
/*
|
|
do 10Hz logging - part2
|
|
*/
|
|
static void update_logging2(void)
|
|
{
|
|
if (should_log(MASK_LOG_CTUN))
|
|
Log_Write_Control_Tuning();
|
|
|
|
if (should_log(MASK_LOG_NTUN))
|
|
Log_Write_Nav_Tuning();
|
|
|
|
if (should_log(MASK_LOG_RC))
|
|
Log_Write_RC();
|
|
}
|
|
|
|
|
|
/*
|
|
check for OBC failsafe check
|
|
*/
|
|
static void obc_fs_check(void)
|
|
{
|
|
#if OBC_FAILSAFE == ENABLED
|
|
// perform OBC failsafe checks
|
|
obc.check(OBC_MODE(control_mode), failsafe.last_heartbeat_ms, geofence_breached(), failsafe.last_valid_rc_ms);
|
|
#endif
|
|
}
|
|
|
|
|
|
/*
|
|
update aux servo mappings
|
|
*/
|
|
static void update_aux(void)
|
|
{
|
|
if (!px4io_override_enabled) {
|
|
RC_Channel_aux::enable_aux_servos();
|
|
}
|
|
}
|
|
|
|
static void one_second_loop()
|
|
{
|
|
if (should_log(MASK_LOG_CURRENT))
|
|
Log_Write_Current();
|
|
|
|
// send a heartbeat
|
|
gcs_send_message(MSG_HEARTBEAT);
|
|
|
|
// make it possible to change control channel ordering at runtime
|
|
set_control_channels();
|
|
|
|
// make it possible to change orientation at runtime
|
|
ahrs.set_orientation();
|
|
|
|
// sync MAVLink system ID
|
|
mavlink_system.sysid = g.sysid_this_mav;
|
|
|
|
update_aux();
|
|
|
|
// determine if we are flying or not
|
|
determine_is_flying();
|
|
|
|
// update notify flags
|
|
AP_Notify::flags.pre_arm_check = arming.pre_arm_checks(false);
|
|
AP_Notify::flags.pre_arm_gps_check = true;
|
|
AP_Notify::flags.armed = arming.is_armed() || arming.arming_required() == AP_Arming::NO;
|
|
|
|
#if AP_TERRAIN_AVAILABLE
|
|
if (should_log(MASK_LOG_GPS)) {
|
|
terrain.log_terrain_data(DataFlash);
|
|
}
|
|
#endif
|
|
// piggyback the status log entry on the MODE log entry flag
|
|
if (should_log(MASK_LOG_MODE)) {
|
|
Log_Write_Status();
|
|
}
|
|
}
|
|
|
|
static void log_perf_info()
|
|
{
|
|
if (scheduler.debug() != 0) {
|
|
gcs_send_text_fmt(PSTR("G_Dt_max=%lu G_Dt_min=%lu\n"),
|
|
(unsigned long)G_Dt_max,
|
|
(unsigned long)G_Dt_min);
|
|
}
|
|
if (should_log(MASK_LOG_PM))
|
|
Log_Write_Performance();
|
|
G_Dt_max = 0;
|
|
G_Dt_min = 0;
|
|
resetPerfData();
|
|
}
|
|
|
|
static void compass_save()
|
|
{
|
|
if (g.compass_enabled) {
|
|
compass.save_offsets();
|
|
}
|
|
}
|
|
|
|
static void terrain_update(void)
|
|
{
|
|
#if AP_TERRAIN_AVAILABLE
|
|
terrain.update();
|
|
|
|
// tell the rangefinder our height, so it can go into power saving
|
|
// mode if available
|
|
float height;
|
|
if (terrain.height_above_terrain(height, true)) {
|
|
rangefinder.set_estimated_terrain_height(height);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
once a second update the airspeed calibration ratio
|
|
*/
|
|
static void airspeed_ratio_update(void)
|
|
{
|
|
if (!airspeed.enabled() ||
|
|
gps.status() < AP_GPS::GPS_OK_FIX_3D ||
|
|
gps.ground_speed() < 4) {
|
|
// don't calibrate when not moving
|
|
return;
|
|
}
|
|
if (airspeed.get_airspeed() < aparm.airspeed_min &&
|
|
gps.ground_speed() < (uint32_t)aparm.airspeed_min) {
|
|
// don't calibrate when flying below the minimum airspeed. We
|
|
// check both airspeed and ground speed to catch cases where
