mirror of
https://github.com/ArduPilot/ardupilot
synced 2025-01-19 23:28:32 -04:00
c9ec8b3f67
this costs some flash space but speeds things up considerably
453 lines
10 KiB
C++
453 lines
10 KiB
C++
#pragma GCC optimize("O3")
|
|
|
|
#include <AP_Math/AP_Math.h>
|
|
#include <AP_HAL/AP_HAL.h>
|
|
|
|
extern const AP_HAL::HAL& hal;
|
|
|
|
/*
|
|
* generic matrix inverse code
|
|
*
|
|
* @param x, input nxn matrix
|
|
* @param n, dimension of square matrix
|
|
* @returns determinant of square matrix
|
|
* Known Issues/ Possible Enhancements:
|
|
* -more efficient method should be available, following is code generated from matlab
|
|
*/
|
|
float detnxn(const float C[],const uint8_t n)
|
|
{
|
|
float f;
|
|
float *A = new float[n*n];
|
|
if( A == NULL) {
|
|
return 0;
|
|
}
|
|
int8_t *ipiv = new int8_t[n];
|
|
if(ipiv == NULL) {
|
|
delete[] A;
|
|
return 0;
|
|
}
|
|
int32_t i0;
|
|
int32_t j;
|
|
int32_t c;
|
|
int32_t iy;
|
|
int32_t ix;
|
|
float smax;
|
|
int32_t jy;
|
|
float s;
|
|
int32_t b_j;
|
|
int32_t ijA;
|
|
bool isodd;
|
|
|
|
memcpy(&A[0], &C[0], n*n * sizeof(float));
|
|
for (i0 = 0; i0 < n; i0++) {
|
|
ipiv[i0] = (int8_t)(1 + i0);
|
|
}
|
|
|
|
for (j = 0; j < n-1; j++) {
|
|
c = j * (n+1);
|
|
iy = 0;
|
|
ix = c;
|
|
smax = fabs(A[c]);
|
|
for (jy = 2; jy <= n - 1 - j; jy++) {
|
|
ix++;
|
|
s = fabs(A[ix]);
|
|
if (s > smax) {
|
|
iy = jy - 1;
|
|
smax = s;
|
|
}
|
|
}
|
|
|
|
if (A[c + iy] != 0.0) {
|
|
if (iy != 0) {
|
|
ipiv[j] = (int8_t)((j + iy) + 1);
|
|
ix = j;
|
|
iy += j;
|
|
for (jy = 0; jy < n; jy++) {
|
|
smax = A[ix];
|
|
A[ix] = A[iy];
|
|
A[iy] = smax;
|
|
ix += n;
|
|
iy += n;
|
|
}
|
|
}
|
|
|
|
i0 = (c - j) + n;
|
|
for (iy = c + 1; iy + 1 <= i0; iy++) {
|
|
A[iy] /= A[c];
|
|
}
|
|
}
|
|
|
|
iy = c;
|
|
jy = c + n;
|
|
for (b_j = 1; b_j <= n - 1 - j; b_j++) {
|
|
smax = A[jy];
|
|
if (A[jy] != 0.0) {
|
|
ix = c + 1;
|
|
i0 = (iy - j) + (2*n);
|
|
for (ijA = n + 1 + iy; ijA + 1 <= i0; ijA++) {
|
|
A[ijA] += A[ix] * -smax;
|
|
ix++;
|
|
}
|
|
}
|
|
|
|
jy += n;
|
|
iy += n;
|
|
}
|
|
}
|
|
|
|
f = A[0];
|
|
isodd = false;
|
|
for (jy = 0; jy < (n-1); jy++) {
|
|
f *= A[(jy + n * (1 + jy)) + 1];
|
|
if (ipiv[jy] > 1 + jy) {
|
|
isodd = !isodd;
|
|
}
|
|
}
|
|
|
|
if (isodd) {
|
|
f = -f;
|
|
}
|
|
delete[] A;
|
|
delete[] ipiv;
|
|
return f;
|
|
}
|
|
/*
|
|
* generic matrix inverse code
|
|
*
|
|
* @param x, input nxn matrix
|
|
* @param y, Output inverted nxn matrix
|
|
* @param n, dimension of square matrix
|
|
* @returns false = matrix is Singular, true = matrix inversion successful
