ardupilot/libraries/AC_AutoTune/AC_AutoTune_Heli.cpp

1745 lines
73 KiB
C++

/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/*
support for autotune of helicopters. Based on original autotune code from ArduCopter, written by Leonard Hall
Converted to a library by Andrew Tridgell, and rewritten to include helicopters by Bill Geyer
*/
#include "AC_AutoTune_config.h"
#if AC_AUTOTUNE_ENABLED
#include "AC_AutoTune_Heli.h"
#include <AP_Logger/AP_Logger.h>
#include <GCS_MAVLink/GCS.h>
#define AUTOTUNE_TESTING_STEP_TIMEOUT_MS 5000U // timeout for tuning mode's testing step
#define AUTOTUNE_RD_STEP 0.0005f // minimum increment when increasing/decreasing Rate D term
#define AUTOTUNE_RP_STEP 0.005f // minimum increment when increasing/decreasing Rate P term
#define AUTOTUNE_SP_STEP 0.05f // minimum increment when increasing/decreasing Stab P term
#define AUTOTUNE_PI_RATIO_FOR_TESTING 0.1f // I is set 10x smaller than P during testing
#define AUTOTUNE_PI_RATIO_FINAL 1.0f // I is set 1x P after testing
#define AUTOTUNE_YAW_PI_RATIO_FINAL 0.1f // I is set 1x P after testing
#define AUTOTUNE_RD_MAX 0.020f // maximum Rate D value
#define AUTOTUNE_RP_MIN 0.02f // minimum Rate P value
#define AUTOTUNE_RP_MAX 0.3f // maximum Rate P value
#define AUTOTUNE_SP_MAX 10.0f // maximum Stab P value
#define AUTOTUNE_SP_MIN 3.0f // maximum Stab P value
#define AUTOTUNE_RFF_MAX 0.5f // maximum Stab P value
#define AUTOTUNE_RFF_MIN 0.025f // maximum Stab P value
#define AUTOTUNE_RD_BACKOFF 1.0f // Rate D gains are reduced to 50% of their maximum value discovered during tuning
#define AUTOTUNE_RP_BACKOFF 1.0f // Rate P gains are reduced to 97.5% of their maximum value discovered during tuning
#define AUTOTUNE_SP_BACKOFF 1.0f // Stab P gains are reduced to 90% of their maximum value discovered during tuning
#define AUTOTUNE_ACCEL_RP_BACKOFF 1.0f // back off from maximum acceleration
#define AUTOTUNE_ACCEL_Y_BACKOFF 1.0f // back off from maximum acceleration
#define AUTOTUNE_HELI_TARGET_ANGLE_RLLPIT_CD 1500 // target roll/pitch angle during AUTOTUNE FeedForward rate test
#define AUTOTUNE_HELI_TARGET_RATE_RLLPIT_CDS 5000 // target roll/pitch rate during AUTOTUNE FeedForward rate test
#define AUTOTUNE_FFI_RATIO_FOR_TESTING 0.5f // I is set 2x smaller than VFF during testing
#define AUTOTUNE_FFI_RATIO_FINAL 0.5f // I is set 0.5x VFF after testing
#define AUTOTUNE_RP_ACCEL_MIN 20000.0f // Minimum acceleration for Roll and Pitch
#define AUTOTUNE_Y_ACCEL_MIN 10000.0f // Minimum acceleration for Yaw
#define AUTOTUNE_SEQ_BITMASK_VFF 1
#define AUTOTUNE_SEQ_BITMASK_RATE_D 2
#define AUTOTUNE_SEQ_BITMASK_ANGLE_P 4
#define AUTOTUNE_SEQ_BITMASK_MAX_GAIN 8
#define AUTOTUNE_SEQ_BITMASK_TUNE_CHECK 16
// angle limits preserved from previous behaviour as Multi changed:
#define AUTOTUNE_ANGLE_TARGET_MAX_RP_CD 2000 // target angle during TESTING_RATE step that will cause us to move to next step
#define AUTOTUNE_ANGLE_TARGET_MIN_RP_CD 1000 // minimum target angle during TESTING_RATE step that will cause us to move to next step
#define AUTOTUNE_ANGLE_TARGET_MAX_Y_CD 3000 // target angle during TESTING_RATE step that will cause us to move to next step
#define AUTOTUNE_ANGLE_TARGET_MIN_Y_CD 500 // target angle during TESTING_RATE step that will cause us to move to next step
#define AUTOTUNE_ANGLE_MAX_RP_CD 3000 // maximum allowable angle in degrees during testing
#define AUTOTUNE_ANGLE_NEG_RPY_CD 1000 // maximum allowable angle in degrees during testing
const AP_Param::GroupInfo AC_AutoTune_Heli::var_info[] = {
// @Param: AXES
// @DisplayName: Autotune axis bitmask
// @Description: 1-byte bitmap of axes to autotune
// @Bitmask: 0:Roll,1:Pitch,2:Yaw
// @User: Standard
AP_GROUPINFO("AXES", 1, AC_AutoTune_Heli, axis_bitmask, 1),