|
|
// the airspeed ratio is way too low, which could lead to it
|
|
// never coming up again
|
|
return;
|
|
}
|
|
if (abs(ahrs.roll_sensor) > roll_limit_cd ||
|
|
ahrs.pitch_sensor > aparm.pitch_limit_max_cd ||
|
|
ahrs.pitch_sensor < pitch_limit_min_cd) {
|
|
// don't calibrate when going beyond normal flight envelope
|
|
return;
|
|
}
|
|
const Vector3f &vg = gps.velocity();
|
|
airspeed.update_calibration(vg);
|
|
gcs_send_airspeed_calibration(vg);
|
|
}
|
|
|
|
|
|
/*
|
|
read the GPS and update position
|
|
*/
|
|
static void update_GPS_50Hz(void)
|
|
{
|
|
static uint32_t last_gps_reading[GPS_MAX_INSTANCES];
|
|
gps.update();
|
|
|
|
for (uint8_t i=0; i<gps.num_sensors(); i++) {
|
|
if (gps.last_message_time_ms(i) != last_gps_reading[i]) {
|
|
last_gps_reading[i] = gps.last_message_time_ms(i);
|
|
if (should_log(MASK_LOG_GPS)) {
|
|
Log_Write_GPS(i);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
read update GPS position - 10Hz update
|
|
*/
|
|
static void update_GPS_10Hz(void)
|
|
{
|
|
// get position from AHRS
|
|
have_position = ahrs.get_position(current_loc);
|
|
|
|
static uint32_t last_gps_msg_ms;
|
|
if (gps.last_message_time_ms() != last_gps_msg_ms && gps.status() >= AP_GPS::GPS_OK_FIX_3D) {
|
|
last_gps_msg_ms = gps.last_message_time_ms();
|
|
|
|
if (ground_start_count > 1) {
|
|
ground_start_count--;
|
|
} else if (ground_start_count == 1) {
|
|
// We countdown N number of good GPS fixes
|
|
// so that the altitude is more accurate
|
|
// -------------------------------------
|
|
if (current_loc.lat == 0) {
|
|
ground_start_count = 5;
|
|
|
|
} else {
|
|
init_home();
|
|
|
|
// set system clock for log timestamps
|
|
hal.util->set_system_clock(gps.time_epoch_usec());
|
|
|
|
if (g.compass_enabled) {
|
|
// Set compass declination automatically
|
|
const Location &loc = gps.location();
|
|
compass.set_initial_location(loc.lat, loc.lng);
|
|
}
|
|
ground_start_count = 0;
|
|
}
|
|
}
|
|
|
|
// see if we've breached the geo-fence
|
|
geofence_check(false);
|
|
|
|
#if CAMERA == ENABLED
|
|
if (camera.update_location(current_loc) == true) {
|
|
do_take_picture();
|
|
}
|
|
#endif
|
|
|
|
if (!hal.util->get_soft_armed()) {
|
|
update_home();
|
|
}
|
|
|
|
// update wind estimate
|
|
ahrs.estimate_wind();
|
|
}
|
|
|
|
calc_gndspeed_undershoot();
|
|
}
|
|
|
|
/*
|
|
main handling for AUTO mode
|
|
*/
|
|
static void handle_auto_mode(void)
|
|
{
|
|
uint8_t nav_cmd_id;
|
|
|
|
// we should be either running a mission or RTLing home
|
|
if (mission.state() == AP_Mission::MISSION_RUNNING) {
|
|
nav_cmd_id = mission.get_current_nav_cmd().id;
|
|
}else{
|
|
nav_cmd_id = auto_rtl_command.id;
|
|
}
|
|
|
|
switch(nav_cmd_id) {
|
|
case MAV_CMD_NAV_TAKEOFF:
|
|
takeoff_calc_roll();
|
|
takeoff_calc_pitch();
|
|
calc_throttle();
|
|
|
|
break;
|
|
|
|
case MAV_CMD_NAV_LAND:
|
|
calc_nav_roll();
|
|
calc_nav_pitch();
|
|
|
|
if (auto_state.land_complete) {
|
|
// during final approach constrain roll to the range
|
|
// allowed for level flight
|
|
