ardupilot/ArduCopterMega/control_modes.pde
jasonshort 35bf288abd New PIDs - I rewrote the control laws from scratch to add a PI Rate function. The end result should fly nearly identically to the current version. The nice detail is that we can use NG PID values for easy transition!
Before: ->  After
Stabilize P –> Stabilize P (Use NG values, or 8.3 x the older AC2 value)
Stabilize I –> Stabilize I (Stays same value)
Stabilize D –> Rate P (Stays same value)
–> Rate I (new)
 
Added a new value – an I term for rate. The old stabilization routines did not use this term. Please refer to the config.h file to read more about the new PIDs.
Added framework for using DCM corrected Accelerometer rates. Code is commented out for now.
Added set home at Arming.
Crosstrack is now a full PID loop, rather than just a P gain for more control. 
Throttle now slews when switching out of Alt hold or Auto modes for less jarring transitions
Sonar and Baro PIDs are now combined into a throttle PID Yaw control is completely re-written.
Added Octa_Quad support - Max



git-svn-id: https://arducopter.googlecode.com/svn/trunk@2836 f9c3cf11-9bcb-44bc-f272-b75c42450872
2011-07-11 00:47:08 +00:00

121 lines
2.4 KiB
Plaintext

/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
void read_control_switch()
{
byte switchPosition = readSwitch();
//motor_armed = (switchPosition < 5);
if (oldSwitchPosition != switchPosition){
set_mode(g.flight_modes[switchPosition]);
oldSwitchPosition = switchPosition;
prev_WP = current_loc;
// reset navigation integrators
// -------------------------
//reset_I();
}
}
byte readSwitch(void){
int pulsewidth = g.rc_5.radio_in; // default for Arducopter
if (pulsewidth > 1230 && pulsewidth <= 1360) return 1;
if (pulsewidth > 1360 && pulsewidth <= 1490) return 2;
if (pulsewidth > 1490 && pulsewidth <= 1620) return 3;
if (pulsewidth > 1620 && pulsewidth <= 1749) return 4; // Software Manual
if (pulsewidth >= 1750) return 5; // Hardware Manual
return 0;
}
void reset_control_switch()
{
oldSwitchPosition = -1;
read_control_switch();
//SendDebug("MSG: reset_control_switch ");
//SendDebugln(oldSwitchPosition , DEC);
}
void update_servo_switches()
{
}
boolean trim_flag;
unsigned long trim_timer;
// read at 10 hz
// set this to your trainer switch
void read_trim_switch()
{
// switch is engaged
if (g.rc_7.control_in > 800){
trim_flag = true;
}else{ // switch is disengaged
if(trim_flag){
// set the throttle nominal
if(g.rc_3.control_in > 150){
g.throttle_cruise.set_and_save(g.rc_3.control_in);
//Serial.printf("tnom %d\n", g.throttle_cruise.get());
}
trim_flag = false;
}
}
}
void auto_trim()
{
if(auto_level_counter > 0){
g.rc_1.dead_zone = 60; // 60 = .6 degrees
g.rc_2.dead_zone = 60;
auto_level_counter--;
trim_accel();
led_mode = AUTO_TRIM_LEDS;
if(auto_level_counter == 1){
g.rc_1.dead_zone = 0; // 60 = .6 degrees
g.rc_2.dead_zone = 0;
led_mode = NORMAL_LEDS;
clear_leds();
imu.save();
Serial.println("Done");
auto_level_counter = 0;
}
}
}
void trim_accel()
{
g.pid_stabilize_roll.reset_I();
g.pid_stabilize_pitch.reset_I();
if(g.rc_1.control_in > 0){
imu.ay(imu.ay() + 1);
}else if (g.rc_1.control_in < 0){
imu.ay(imu.ay() - 1);
}
if(g.rc_2.control_in > 0){
imu.ax(imu.ax() + 1);
}else if (g.rc_2.control_in < 0){
imu.ax(imu.ax() - 1);
}
/*
Serial.printf_P(PSTR("r:%ld p:%ld ax:%f, ay:%f, az:%f\n"),
dcm.roll_sensor,
dcm.pitch_sensor,
(float)imu.ax(),
(float)imu.ay(),
(float)imu.az());
//*/
}