// @Param: SEQ
// @DisplayName: AutoTune Sequence Bitmask
// @Description: 2-byte bitmask to select what tuning should be performed. Max gain automatically performed if Rate D is selected. Values: 7:All,1:VFF Only,2:Rate D/Rate P Only(incl max gain),4:Angle P Only,8:Max Gain Only,16:Tune Check,3:VFF and Rate D/Rate P(incl max gain),5:VFF and Angle P,6:Rate D/Rate P(incl max gain) and angle P
// @Bitmask: 0:VFF,1:Rate D/Rate P(incl max gain),2:Angle P,3:Max Gain Only,4:Tune Check
// @User: Standard
AP_GROUPINFO("SEQ", 2, AC_AutoTune_Heli, seq_bitmask, 3),
// @Param: FRQ_MIN
// @DisplayName: AutoTune minimum sweep frequency
// @Description: Defines the start frequency for sweeps and dwells
// @Range: 10 30
// @User: Standard
AP_GROUPINFO("FRQ_MIN", 3, AC_AutoTune_Heli, min_sweep_freq, 10.0f),
// @Param: FRQ_MAX
// @DisplayName: AutoTune maximum sweep frequency
// @Description: Defines the end frequency for sweeps and dwells
// @Range: 50 120
// @User: Standard
AP_GROUPINFO("FRQ_MAX", 4, AC_AutoTune_Heli, max_sweep_freq, 70.0f),
// @Param: GN_MAX
// @DisplayName: AutoTune maximum response gain
// @Description: Defines the response gain (output/input) to tune
// @Range: 1 2.5
// @User: Standard
AP_GROUPINFO("GN_MAX", 5, AC_AutoTune_Heli, max_resp_gain, 1.0f),
// @Param: VELXY_P
// @DisplayName: AutoTune velocity xy P gain
// @Description: Velocity xy P gain used to hold position during Max Gain, Rate P, and Rate D frequency sweeps
// @Range: 0 1
// @User: Standard
AP_GROUPINFO("VELXY_P", 6, AC_AutoTune_Heli, vel_hold_gain, 0.1f),
// @Param: ACC_MAX
// @DisplayName: AutoTune maximum allowable angular acceleration
// @Description: maximum angular acceleration in deg/s/s allowed during autotune maneuvers
// @Range: 1 4000
// @User: Standard
AP_GROUPINFO("ACC_MAX", 7, AC_AutoTune_Heli, accel_max, 0.0f),
// @Param: RAT_MAX
// @DisplayName: Autotune maximum allowable angular rate
// @Description: maximum angular rate in deg/s allowed during autotune maneuvers
// @Range: 0 500
// @User: Standard
AP_GROUPINFO("RAT_MAX", 8, AC_AutoTune_Heli, rate_max, 0.0f),
AP_GROUPEND
};
// constructor
AC_AutoTune_Heli::AC_AutoTune_Heli()
{
tune_seq[0] = TUNE_COMPLETE;
AP_Param::setup_object_defaults(this, var_info);
}
// initialize tests for each tune type
void AC_AutoTune_Heli::test_init()
{
AC_AutoTune_FreqResp::ResponseType resp_type = AC_AutoTune_FreqResp::ResponseType::RATE;
FreqRespCalcType calc_type = RATE;
FreqRespInput freq_resp_input = TARGET;
float freq_resp_amplitude = 5.0f; // amplitude in deg
float filter_freq = 10.0f;
switch (tune_type) {
case RFF_UP:
if (!is_positive(next_test_freq)) {
start_freq = 0.25f * M_2PI;
} else {
start_freq = next_test_freq;
}
stop_freq = start_freq;
filter_freq = start_freq;
attitude_control->bf_feedforward(false);
// variables needed to initialize frequency response object and test method
resp_type = AC_AutoTune_FreqResp::ResponseType::RATE;
calc_type = RATE;
freq_resp_input = TARGET;
pre_calc_cycles = 1.0f;
num_dwell_cycles = 3;
break;
case MAX_GAINS:
// initialize start frequency for sweep
if (!is_positive(next_test_freq)) {
start_freq = min_sweep_freq;
stop_freq = max_sweep_freq;
sweep_complete = true;
} else {
start_freq = next_test_freq;
stop_freq = start_freq;
test_accel_max = 0.0f;
}
filter_freq = start_freq;
attitude_control->bf_feedforward(false);
// variables needed to initialize frequency response object and test method
resp_type = AC_AutoTune_FreqResp::ResponseType::RATE;
calc_type = RATE;
freq_resp_input = MOTOR;
pre_calc_cycles = 6.25f;
num_dwell_cycles = 6;
break;
case RP_UP:
case RD_UP:
// initialize start frequency
if (!is_positive(next_test_freq)) {
// continue using frequency where testing left off with RD_UP completed