nav_roll_cd = constrain_int32(nav_roll_cd, -g.level_roll_limit*100UL, g.level_roll_limit*100UL);
|
|
}
|
|
calc_throttle();
|
|
|
|
if (auto_state.land_complete) {
|
|
// we are in the final stage of a landing - force
|
|
// zero throttle
|
|
channel_throttle->servo_out = 0;
|
|
}
|
|
break;
|
|
|
|
default:
|
|
// we are doing normal AUTO flight, the special cases
|
|
// are for takeoff and landing
|
|
steer_state.hold_course_cd = -1;
|
|
auto_state.land_complete = false;
|
|
auto_state.land_sink_rate = 0;
|
|
calc_nav_roll();
|
|
calc_nav_pitch();
|
|
calc_throttle();
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
main flight mode dependent update code
|
|
*/
|
|
static void update_flight_mode(void)
|
|
{
|
|
enum FlightMode effective_mode = control_mode;
|
|
if (control_mode == AUTO && g.auto_fbw_steer) {
|
|
effective_mode = FLY_BY_WIRE_A;
|
|
}
|
|
|
|
if (effective_mode != AUTO) {
|
|
// hold_course is only used in takeoff and landing
|
|
steer_state.hold_course_cd = -1;
|
|
}
|
|
|
|
switch (effective_mode)
|
|
{
|
|
case AUTO:
|
|
handle_auto_mode();
|
|
break;
|
|
|
|
case RTL:
|
|
case LOITER:
|
|
case GUIDED:
|
|
calc_nav_roll();
|
|
calc_nav_pitch();
|
|
calc_throttle();
|
|
break;
|
|
|
|
case TRAINING: {
|
|
training_manual_roll = false;
|
|
training_manual_pitch = false;
|
|
|
|
// if the roll is past the set roll limit, then
|
|
// we set target roll to the limit
|
|
if (ahrs.roll_sensor >= roll_limit_cd) {
|
|
nav_roll_cd = roll_limit_cd;
|
|
} else if (ahrs.roll_sensor <= -roll_limit_cd) {
|
|
nav_roll_cd = -roll_limit_cd;
|
|
} else {
|
|
training_manual_roll = true;
|
|
nav_roll_cd = 0;
|
|
}
|
|
|
|
// if the pitch is past the set pitch limits, then
|
|
// we set target pitch to the limit
|
|
if (ahrs.pitch_sensor >= aparm.pitch_limit_max_cd) {
|
|
nav_pitch_cd = aparm.pitch_limit_max_cd;
|
|
} else if (ahrs.pitch_sensor <= pitch_limit_min_cd) {
|
|
nav_pitch_cd = pitch_limit_min_cd;
|
|
} else {
|
|
training_manual_pitch = true;
|
|
nav_pitch_cd = 0;
|
|
}
|
|
if (fly_inverted()) {
|
|
nav_pitch_cd = -nav_pitch_cd;
|
|
}
|
|
break;
|
|
}
|
|
|
|
case ACRO: {
|
|
// handle locked/unlocked control
|
|
if (acro_state.locked_roll) {
|
|
nav_roll_cd = acro_state.locked_roll_err;
|
|
} else {
|
|
nav_roll_cd = ahrs.roll_sensor;
|
|
}
|
|
if (acro_state.locked_pitch) {
|
|
nav_pitch_cd = acro_state.locked_pitch_cd;
|
|
} else {
|
|
nav_pitch_cd = ahrs.pitch_sensor;
|
|
}
|
|
break;
|
|
}
|
|
|
|
case AUTOTUNE:
|
|
case FLY_BY_WIRE_A: {
|
|
// set nav_roll and nav_pitch using sticks
|
|
nav_roll_cd = channel_roll->norm_input() * roll_limit_cd;
|
|
nav_roll_cd = constrain_int32(nav_roll_cd, -roll_limit_cd, roll_limit_cd);
|
|
update_load_factor();
|
|
float pitch_input = channel_pitch->norm_input();
|
|
if (pitch_input > 0) {
|
|
nav_pitch_cd = pitch_input * aparm.pitch_limit_max_cd;
|
|
} else {
|
|
nav_pitch_cd = -(pitch_input * pitch_limit_min_cd);
|
|
}
|
|
adjust_nav_pitch_throttle();
|
|
nav_pitch_cd = constrain_int32(nav_pitch_cd, pitch_limit_min_cd, aparm.pitch_limit_max_cd.get());
|
|
if (fly_inverted()) {
|
|
nav_pitch_cd = -nav_pitch_cd;
|
|
}
|
|