|
|
* Known Issues/ Possible Enhancements:
|
|
* -more efficient method should be available, following is code generated from matlab
|
|
*/
|
|
|
|
bool inversenxn(const float x[], float y[], const uint8_t n)
|
|
{
|
|
if (is_zero(detnxn(x,n))) {
|
|
return false;
|
|
}
|
|
|
|
float *A = new float[n*n];
|
|
if( A == NULL ){
|
|
return false;
|
|
}
|
|
int32_t i0;
|
|
int32_t *ipiv = new int32_t[n];
|
|
if(ipiv == NULL) {
|
|
delete[] A;
|
|
return false;
|
|
}
|
|
int32_t j;
|
|
int32_t c;
|
|
int32_t pipk;
|
|
int32_t ix;
|
|
float smax;
|
|
int32_t k;
|
|
float s;
|
|
int32_t jy;
|
|
int32_t ijA;
|
|
int32_t *p = new int32_t[n];
|
|
if(p == NULL) {
|
|
delete[] A;
|
|
delete[] ipiv;
|
|
return false;
|
|
}
|
|
|
|
for (i0 = 0; i0 < n*n; i0++) {
|
|
A[i0] = x[i0];
|
|
y[i0] = 0.0f;
|
|
}
|
|
|
|
for (i0 = 0; i0 < n; i0++) {
|
|
ipiv[i0] = (int32_t)(1 + i0);
|
|
}
|
|
|
|
for (j = 0; j < (n-1); j++) {
|
|
c = j * (n+1);
|
|
pipk = 0;
|
|
ix = c;
|
|
smax = fabsf(A[c]);
|
|
for (k = 2; k <= (n-1) - j; k++) {
|
|
ix++;
|
|
s = fabsf(A[ix]);
|
|
if (s > smax) {
|
|
pipk = k - 1;
|
|
smax = s;
|
|
}
|
|
}
|
|
|
|
if (A[c + pipk] != 0.0f) {
|
|
if (pipk != 0) {
|
|
ipiv[j] = (int32_t)((j + pipk) + 1);
|
|
ix = j;
|
|
pipk += j;
|
|
for (k = 0; k < n; k++) {
|
|
smax = A[ix];
|
|
A[ix] = A[pipk];
|
|
A[pipk] = smax;
|
|
ix += n;
|
|
pipk += n;
|
|
}
|
|
}
|
|
|
|
i0 = (c - j) + n;
|
|
for (jy = c + 1; jy + 1 <= i0; jy++) {
|
|
A[jy] /= A[c];
|
|
}
|
|
}
|
|
|
|
pipk = c;
|
|
jy = c + n;
|
|
for (k = 1; k <= (n-1) - j; k++) {
|
|
smax = A[jy];
|
|
if (A[jy] != 0.0f) {
|
|
ix = c + 1;
|
|
i0 = (pipk - j) + (2*n);
|
|
for (ijA = (n+1) + pipk; ijA + 1 <= i0; ijA++) {
|
|
A[ijA] += A[ix] * -smax;
|
|
ix++;
|
|
}
|
|
}
|
|
|
|
jy += n;
|
|
pipk += n;
|
|
}
|
|
}
|
|
|
|
for (i0 = 0; i0 < n; i0++) {
|
|
p[i0] = (int32_t)(1 + i0);
|
|
}
|
|
|
|
for (k = 0; k < (n-1); k++) {
|
|
if (ipiv[k] > 1 + k) {
|
|
pipk = p[ipiv[k] - 1];
|
|
p[ipiv[k] - 1] = p[k];
|
|
p[k] = (int32_t)pipk;
|
|
}
|
|
}
|
|
|
|
for (k = 0; k < n; k++) {
|
|
y[k + n * (p[k] - 1)] = 1.0;
|
|
for (j = k; j + 1 < (n+1); j++) {
|
|
if (y[j + n * (p[k] - 1)] != 0.0f) {
|
|
for (jy = j + 1; jy + 1 < (n+1); jy++) {
|
|
y[jy + n * (p[k] - 1)] -= y[j + n * (p[k] - 1)] * A[jy + n * j];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
for (j = 0; j < n; j++) {
|
|
c = n * j;
|
|
for (k = (n-1); k > -1; k += -1) {
|
|
pipk = n * k;
|
|
if (y[k + c] != 0.0f) {
|
|
y[k + c] /= A[k + pipk];
|
|
for (jy = 0; jy + 1 <= k; jy++) {
|
|