if (curr_data.phase > 150.0f && curr_data.phase < 180.0f && tune_type == RP_UP) {
start_freq = curr_data.freq;
// start with freq found for sweep where phase was 180 deg
} else if (!is_zero(sweep_tgt.ph180.freq)) {
start_freq = sweep_tgt.ph180.freq;
// otherwise start at min freq to step up in dwell frequency until phase > 160 deg
} else {
start_freq = min_sweep_freq;
}
} else {
start_freq = next_test_freq;
}
stop_freq = start_freq;
filter_freq = start_freq;
attitude_control->bf_feedforward(false);
// variables needed to initialize frequency response object and test method
resp_type = AC_AutoTune_FreqResp::ResponseType::RATE;
calc_type = RATE;
freq_resp_input = TARGET;
pre_calc_cycles = 6.25f;
num_dwell_cycles = 6;
break;
case SP_UP:
// initialize start frequency for sweep
if (!is_positive(next_test_freq)) {
start_freq = min_sweep_freq;
stop_freq = max_sweep_freq;
sweep_complete = true;
} else {
start_freq = next_test_freq;
stop_freq = start_freq;
test_accel_max = 0.0f;
}
filter_freq = start_freq;
attitude_control->bf_feedforward(false);
// variables needed to initialize frequency response object and test method
resp_type = AC_AutoTune_FreqResp::ResponseType::ANGLE;
calc_type = DRB;
freq_resp_input = TARGET;
pre_calc_cycles = 6.25f;
num_dwell_cycles = 6;
break;
case TUNE_CHECK:
// initialize start frequency
start_freq = min_sweep_freq;
stop_freq = max_sweep_freq;
test_accel_max = 0.0f;
filter_freq = start_freq;
// variables needed to initialize frequency response object and test method
resp_type = AC_AutoTune_FreqResp::ResponseType::ANGLE;
calc_type = ANGLE;
freq_resp_input = TARGET;
break;
default:
break;
}
if (!is_equal(start_freq,stop_freq)) {
input_type = AC_AutoTune_FreqResp::InputType::SWEEP;
} else {
input_type = AC_AutoTune_FreqResp::InputType::DWELL;
}
// initialize dwell test method
dwell_test_init(start_freq, stop_freq, freq_resp_amplitude, filter_freq, freq_resp_input, calc_type, resp_type, input_type);
start_angles = Vector3f(roll_cd, pitch_cd, desired_yaw_cd); // heli specific
}
// run tests for each tune type
void AC_AutoTune_Heli::test_run(AxisType test_axis, const float dir_sign)
{
// if tune complete or beyond frequency range or no max allowed gains then exit testing
if (tune_type == TUNE_COMPLETE ||
((tune_type == RP_UP || tune_type == RD_UP) && (max_rate_p.max_allowed <= 0.0f || max_rate_d.max_allowed <= 0.0f)) ||
((tune_type == MAX_GAINS || tune_type == RP_UP || tune_type == RD_UP || tune_type == SP_UP) && exceeded_freq_range(start_freq))){
load_gains(GAIN_ORIGINAL);
attitude_control->use_sqrt_controller(true);
get_poshold_attitude(roll_cd, pitch_cd, desired_yaw_cd);
// hold level attitude
attitude_control->input_euler_angle_roll_pitch_yaw(roll_cd, pitch_cd, desired_yaw_cd, true);
if ((tune_type == RP_UP || tune_type == RD_UP) && (max_rate_p.max_allowed <= 0.0f || max_rate_d.max_allowed <= 0.0f)) {
GCS_SEND_TEXT(MAV_SEVERITY_INFO, "AutoTune: Max Gain Determination Failed");
mode = FAILED;
LOGGER_WRITE_EVENT(LogEvent::AUTOTUNE_FAILED);
update_gcs(AUTOTUNE_MESSAGE_FAILED);
} else if ((tune_type == MAX_GAINS || tune_type == RP_UP || tune_type == RD_UP || tune_type == SP_UP) && exceeded_freq_range(start_freq)){
GCS_SEND_TEXT(MAV_SEVERITY_INFO, "AutoTune: Exceeded frequency range");
mode = FAILED;
LOGGER_WRITE_EVENT(LogEvent::AUTOTUNE_FAILED);
update_gcs(AUTOTUNE_MESSAGE_FAILED);
} else if (tune_type == TUNE_COMPLETE) {
counter = AUTOTUNE_SUCCESS_COUNT;
step = UPDATE_GAINS;
}
return;
}
dwell_test_run(curr_data);
}
// heli specific gcs announcements
void AC_AutoTune_Heli::do_gcs_announcements()
{
const uint32_t now = AP_HAL::millis();
if (now - announce_time < AUTOTUNE_ANNOUNCE_INTERVAL_MS) {
return;
}