if (failsafe.ch3_failsafe && g.short_fs_action == 2) {
|
|
// FBWA failsafe glide
|
|
nav_roll_cd = 0;
|
|
nav_pitch_cd = 0;
|
|
channel_throttle->servo_out = 0;
|
|
}
|
|
if (g.fbwa_tdrag_chan > 0) {
|
|
// check for the user enabling FBWA taildrag takeoff mode
|
|
bool tdrag_mode = (hal.rcin->read(g.fbwa_tdrag_chan-1) > 1700);
|
|
if (tdrag_mode && !auto_state.fbwa_tdrag_takeoff_mode) {
|
|
if (auto_state.highest_airspeed < g.takeoff_tdrag_speed1) {
|
|
auto_state.fbwa_tdrag_takeoff_mode = true;
|
|
gcs_send_text_P(SEVERITY_LOW, PSTR("FBWA tdrag mode\n"));
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
|
|
case FLY_BY_WIRE_B:
|
|
// Thanks to Yury MonZon for the altitude limit code!
|
|
nav_roll_cd = channel_roll->norm_input() * roll_limit_cd;
|
|
nav_roll_cd = constrain_int32(nav_roll_cd, -roll_limit_cd, roll_limit_cd);
|
|
update_load_factor();
|
|
update_fbwb_speed_height();
|
|
break;
|
|
|
|
case CRUISE:
|
|
/*
|
|
in CRUISE mode we use the navigation code to control
|
|
roll when heading is locked. Heading becomes unlocked on
|
|
any aileron or rudder input
|
|
*/
|
|
if ((channel_roll->control_in != 0 ||
|
|
rudder_input != 0)) {
|
|
cruise_state.locked_heading = false;
|
|
cruise_state.lock_timer_ms = 0;
|
|
}
|
|
|
|
if (!cruise_state.locked_heading) {
|
|
nav_roll_cd = channel_roll->norm_input() * roll_limit_cd;
|
|
nav_roll_cd = constrain_int32(nav_roll_cd, -roll_limit_cd, roll_limit_cd);
|
|
update_load_factor();
|
|
} else {
|
|
calc_nav_roll();
|
|
}
|
|
update_fbwb_speed_height();
|
|
break;
|
|
|
|
case STABILIZE:
|
|
nav_roll_cd = 0;
|
|
nav_pitch_cd = 0;
|
|
// throttle is passthrough
|
|
break;
|
|
|
|
case CIRCLE:
|
|
// we have no GPS installed and have lost radio contact
|
|
// or we just want to fly around in a gentle circle w/o GPS,
|
|
// holding altitude at the altitude we set when we
|
|
// switched into the mode
|
|
nav_roll_cd = roll_limit_cd / 3;
|
|
update_load_factor();
|
|
calc_nav_pitch();
|
|
calc_throttle();
|
|
break;
|
|
|
|
case MANUAL:
|
|
// servo_out is for Sim control only
|
|
// ---------------------------------
|
|
channel_roll->servo_out = channel_roll->pwm_to_angle();
|
|
channel_pitch->servo_out = channel_pitch->pwm_to_angle();
|
|
steering_control.steering = steering_control.rudder = channel_rudder->pwm_to_angle();
|
|
break;
|
|
//roll: -13788.000, pitch: -13698.000, thr: 0.000, rud: -13742.000
|
|
|
|
case INITIALISING:
|
|
// handled elsewhere
|
|
break;
|
|
}
|
|
}
|
|
|
|
static void update_navigation()
|
|
{
|
|
// wp_distance is in ACTUAL meters, not the *100 meters we get from the GPS
|
|
// ------------------------------------------------------------------------
|
|
|
|
// distance and bearing calcs only
|
|
switch(control_mode) {
|
|
case AUTO:
|
|
update_commands();
|
|
break;
|
|
|
|
case RTL:
|
|
if (g.rtl_autoland == 1 &&
|
|
!auto_state.checked_for_autoland &&
|
|
nav_controller->reached_loiter_target() &&
|
|
labs(altitude_error_cm) < 1000) {
|
|
// we've reached the RTL point, see if we have a landing sequence
|
|
jump_to_landing_sequence();
|
|
|
|
