ardupilot/libraries/AP_Motors/AP_MotorsHeli_Quad.cpp
2023-02-05 17:54:33 -05:00

351 lines
12 KiB
C++

/*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <stdlib.h>
#include <AP_HAL/AP_HAL.h>
#include <GCS_MAVLink/GCS.h>
#include "AP_MotorsHeli_Quad.h"
extern const AP_HAL::HAL& hal;
const AP_Param::GroupInfo AP_MotorsHeli_Quad::var_info[] = {
AP_NESTEDGROUPINFO(AP_MotorsHeli, 0),
// Indices 1-3 were used by RSC_PWM_MIN, RSC_PWM_MAX and RSC_PWM_REV and should not be used
AP_GROUPEND
};
#define QUAD_SERVO_MAX_ANGLE 4500
// set update rate to motors - a value in hertz
void AP_MotorsHeli_Quad::set_update_rate( uint16_t speed_hz )
{
// record requested speed
_speed_hz = speed_hz;
// setup fast channels
uint32_t mask = 0;
for (uint8_t i=0; i<AP_MOTORS_HELI_QUAD_NUM_MOTORS; i++) {
mask |= 1U << (AP_MOTORS_MOT_1+i);
}
rc_set_freq(mask, _speed_hz);
}
// init_outputs
bool AP_MotorsHeli_Quad::init_outputs()
{
if (initialised_ok()) {
return true;
}
for (uint8_t i=0; i<AP_MOTORS_HELI_QUAD_NUM_MOTORS; i++) {
add_motor_num(CH_1+i);
SRV_Channels::set_angle(SRV_Channels::get_motor_function(i), QUAD_SERVO_MAX_ANGLE);
}
// set rotor servo range
_main_rotor.init_servo();
// set signal value for main rotor external governor to know when to use autorotation bailout ramp up
if (_main_rotor._rsc_mode.get() == ROTOR_CONTROL_MODE_SETPOINT || _main_rotor._rsc_mode.get() == ROTOR_CONTROL_MODE_PASSTHROUGH) {
_main_rotor.set_ext_gov_arot_bail(_main_rotor._arot_idle_output.get());
} else {
_main_rotor.set_ext_gov_arot_bail(0);
}
set_initialised_ok(_frame_class == MOTOR_FRAME_HELI_QUAD);
return true;
}
// output_test_seq - spin a motor at the pwm value specified
// motor_seq is the motor's sequence number from 1 to the number of motors on the frame
// pwm value is an actual pwm value that will be output, normally in the range of 1000 ~ 2000
void AP_MotorsHeli_Quad::_output_test_seq(uint8_t motor_seq, int16_t pwm)
{
// output to motors and servos
switch (motor_seq) {
case 1 ... AP_MOTORS_HELI_QUAD_NUM_MOTORS:
rc_write(AP_MOTORS_MOT_1 + (motor_seq-1), pwm);
break;
case AP_MOTORS_HELI_QUAD_NUM_MOTORS+1:
// main rotor
rc_write(AP_MOTORS_HELI_RSC, pwm);
break;
default:
// do nothing
break;
}
}
// set_desired_rotor_speed
void AP_MotorsHeli_Quad::set_desired_rotor_speed(float desired_speed)
{
_main_rotor.set_desired_speed(desired_speed);
}
// calculate_armed_scalars
void AP_MotorsHeli_Quad::calculate_armed_scalars()
{
// Set rsc mode specific parameters
if (_main_rotor._rsc_mode.get() == ROTOR_CONTROL_MODE_THROTTLECURVE || _main_rotor._rsc_mode.get() == ROTOR_CONTROL_MODE_AUTOTHROTTLE) {
_main_rotor.set_throttle_curve();
}
// keeps user from changing RSC mode while armed
if (_main_rotor._rsc_mode.get() != _main_rotor.get_control_mode()) {
_main_rotor.reset_rsc_mode_param();
gcs().send_text(MAV_SEVERITY_CRITICAL, "RSC control mode change failed");
_heliflags.save_rsc_mode = true;
}
// saves rsc mode parameter when disarmed if it had been reset while armed
if (_heliflags.save_rsc_mode && !armed()) {
_main_rotor._rsc_mode.save();
_heliflags.save_rsc_mode = false;
}
// set bailout ramp time
_main_rotor.use_bailout_ramp_time(_heliflags.enable_bailout);
// allow use of external governor autorotation bailout window on main rotor
if (_main_rotor._arot_idle_output.get() > 0 && (_main_rotor._rsc_mode.get() == ROTOR_CONTROL_MODE_SETPOINT || _main_rotor._rsc_mode.get() == ROTOR_CONTROL_MODE_PASSTHROUGH)){
// RSC only needs to know that the vehicle is in an autorotation if using the bailout window on an external governor