GCS_SEND_TEXT(MAV_SEVERITY_INFO, "AutoTune: %s %s", axis_string(), type_string());
send_step_string();
switch (tune_type) {
case RFF_UP:
case RD_UP:
case RP_UP:
case MAX_GAINS:
case SP_UP:
case TUNE_CHECK:
if (is_equal(start_freq,stop_freq)) {
GCS_SEND_TEXT(MAV_SEVERITY_INFO, "AutoTune: Dwell");
} else {
GCS_SEND_TEXT(MAV_SEVERITY_INFO, "AutoTune: Sweep");
if (settle_time == 0) {
GCS_SEND_TEXT(MAV_SEVERITY_INFO, "AutoTune: freq=%f gain=%f phase=%f", (double)(curr_test.freq), (double)(curr_test.gain), (double)(curr_test.phase));
}
}
break;
default:
break;
}
announce_time = now;
}
// send post test updates to user
void AC_AutoTune_Heli::do_post_test_gcs_announcements() {
float tune_rp = 0.0f;
float tune_rd = 0.0f;
float tune_rff = 0.0f;
float tune_sp = 0.0f;
float tune_accel = 0.0f;
switch (axis) {
case AxisType::ROLL:
tune_rp = tune_roll_rp;
tune_rd = tune_roll_rd;
tune_rff = tune_roll_rff;
tune_sp = tune_roll_sp;
tune_accel = tune_roll_accel;
break;
case AxisType::PITCH:
tune_rp = tune_pitch_rp;
tune_rd = tune_pitch_rd;
tune_rff = tune_pitch_rff;
tune_sp = tune_pitch_sp;
tune_accel = tune_pitch_accel;
break;
case AxisType::YAW:
case AxisType::YAW_D:
tune_rp = tune_yaw_rp;
tune_rd = tune_yaw_rd;
tune_rff = tune_yaw_rff;
tune_sp = tune_yaw_sp;
tune_accel = tune_yaw_accel;
break;
}
if (step == UPDATE_GAINS) {
switch (tune_type) {
case RFF_UP:
case RP_UP:
case RD_UP:
case SP_UP:
case MAX_GAINS:
if (is_equal(start_freq,stop_freq)) {
// announce results of dwell
GCS_SEND_TEXT(MAV_SEVERITY_INFO, "AutoTune: freq=%f gain=%f", (double)(curr_data.freq), (double)(curr_data.gain));
GCS_SEND_TEXT(MAV_SEVERITY_INFO, "AutoTune: ph=%f", (double)(curr_data.phase));
if (tune_type == RP_UP) {
GCS_SEND_TEXT(MAV_SEVERITY_INFO, "AutoTune: rate_p=%f", (double)(tune_rp));
} else if (tune_type == RD_UP) {
GCS_SEND_TEXT(MAV_SEVERITY_INFO, "AutoTune: rate_d=%f", (double)(tune_rd));
} else if (tune_type == RFF_UP) {
GCS_SEND_TEXT(MAV_SEVERITY_INFO, "AutoTune: rate_ff=%f", (double)(tune_rff));
} else if (tune_type == SP_UP) {
GCS_SEND_TEXT(MAV_SEVERITY_INFO, "AutoTune: angle_p=%f tune_accel=%f max_accel=%f", (double)(tune_sp), (double)(tune_accel), (double)(test_accel_max));
}
} else {
GCS_SEND_TEXT(MAV_SEVERITY_INFO, "AutoTune: max_freq=%f max_gain=%f", (double)(sweep_tgt.maxgain.freq), (double)(sweep_tgt.maxgain.gain));
GCS_SEND_TEXT(MAV_SEVERITY_INFO, "AutoTune: ph180_freq=%f ph180_gain=%f", (double)(sweep_tgt.ph180.freq), (double)(sweep_tgt.ph180.gain));
}
break;
default:
break;
}
}
}
// backup_gains_and_initialise - store current gains as originals
// called before tuning starts to backup original gains
void AC_AutoTune_Heli::backup_gains_and_initialise()
{
AC_AutoTune::backup_gains_and_initialise();
// initializes dwell test sequence for rate_p_up and rate_d_up tests for tradheli
next_test_freq = 0.0f;
start_freq = 0.0f;
stop_freq = 0.0f;
orig_bf_feedforward = attitude_control->get_bf_feedforward();
// backup original pids and initialise tuned pid values
orig_roll_rp = attitude_control->get_rate_roll_pid().kP();
orig_roll_ri = attitude_control->get_rate_roll_pid().kI();
orig_roll_rd = attitude_control->get_rate_roll_pid().kD();
orig_roll_rff = attitude_control->get_rate_roll_pid().ff();
orig_roll_fltt = attitude_control->get_rate_roll_pid().filt_T_hz();
orig_roll_smax = attitude_control->get_rate_roll_pid().slew_limit();
orig_roll_sp = attitude_control->get_angle_roll_p().kP();
orig_roll_accel = attitude_control->get_accel_roll_max_cdss();
orig_roll_rate = attitude_control->get_ang_vel_roll_max_degs();
tune_roll_rp = attitude_control->get_rate_roll_pid().kP();
tune_roll_rd = attitude_control->get_rate_roll_pid().kD();
tune_roll_rff = attitude_control->get_rate_roll_pid().ff();