// prevent running the expensive jump_to_landing_sequence
|
|
// on every loop
|
|
auto_state.checked_for_autoland = true;
|
|
}
|
|
else if (g.rtl_autoland == 2 &&
|
|
!auto_state.checked_for_autoland) {
|
|
// Go directly to the landing sequence
|
|
jump_to_landing_sequence();
|
|
|
|
// prevent running the expensive jump_to_landing_sequence
|
|
// on every loop
|
|
auto_state.checked_for_autoland = true;
|
|
}
|
|
// fall through to LOITER
|
|
|
|
case LOITER:
|
|
case GUIDED:
|
|
// allow loiter direction to be changed in flight
|
|
if (g.loiter_radius < 0) {
|
|
loiter.direction = -1;
|
|
} else {
|
|
loiter.direction = 1;
|
|
}
|
|
update_loiter();
|
|
break;
|
|
|
|
case CRUISE:
|
|
update_cruise();
|
|
break;
|
|
|
|
case MANUAL:
|
|
case STABILIZE:
|
|
case TRAINING:
|
|
case INITIALISING:
|
|
case ACRO:
|
|
case FLY_BY_WIRE_A:
|
|
case AUTOTUNE:
|
|
case FLY_BY_WIRE_B:
|
|
case CIRCLE:
|
|
// nothing to do
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
set the flight stage
|
|
*/
|
|
static void set_flight_stage(AP_SpdHgtControl::FlightStage fs)
|
|
{
|
|
//if just now entering land flight stage
|
|
if (fs == AP_SpdHgtControl::FLIGHT_LAND_APPROACH &&
|
|
flight_stage != AP_SpdHgtControl::FLIGHT_LAND_APPROACH) {
|
|
|
|
#if GEOFENCE_ENABLED == ENABLED
|
|
if (g.fence_autoenable == 1) {
|
|
if (! geofence_set_enabled(false, AUTO_TOGGLED)) {
|
|
gcs_send_text_P(SEVERITY_HIGH, PSTR("Disable fence failed (autodisable)"));
|
|
} else {
|
|
gcs_send_text_P(SEVERITY_HIGH, PSTR("Fence disabled (autodisable)"));
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
|
|
flight_stage = fs;
|
|
}
|
|
|
|
static void update_alt()
|
|
{
|
|
barometer.update();
|
|
if (should_log(MASK_LOG_IMU)) {
|
|
Log_Write_Baro();
|
|
}
|
|
|
|
geofence_check(true);
|
|
|
|
update_flight_stage();
|
|
}
|
|
|
|
/*
|
|
recalculate the flight_stage
|
|
*/
|
|
static void update_flight_stage(void)
|
|
{
|
|
// Update the speed & height controller states
|
|
if (auto_throttle_mode && !throttle_suppressed) {
|
|
if (control_mode==AUTO) {
|
|
if (auto_state.takeoff_complete == false) {
|
|
set_flight_stage(AP_SpdHgtControl::FLIGHT_TAKEOFF);
|
|
} else if (mission.get_current_nav_cmd().id == MAV_CMD_NAV_LAND &&
|
|
auto_state.land_complete == true) {
|
|
set_flight_stage(AP_SpdHgtControl::FLIGHT_LAND_FINAL);
|
|
} else if (mission.get_current_nav_cmd().id == MAV_CMD_NAV_LAND) {
|
|
set_flight_stage(AP_SpdHgtControl::FLIGHT_LAND_APPROACH);
|
|
} else {
|
|
set_flight_stage(AP_SpdHgtControl::FLIGHT_NORMAL);
|
|
}
|
|
} else {
|
|
set_flight_stage(AP_SpdHgtControl::FLIGHT_NORMAL);
|
|
}
|
|
|
|
SpdHgt_Controller->update_pitch_throttle(relative_target_altitude_cm(),
|
|
target_airspeed_cm,
|
|
flight_stage,
|
|
auto_state.takeoff_pitch_cd,
|
|
throttle_nudge,
|
|
tecs_hgt_afe(),
|
|
aerodynamic_load_factor);
|
|
if (should_log(MASK_LOG_TECS)) {
|
|
Log_Write_TECS_Tuning();
|
|
}
|
|
}
|
|
|
|
// tell AHRS the airspeed to true airspeed ratio
|
|
airspeed.set_EAS2TAS(barometer.get_EAS2TAS());
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
Do we think we are flying?