_main_rotor.set_autorotation_flag(_heliflags.in_autorotation);
}
}
// calculate_scalars
void AP_MotorsHeli_Quad::calculate_scalars()
{
// range check collective min, max and mid
if( _collective_min >= _collective_max ) {
_collective_min.set(AP_MOTORS_HELI_COLLECTIVE_MIN);
_collective_max.set(AP_MOTORS_HELI_COLLECTIVE_MAX);
}
_collective_zero_thrust_deg.set(constrain_float(_collective_zero_thrust_deg, _collective_min_deg, _collective_max_deg));
_collective_land_min_deg.set(constrain_float(_collective_land_min_deg, _collective_min_deg, _collective_max_deg));
if (!is_equal((float)_collective_max_deg, (float)_collective_min_deg)) {
// calculate collective zero thrust point as a number from 0 to 1
_collective_zero_thrust_pct = (_collective_zero_thrust_deg-_collective_min_deg)/(_collective_max_deg-_collective_min_deg);
// calculate collective land min point as a number from 0 to 1
_collective_land_min_pct = (_collective_land_min_deg-_collective_min_deg)/(_collective_max_deg-_collective_min_deg);
} else {
_collective_zero_thrust_pct = 0.0f;
_collective_land_min_pct = 0.0f;
}
// calculate factors based on swash type and servo position
calculate_roll_pitch_collective_factors();
// set mode of main rotor controller and trigger recalculation of scalars
_main_rotor.set_control_mode(static_cast<RotorControlMode>(_main_rotor._rsc_mode.get()));
calculate_armed_scalars();
}
// calculate_swash_factors - calculate factors based on swash type and servo position
void AP_MotorsHeli_Quad::calculate_roll_pitch_collective_factors()
{
// assume X quad layout, with motors at 45, 135, 225 and 315 degrees
// order FrontRight, RearLeft, FrontLeft, RearLeft
const float angles[AP_MOTORS_HELI_QUAD_NUM_MOTORS] = { 45, 225, 315, 135 };
const bool x_clockwise[AP_MOTORS_HELI_QUAD_NUM_MOTORS] = { false, false, true, true };
const float cos45 = cosf(radians(45));
for (uint8_t i=0; i<AP_MOTORS_HELI_QUAD_NUM_MOTORS; i++) {
bool clockwise = x_clockwise[i];
if (_frame_type == MOTOR_FRAME_TYPE_H) {
// reverse yaw for H frame
clockwise = !clockwise;
}
_rollFactor[CH_1+i] = -0.25*sinf(radians(angles[i]))/cos45;
_pitchFactor[CH_1+i] = 0.25*cosf(radians(angles[i]))/cos45;
_yawFactor[CH_1+i] = clockwise?-0.25:0.25;
_collectiveFactor[CH_1+i] = 1;
}
}
// get_motor_mask - returns a bitmask of which outputs are being used for motors or servos (1 means being used)
// this can be used to ensure other pwm outputs (i.e. for servos) do not conflict
uint32_t AP_MotorsHeli_Quad::get_motor_mask()
{
uint32_t mask = 0;
for (uint8_t i=0; i<AP_MOTORS_HELI_QUAD_NUM_MOTORS; i++) {
mask |= 1U << (AP_MOTORS_MOT_1+i);
}
mask |= 1U << AP_MOTORS_HELI_RSC;
return mask;
}
// update_motor_controls - sends commands to motor controllers
void AP_MotorsHeli_Quad::update_motor_control(RotorControlState state)
{
// Send state update to motors
_main_rotor.output(state);
if (state == ROTOR_CONTROL_STOP) {
// set engine run enable aux output to not run position to kill engine when disarmed
SRV_Channels::set_output_limit(SRV_Channel::k_engine_run_enable, SRV_Channel::Limit::MIN);
} else {
// else if armed, set engine run enable output to run position
SRV_Channels::set_output_limit(SRV_Channel::k_engine_run_enable, SRV_Channel::Limit::MAX);
}
// Check if rotors are run-up
_heliflags.rotor_runup_complete = _main_rotor.is_runup_complete();
// Check if rotors are spooled down
_heliflags.rotor_spooldown_complete = _main_rotor.is_spooldown_complete();
}
//
// move_actuators - moves swash plate to attitude of parameters passed in
// - expected ranges:
// roll : -1 ~ +1
// pitch: -1 ~ +1
// collective: 0 ~ 1
// yaw: -1 ~ +1
//
void AP_MotorsHeli_Quad::move_actuators(float roll_out, float pitch_out, float collective_in, float yaw_out)
{
// initialize limits flag
limit.throttle_lower = false;
limit.throttle_upper = false;
// constrain collective input
float collective_out = collective_in;
if (collective_out <= 0.0f) {
collective_out = 0.0f;
limit.throttle_lower = true;
}
if (collective_out >= 1.0f) {
collective_out = 1.0f;
limit.throttle_upper = true;
}
// ensure not below landed/landing collective
if (_heliflags.landing_collective && collective_out < _collective_land_min_pct) {
collective_out = _collective_land_min_pct;
limit.throttle_lower = true;
}
// updates below land min collective flag
if (collective_out <= _collective_land_min_pct) {
_heliflags.below_land_min_coll = true;
} else {
_heliflags.below_land_min_coll = false;
}
// updates takeoff collective flag based on 50% hover collective
update_takeoff_collective_flag(collective_out);
float collective_range = (_collective_max - _collective_min) * 0.001f;
if (_heliflags.inverted_flight) {
collective_out = 1.0f - collective_out;
}
// feed power estimate into main rotor controller
_main_rotor.set_collective(fabsf(collective_out));
// rescale collective for overhead calc
collective_out -= _collective_zero_thrust_pct;
// reserve some collective for attitude control
collective_out *= collective_range;
for (uint8_t i=0; i<AP_MOTORS_HELI_QUAD_NUM_MOTORS; i++) {
_out[i] =
_rollFactor[CH_1+i] * roll_out +
_pitchFactor[CH_1+i] * pitch_out +
_collectiveFactor[CH_1+i] * collective_out;
}
// see if we need to scale down yaw_out
for (uint8_t i=0; i<AP_MOTORS_HELI_QUAD_NUM_MOTORS; i++) {
float y = _yawFactor[CH_1+i] * yaw_out;
if (_out[i] < 0.0f) {
// the slope of the yaw effect changes at zero collective
y = -y;
}
if (_out[i] * (_out[i] + y) < 0.0f) {
// applying this yaw demand would change the sign of the
// collective, which means the yaw would not be applied
// evenly. We scale down the overall yaw demand to prevent
// it crossing over zero
float s = -(_out[i] / y);
yaw_out *= s;
}
}
// now apply the yaw correction
for (uint8_t i=0; i<AP_MOTORS_HELI_QUAD_NUM_MOTORS; i++) {
float y = _yawFactor[CH_1+i] * yaw_out;
if (_out[i] < 0.0f) {
// the slope of the yaw effect changes at zero collective
y = -y;
}
_out[i] += y;
}
for (uint8_t i=0; i<AP_MOTORS_HELI_QUAD_NUM_MOTORS; i++) {
// scale output to 0 to 1
_out[i] += _collective_zero_thrust_pct;
// scale output to -1 to 1 for servo output
_out[i] = _out[i] * 2.0f - 1.0f;
}
}
void AP_MotorsHeli_Quad::output_to_motors()
{
if (!initialised_ok()) {
return;
}
// move the servos
for (uint8_t i=0; i<AP_MOTORS_HELI_QUAD_NUM_MOTORS; i++) {
rc_write_angle(AP_MOTORS_MOT_1+i, _out[i] * QUAD_SERVO_MAX_ANGLE);
}
switch (_spool_state) {
case SpoolState::SHUT_DOWN:
// sends minimum values out to the motors
update_motor_control(ROTOR_CONTROL_STOP);
break;
case SpoolState::GROUND_IDLE:
// sends idle output to motors when armed. rotor could be static or turning (autorotation)
update_motor_control(ROTOR_CONTROL_IDLE);
break;
case SpoolState::SPOOLING_UP:
case SpoolState::THROTTLE_UNLIMITED:
// set motor output based on thrust requests
update_motor_control(ROTOR_CONTROL_ACTIVE);
break;
case SpoolState::SPOOLING_DOWN:
// sends idle output to motors and wait for rotor to stop
update_motor_control(ROTOR_CONTROL_IDLE);
break;
}
}
// servo_test - move servos through full range of movement
void AP_MotorsHeli_Quad::servo_test()
{
// not implemented
}