tune_roll_sp = attitude_control->get_angle_roll_p().kP();
tune_roll_accel = attitude_control->get_accel_roll_max_cdss();
orig_pitch_rp = attitude_control->get_rate_pitch_pid().kP();
orig_pitch_ri = attitude_control->get_rate_pitch_pid().kI();
orig_pitch_rd = attitude_control->get_rate_pitch_pid().kD();
orig_pitch_rff = attitude_control->get_rate_pitch_pid().ff();
orig_pitch_fltt = attitude_control->get_rate_pitch_pid().filt_T_hz();
orig_pitch_smax = attitude_control->get_rate_pitch_pid().slew_limit();
orig_pitch_sp = attitude_control->get_angle_pitch_p().kP();
orig_pitch_accel = attitude_control->get_accel_pitch_max_cdss();
orig_pitch_rate = attitude_control->get_ang_vel_pitch_max_degs();
tune_pitch_rp = attitude_control->get_rate_pitch_pid().kP();
tune_pitch_rd = attitude_control->get_rate_pitch_pid().kD();
tune_pitch_rff = attitude_control->get_rate_pitch_pid().ff();
tune_pitch_sp = attitude_control->get_angle_pitch_p().kP();
tune_pitch_accel = attitude_control->get_accel_pitch_max_cdss();
orig_yaw_rp = attitude_control->get_rate_yaw_pid().kP();
orig_yaw_ri = attitude_control->get_rate_yaw_pid().kI();
orig_yaw_rd = attitude_control->get_rate_yaw_pid().kD();
orig_yaw_rff = attitude_control->get_rate_yaw_pid().ff();
orig_yaw_fltt = attitude_control->get_rate_yaw_pid().filt_T_hz();
orig_yaw_smax = attitude_control->get_rate_yaw_pid().slew_limit();
orig_yaw_rLPF = attitude_control->get_rate_yaw_pid().filt_E_hz();
orig_yaw_accel = attitude_control->get_accel_yaw_max_cdss();
orig_yaw_sp = attitude_control->get_angle_yaw_p().kP();
orig_yaw_rate = attitude_control->get_ang_vel_yaw_max_degs();
tune_yaw_rp = attitude_control->get_rate_yaw_pid().kP();
tune_yaw_rd = attitude_control->get_rate_yaw_pid().kD();
tune_yaw_rff = attitude_control->get_rate_yaw_pid().ff();
tune_yaw_rLPF = attitude_control->get_rate_yaw_pid().filt_E_hz();
tune_yaw_sp = attitude_control->get_angle_yaw_p().kP();
tune_yaw_accel = attitude_control->get_accel_yaw_max_cdss();
LOGGER_WRITE_EVENT(LogEvent::AUTOTUNE_INITIALISED);
}
// load_orig_gains - set gains to their original values
// called by stop and failed functions
void AC_AutoTune_Heli::load_orig_gains()
{
attitude_control->bf_feedforward(orig_bf_feedforward);
if (roll_enabled()) {
load_gain_set(AxisType::ROLL, orig_roll_rp, orig_roll_ri, orig_roll_rd, orig_roll_rff, orig_roll_sp, orig_roll_accel, orig_roll_fltt, 0.0f, orig_roll_smax, orig_roll_rate);
}
if (pitch_enabled()) {
load_gain_set(AxisType::PITCH, orig_pitch_rp, orig_pitch_ri, orig_pitch_rd, orig_pitch_rff, orig_pitch_sp, orig_pitch_accel, orig_pitch_fltt, 0.0f, orig_pitch_smax, orig_pitch_rate);
}
if (yaw_enabled()) {
load_gain_set(AxisType::YAW, orig_yaw_rp, orig_yaw_ri, orig_yaw_rd, orig_yaw_rff, orig_yaw_sp, orig_yaw_accel, orig_yaw_fltt, orig_yaw_rLPF, orig_yaw_smax, orig_yaw_rate);
}
}
// load_tuned_gains - load tuned gains
void AC_AutoTune_Heli::load_tuned_gains()
{
if (!attitude_control->get_bf_feedforward()) {
attitude_control->bf_feedforward(true);
attitude_control->set_accel_roll_max_cdss(0.0f);
attitude_control->set_accel_pitch_max_cdss(0.0f);
}
if ((axes_completed & AUTOTUNE_AXIS_BITMASK_ROLL) && roll_enabled()) {
load_gain_set(AxisType::ROLL, tune_roll_rp, tune_roll_rff*AUTOTUNE_FFI_RATIO_FINAL, tune_roll_rd, tune_roll_rff, tune_roll_sp, tune_roll_accel, orig_roll_fltt, 0.0f, orig_roll_smax, orig_roll_rate);
}
if ((axes_completed & AUTOTUNE_AXIS_BITMASK_PITCH) && pitch_enabled()) {
load_gain_set(AxisType::PITCH, tune_pitch_rp, tune_pitch_rff*AUTOTUNE_FFI_RATIO_FINAL, tune_pitch_rd, tune_pitch_rff, tune_pitch_sp, tune_pitch_accel, orig_pitch_fltt, 0.0f, orig_pitch_smax, orig_pitch_rate);
}
if ((axes_completed & AUTOTUNE_AXIS_BITMASK_YAW) && yaw_enabled() && !is_zero(tune_yaw_rp)) {