|
|
Probabilistic method where a bool is low-passed and considered a probability.
|
|
*/
|
|
static void determine_is_flying(void)
|
|
{
|
|
float aspeed;
|
|
bool isFlyingBool;
|
|
|
|
bool airspeedMovement = ahrs.airspeed_estimate(&aspeed) && (aspeed >= 5);
|
|
|
|
// If we don't have a GPS lock then don't use GPS for this test
|
|
bool gpsMovement = (gps.status() < AP_GPS::GPS_OK_FIX_2D ||
|
|
gps.ground_speed() >= 5);
|
|
|
|
|
|
if (hal.util->get_soft_armed()) {
|
|
// when armed, we need overwhelming evidence that we ARE NOT flying
|
|
isFlyingBool = airspeedMovement || gpsMovement;
|
|
|
|
/*
|
|
make is_flying() more accurate for landing approach
|
|
*/
|
|
if (flight_stage == AP_SpdHgtControl::FLIGHT_LAND_APPROACH &&
|
|
fabsf(auto_state.land_sink_rate) > 0.2f) {
|
|
isFlyingBool = true;
|
|
}
|
|
} else {
|
|
// when disarmed, we need overwhelming evidence that we ARE flying
|
|
isFlyingBool = airspeedMovement && gpsMovement;
|
|
}
|
|
|
|
// low-pass the result.
|
|
isFlyingProbability = (0.6f * isFlyingProbability) + (0.4f * (float)isFlyingBool);
|
|
|
|
/*
|
|
update last_flying_ms so we always know how long we have not
|
|
been flying for. This helps for crash detection and auto-disarm
|
|
*/
|
|
if (is_flying()) {
|
|
auto_state.last_flying_ms = hal.scheduler->millis();
|
|
}
|
|
}
|
|
|
|
/*
|
|
return true if we think we are flying. This is a probabilistic
|
|
estimate, and needs to be used very carefully. Each use case needs
|
|
to be thought about individually.
|
|
*/
|
|
static bool is_flying(void)
|
|
{
|
|
if (hal.util->get_soft_armed()) {
|
|
// when armed, assume we're flying unless we probably aren't
|
|
return (isFlyingProbability >= 0.1f);
|
|
}
|
|
|
|
// when disarmed, assume we're not flying unless we probably are
|
|
return (isFlyingProbability >= 0.9f);
|
|
}
|
|
|
|
|
|
#if OPTFLOW == ENABLED
|
|
// called at 50hz
|
|
static void update_optical_flow(void)
|
|
{
|
|
static uint32_t last_of_update = 0;
|
|
|
|
// exit immediately if not enabled
|
|
if (!optflow.enabled()) {
|
|
return;
|
|
}
|
|
|
|
// read from sensor
|
|
optflow.update();
|
|
|
|
// write to log and send to EKF if new data has arrived
|
|
if (optflow.last_update() != last_of_update) {
|
|
last_of_update = optflow.last_update();
|
|
uint8_t flowQuality = optflow.quality();
|
|
Vector2f flowRate = optflow.flowRate();
|
|
Vector2f bodyRate = optflow.bodyRate();
|
|
ahrs.writeOptFlowMeas(flowQuality, flowRate, bodyRate, last_of_update);
|
|
Log_Write_Optflow();
|
|
}
|
|
}
|
|
#endif
|
|
AP_HAL_MAIN();
|