y[jy + c] -= y[k + c] * A[jy + pipk];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
delete[] A;
|
|
delete[] ipiv;
|
|
delete[] p;
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* matrix inverse code only for 3x3 square matrix
|
|
*
|
|
* @param m, input 4x4 matrix
|
|
* @param invOut, Output inverted 4x4 matrix
|
|
* @returns false = matrix is Singular, true = matrix inversion successful
|
|
*/
|
|
|
|
bool inverse3x3(float m[], float invOut[])
|
|
{
|
|
float inv[9];
|
|
// computes the inverse of a matrix m
|
|
float det = m[0] * (m[4] * m[8] - m[7] * m[5]) -
|
|
m[1] * (m[3] * m[8] - m[5] * m[6]) +
|
|
m[2] * (m[3] * m[7] - m[4] * m[6]);
|
|
if (is_zero(det)){
|
|
return false;
|
|
}
|
|
|
|
float invdet = 1 / det;
|
|
|
|
inv[0] = (m[4] * m[8] - m[7] * m[5]) * invdet;
|
|
inv[1] = (m[2] * m[7] - m[1] * m[8]) * invdet;
|
|
inv[2] = (m[1] * m[5] - m[2] * m[4]) * invdet;
|
|
inv[3] = (m[5] * m[6] - m[5] * m[8]) * invdet;
|
|
inv[4] = (m[0] * m[8] - m[2] * m[6]) * invdet;
|
|
inv[5] = (m[3] * m[2] - m[0] * m[5]) * invdet;
|
|
inv[6] = (m[3] * m[7] - m[6] * m[4]) * invdet;
|
|
inv[7] = (m[6] * m[1] - m[0] * m[7]) * invdet;
|
|
inv[8] = (m[0] * m[4] - m[3] * m[1]) * invdet;
|
|
|
|
for(uint8_t i = 0; i < 9; i++){
|
|
invOut[i] = inv[i];
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* matrix inverse code only for 4x4 square matrix copied from
|
|
* gluInvertMatrix implementation in
|
|
* opengl for 4x4 matrices.
|
|
*
|
|
* @param m, input 4x4 matrix
|
|
* @param invOut, Output inverted 4x4 matrix
|
|
* @returns false = matrix is Singular, true = matrix inversion successful
|
|
*/
|
|
|
|
bool inverse4x4(float m[],float invOut[])
|
|
{
|
|
float inv[16], det;
|
|
uint8_t i;
|
|
|
|
inv[0] = m[5] * m[10] * m[15] -
|
|
m[5] * m[11] * m[14] -
|
|
m[9] * m[6] * m[15] +
|
|
m[9] * m[7] * m[14] +
|
|
m[13] * m[6] * m[11] -
|
|
m[13] * m[7] * m[10];
|
|
|
|
inv[4] = -m[4] * m[10] * m[15] +
|
|
m[4] * m[11] * m[14] +
|
|
m[8] * m[6] * m[15] -
|
|
m[8] * m[7] * m[14] -
|
|
m[12] * m[6] * m[11] +
|
|
m[12] * m[7] * m[10];
|
|
|
|
inv[8] = m[4] * m[9] * m[15] -
|
|
m[4] * m[11] * m[13] -
|
|
m[8] * m[5] * m[15] +
|
|
m[8] * m[7] * m[13] +
|
|
m[12] * m[5] * m[11] -
|
|
m[12] * m[7] * m[9];
|
|
|
|
inv[12] = -m[4] * m[9] * m[14] +
|
|
m[4] * m[10] * m[13] +
|
|
m[8] * m[5] * m[14] -
|
|
m[8] * m[6] * m[13] -
|
|
m[12] * m[5] * m[10] +
|
|
m[12] * m[6] * m[9];
|
|
|
|
inv[1] = -m[1] * m[10] * m[15] +
|
|
m[1] * m[11] * m[14] +
|
|
m[9] * m[2] * m[15] -
|
|
m[9] * m[3] * m[14] -
|
|
m[13] * m[2] * m[11] +
|
|
m[13] * m[3] * m[10];
|
|
|
|