load_gain_set(AxisType::YAW, tune_yaw_rp, tune_yaw_rp*AUTOTUNE_YAW_PI_RATIO_FINAL, tune_yaw_rd, tune_yaw_rff, tune_yaw_sp, tune_yaw_accel, orig_yaw_fltt, tune_yaw_rLPF, orig_yaw_smax, orig_yaw_rate);
}
}
// load_intra_test_gains - gains used between tests
// called during testing mode's update-gains step to set gains ahead of return-to-level step
void AC_AutoTune_Heli::load_intra_test_gains()
{
// we are restarting tuning so reset gains to tuning-start gains (i.e. low I term)
// sanity check the gains
attitude_control->bf_feedforward(true);
if (roll_enabled()) {
load_gain_set(AxisType::ROLL, orig_roll_rp, orig_roll_rff * AUTOTUNE_FFI_RATIO_FOR_TESTING, orig_roll_rd, orig_roll_rff, orig_roll_sp, orig_roll_accel, orig_roll_fltt, 0.0f, orig_roll_smax, orig_roll_rate);
}
if (pitch_enabled()) {
load_gain_set(AxisType::PITCH, orig_pitch_rp, orig_pitch_rff * AUTOTUNE_FFI_RATIO_FOR_TESTING, orig_pitch_rd, orig_pitch_rff, orig_pitch_sp, orig_pitch_accel, orig_pitch_fltt, 0.0f, orig_pitch_smax, orig_pitch_rate);
}
if (yaw_enabled()) {
load_gain_set(AxisType::YAW, orig_yaw_rp, orig_yaw_rp*AUTOTUNE_PI_RATIO_FOR_TESTING, orig_yaw_rd, orig_yaw_rff, orig_yaw_sp, orig_yaw_accel, orig_yaw_fltt, orig_yaw_rLPF, orig_yaw_smax, orig_yaw_rate);
}
}
// load_test_gains - load the to-be-tested gains for a single axis
// called by control_attitude() just before it beings testing a gain (i.e. just before it twitches)
void AC_AutoTune_Heli::load_test_gains()
{
float rate_p, rate_i, rate_d, rate_test_max, accel_test_max;
switch (axis) {
case AxisType::ROLL:
if (tune_type == TUNE_CHECK) {
rate_test_max = orig_roll_rate;
accel_test_max = tune_roll_accel;
} else {
// have attitude controller use accel and rate limit parameter
rate_test_max = rate_max;
accel_test_max = accel_max;
}
if (tune_type == SP_UP || tune_type == TUNE_CHECK) {
rate_i = tune_roll_rff*AUTOTUNE_FFI_RATIO_FINAL;
} else {
// freeze integrator to hold trim by making i term small during rate controller tuning
rate_i = 0.01f * orig_roll_ri;
}
if (tune_type == MAX_GAINS && !is_zero(tune_roll_rff)) {
rate_p = 0.0f;
rate_d = 0.0f;
} else {
rate_p = tune_roll_rp;
rate_d = tune_roll_rd;
}
load_gain_set(AxisType::ROLL, rate_p, rate_i, rate_d, tune_roll_rff, tune_roll_sp, accel_test_max, orig_roll_fltt, 0.0f, 0.0f, rate_test_max);
break;
case AxisType::PITCH:
if (tune_type == TUNE_CHECK) {
rate_test_max = orig_pitch_rate;
accel_test_max = tune_pitch_accel;
} else {
// have attitude controller use accel and rate limit parameter
rate_test_max = rate_max;
accel_test_max = accel_max;
}
if (tune_type == SP_UP || tune_type == TUNE_CHECK) {
rate_i = tune_pitch_rff*AUTOTUNE_FFI_RATIO_FINAL;
} else {
// freeze integrator to hold trim by making i term small during rate controller tuning
rate_i = 0.01f * orig_pitch_ri;
}
if (tune_type == MAX_GAINS && !is_zero(tune_pitch_rff)) {
rate_p = 0.0f;
rate_d = 0.0f;
} else {
rate_p = tune_pitch_rp;
rate_d = tune_pitch_rd;
}
load_gain_set(AxisType::PITCH, rate_p, rate_i, rate_d, tune_pitch_rff, tune_pitch_sp, accel_test_max, orig_pitch_fltt, 0.0f, 0.0f, rate_test_max);
break;
case AxisType::YAW:
case AxisType::YAW_D:
if (tune_type == TUNE_CHECK) {
rate_test_max = orig_yaw_rate;
accel_test_max = tune_yaw_accel;
} else {
// have attitude controller use accel and rate limit parameter
rate_test_max = rate_max;
accel_test_max = accel_max;
}
if (tune_type == SP_UP || tune_type == TUNE_CHECK) {
rate_i = tune_yaw_rp*AUTOTUNE_YAW_PI_RATIO_FINAL;
} else {
// freeze integrator to hold trim by making i term small during rate controller tuning
rate_i = 0.01f * orig_yaw_ri;
}
load_gain_set(AxisType::YAW, tune_yaw_rp, rate_i, tune_yaw_rd, tune_yaw_rff, tune_yaw_sp, accel_test_max, orig_yaw_fltt, tune_yaw_rLPF, 0.0f, rate_test_max);
break;
}
}
// load gains
void AC_AutoTune_Heli::load_gain_set(AxisType s_axis, float rate_p, float rate_i, float rate_d, float rate_ff, float angle_p, float max_accel, float rate_fltt, float rate_flte, float smax, float max_rate)
{
switch (s_axis) {
case AxisType::ROLL:
attitude_control->get_rate_roll_pid().set_kP(rate_p);
attitude_control->get_rate_roll_pid().set_kI(rate_i);
attitude_control->get_rate_roll_pid().set_kD(rate_d);
attitude_control->get_rate_roll_pid().set_ff(rate_ff);
attitude_control->get_rate_roll_pid().set_filt_T_hz(rate_fltt);
attitude_control->get_rate_roll_pid().set_slew_limit(smax);
attitude_control->get_angle_roll_p().set_kP(angle_p);
attitude_control->set_accel_roll_max_cdss(max_accel);
attitude_control->set_ang_vel_roll_max_degs(max_rate);
break;
case AxisType::PITCH:
attitude_control->get_rate_pitch_pid().set_kP(rate_p);
attitude_control->get_rate_pitch_pid().set_kI(rate_i);
attitude_control->get_rate_pitch_pid().set_kD(rate_d);
attitude_control->get_rate_pitch_pid().set_ff(rate_ff);
attitude_control->get_rate_pitch_pid().set_filt_T_hz(rate_fltt);
attitude_control->get_rate_pitch_pid().set_slew_limit(smax);
attitude_control->get_angle_pitch_p().set_kP(angle_p);
attitude_control->set_accel_pitch_max_cdss(max_accel);
attitude_control->set_ang_vel_pitch_max_degs(max_rate);
break;
case AxisType::YAW:
case AxisType::YAW_D:
attitude_control->get_rate_yaw_pid().set_kP(rate_p);
attitude_control->get_rate_yaw_pid().set_kI(rate_i);
attitude_control->get_rate_yaw_pid().set_kD(rate_d);
attitude_control->get_rate_yaw_pid().set_ff(rate_ff);
attitude_control->get_rate_yaw_pid().set_filt_T_hz(rate_fltt);
attitude_control->get_rate_yaw_pid().set_slew_limit(smax);
attitude_control->get_rate_yaw_pid().set_filt_E_hz(rate_flte);
attitude_control->get_angle_yaw_p().set_kP(angle_p);
attitude_control->set_accel_yaw_max_cdss(max_accel);
attitude_control->set_ang_vel_yaw_max_degs(max_rate);
break;
}
}
// save_tuning_gains - save the final tuned gains for each axis
// save discovered gains to eeprom if autotuner is enabled (i.e. switch is in the high position)
void AC_AutoTune_Heli::save_tuning_gains()
{
// see if we successfully completed tuning of at least one axis
if (axes_completed == 0) {
return;
}
if (!attitude_control->get_bf_feedforward()) {
attitude_control->bf_feedforward_save(true);
attitude_control->save_accel_roll_max_cdss(0.0f);
attitude_control->save_accel_pitch_max_cdss(0.0f);
}
// sanity check the rate P values
if ((axes_completed & AUTOTUNE_AXIS_BITMASK_ROLL) && roll_enabled()) {
load_gain_set(AxisType::ROLL, tune_roll_rp, tune_roll_rff*AUTOTUNE_FFI_RATIO_FINAL, tune_roll_rd, tune_roll_rff, tune_roll_sp, tune_roll_accel, orig_roll_fltt, 0.0f, orig_roll_smax, orig_roll_rate);
// save rate roll gains
attitude_control->get_rate_roll_pid().save_gains();
// save stabilize roll
attitude_control->get_angle_roll_p().save_gains();
// resave pids to originals in case the autotune is run again
orig_roll_rp = attitude_control->get_rate_roll_pid().kP();
orig_roll_ri = attitude_control->get_rate_roll_pid().kI();
orig_roll_rd = attitude_control->get_rate_roll_pid().kD();
orig_roll_rff = attitude_control->get_rate_roll_pid().ff();
orig_roll_sp = attitude_control->get_angle_roll_p().kP();
orig_roll_accel = attitude_control->get_accel_roll_max_cdss();
}
if ((axes_completed & AUTOTUNE_AXIS_BITMASK_PITCH) && pitch_enabled()) {
load_gain_set(AxisType::PITCH, tune_pitch_rp, tune_pitch_rff*AUTOTUNE_FFI_RATIO_FINAL, tune_pitch_rd, tune_pitch_rff, tune_pitch_sp, tune_pitch_accel, orig_pitch_fltt, 0.0f, orig_pitch_smax, orig_pitch_rate);
// save rate pitch gains
attitude_control->get_rate_pitch_pid().save_gains();