inv[5] = m[0] * m[10] * m[15] -
|
|
m[0] * m[11] * m[14] -
|
|
m[8] * m[2] * m[15] +
|
|
m[8] * m[3] * m[14] +
|
|
m[12] * m[2] * m[11] -
|
|
m[12] * m[3] * m[10];
|
|
|
|
inv[9] = -m[0] * m[9] * m[15] +
|
|
m[0] * m[11] * m[13] +
|
|
m[8] * m[1] * m[15] -
|
|
m[8] * m[3] * m[13] -
|
|
m[12] * m[1] * m[11] +
|
|
m[12] * m[3] * m[9];
|
|
|
|
inv[13] = m[0] * m[9] * m[14] -
|
|
m[0] * m[10] * m[13] -
|
|
m[8] * m[1] * m[14] +
|
|
m[8] * m[2] * m[13] +
|
|
m[12] * m[1] * m[10] -
|
|
m[12] * m[2] * m[9];
|
|
|
|
inv[2] = m[1] * m[6] * m[15] -
|
|
m[1] * m[7] * m[14] -
|
|
m[5] * m[2] * m[15] +
|
|
m[5] * m[3] * m[14] +
|
|
m[13] * m[2] * m[7] -
|
|
m[13] * m[3] * m[6];
|
|
|
|
inv[6] = -m[0] * m[6] * m[15] +
|
|
m[0] * m[7] * m[14] +
|
|
m[4] * m[2] * m[15] -
|
|
m[4] * m[3] * m[14] -
|
|
m[12] * m[2] * m[7] +
|
|
m[12] * m[3] * m[6];
|
|
|
|
inv[10] = m[0] * m[5] * m[15] -
|
|
m[0] * m[7] * m[13] -
|
|
m[4] * m[1] * m[15] +
|
|
m[4] * m[3] * m[13] +
|
|
m[12] * m[1] * m[7] -
|
|
m[12] * m[3] * m[5];
|
|
|
|
inv[14] = -m[0] * m[5] * m[14] +
|
|
m[0] * m[6] * m[13] +
|
|
m[4] * m[1] * m[14] -
|
|
m[4] * m[2] * m[13] -
|
|
m[12] * m[1] * m[6] +
|
|
m[12] * m[2] * m[5];
|
|
|
|
inv[3] = -m[1] * m[6] * m[11] +
|
|
m[1] * m[7] * m[10] +
|
|
m[5] * m[2] * m[11] -
|
|
m[5] * m[3] * m[10] -
|
|
m[9] * m[2] * m[7] +
|
|
m[9] * m[3] * m[6];
|
|
|
|
inv[7] = m[0] * m[6] * m[11] -
|
|
m[0] * m[7] * m[10] -
|
|
m[4] * m[2] * m[11] +
|
|
m[4] * m[3] * m[10] +
|
|
m[8] * m[2] * m[7] -
|
|
m[8] * m[3] * m[6];
|
|
|
|
inv[11] = -m[0] * m[5] * m[11] +
|
|
m[0] * m[7] * m[9] +
|
|
m[4] * m[1] * m[11] -
|
|
m[4] * m[3] * m[9] -
|
|
m[8] * m[1] * m[7] +
|
|
m[8] * m[3] * m[5];
|
|
|
|
inv[15] = m[0] * m[5] * m[10] -
|
|
m[0] * m[6] * m[9] -
|
|
m[4] * m[1] * m[10] +
|
|
m[4] * m[2] * m[9] +
|
|
m[8] * m[1] * m[6] -
|
|
m[8] * m[2] * m[5];
|
|
|
|
det = m[0] * inv[0] + m[1] * inv[4] + m[2] * inv[8] + m[3] * inv[12];
|
|
|
|
if (is_zero(det)){
|
|
return false;
|
|
}
|
|
|
|
det = 1.0f / det;
|
|
|
|
for (i = 0; i < 16; i++)
|
|
invOut[i] = inv[i] * det;
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* generic matrix inverse code
|
|
*
|
|
* @param x, input nxn matrix
|
|
* @param y, Output inverted nxn matrix
|
|
* @param n, dimension of square matrix
|
|
* @returns false = matrix is Singular, true = matrix inversion successful
|
|
*/
|
|
bool inverse(float x[], float y[], uint16_t dim)
|
|
{
|
|
switch(dim){
|
|
case 3: return inverse3x3(x,y);
|
|
case 4: return inverse4x4(x,y);
|
|
default: return inversenxn(x,y,dim);
|
|
}
|
|
}
|