// save stabilize pitch
attitude_control->get_angle_pitch_p().save_gains();
// resave pids to originals in case the autotune is run again
orig_pitch_rp = attitude_control->get_rate_pitch_pid().kP();
orig_pitch_ri = attitude_control->get_rate_pitch_pid().kI();
orig_pitch_rd = attitude_control->get_rate_pitch_pid().kD();
orig_pitch_rff = attitude_control->get_rate_pitch_pid().ff();
orig_pitch_sp = attitude_control->get_angle_pitch_p().kP();
orig_pitch_accel = attitude_control->get_accel_pitch_max_cdss();
}
if ((axes_completed & AUTOTUNE_AXIS_BITMASK_YAW) && yaw_enabled() && !is_zero(tune_yaw_rp)) {
load_gain_set(AxisType::YAW, tune_yaw_rp, tune_yaw_rp*AUTOTUNE_YAW_PI_RATIO_FINAL, tune_yaw_rd, tune_yaw_rff, tune_yaw_sp, tune_yaw_accel, orig_yaw_fltt, orig_yaw_rLPF, orig_yaw_smax, orig_yaw_rate);
// save rate yaw gains
attitude_control->get_rate_yaw_pid().save_gains();
// save stabilize yaw
attitude_control->get_angle_yaw_p().save_gains();
// resave pids to originals in case the autotune is run again
orig_yaw_rp = attitude_control->get_rate_yaw_pid().kP();
orig_yaw_ri = attitude_control->get_rate_yaw_pid().kI();
orig_yaw_rd = attitude_control->get_rate_yaw_pid().kD();
orig_yaw_rff = attitude_control->get_rate_yaw_pid().ff();
orig_yaw_rLPF = attitude_control->get_rate_yaw_pid().filt_E_hz();
orig_yaw_sp = attitude_control->get_angle_yaw_p().kP();
orig_yaw_accel = attitude_control->get_accel_yaw_max_cdss();
}
// update GCS and log save gains event
update_gcs(AUTOTUNE_MESSAGE_SAVED_GAINS);
LOGGER_WRITE_EVENT(LogEvent::AUTOTUNE_SAVEDGAINS);
reset();
}
// report final gains for a given axis to GCS
void AC_AutoTune_Heli::report_final_gains(AxisType test_axis) const
{
switch (test_axis) {
case AxisType::ROLL:
report_axis_gains("Roll", tune_roll_rp, tune_roll_rff*AUTOTUNE_FFI_RATIO_FINAL, tune_roll_rd, tune_roll_rff, tune_roll_sp, tune_roll_accel);
break;
case AxisType::PITCH:
report_axis_gains("Pitch", tune_pitch_rp, tune_pitch_rff*AUTOTUNE_FFI_RATIO_FINAL, tune_pitch_rd, tune_pitch_rff, tune_pitch_sp, tune_pitch_accel);
break;
case AxisType::YAW:
case AxisType::YAW_D:
report_axis_gains("Yaw", tune_yaw_rp, tune_yaw_rp*AUTOTUNE_YAW_PI_RATIO_FINAL, tune_yaw_rd, tune_yaw_rff, tune_yaw_sp, tune_yaw_accel);
break;
}
}
// report gain formatting helper
void AC_AutoTune_Heli::report_axis_gains(const char* axis_string, float rate_P, float rate_I, float rate_D, float rate_ff, float angle_P, float max_accel) const
{
GCS_SEND_TEXT(MAV_SEVERITY_NOTICE,"AutoTune: %s complete", axis_string);
GCS_SEND_TEXT(MAV_SEVERITY_NOTICE,"AutoTune: %s Rate: P:%0.4f, I:%0.4f, D:%0.5f, FF:%0.4f",axis_string,rate_P,rate_I,rate_D,rate_ff);
GCS_SEND_TEXT(MAV_SEVERITY_NOTICE,"AutoTune: %s Angle P:%0.2f, Max Accel:%0.0f",axis_string,angle_P,max_accel);
}
void AC_AutoTune_Heli::dwell_test_init(float start_frq, float stop_frq, float amplitude, float filt_freq, FreqRespInput freq_resp_input, FreqRespCalcType calc_type, AC_AutoTune_FreqResp::ResponseType resp_type, AC_AutoTune_FreqResp::InputType waveform_input_type)
{
test_input_type = waveform_input_type;
test_freq_resp_input = freq_resp_input;
test_calc_type = calc_type;
test_start_freq = start_frq;
//target attitude magnitude
tgt_attitude = radians(amplitude);
// initialize frequency response object
if (test_input_type == AC_AutoTune_FreqResp::InputType::SWEEP) {
step_time_limit_ms = sweep_time_ms + 500;
reset_sweep_variables();
curr_test.gain = 0.0f;
curr_test.phase = 0.0f;
chirp_input.init(0.001f * sweep_time_ms, start_frq / M_2PI, stop_frq / M_2PI, 0.0f, 0.0001f * sweep_time_ms, 0.0f);
} else {
if (!is_zero(start_frq)) {
// time limit set by adding the pre calc cycles with the dwell cycles. 500 ms added to account for settling with buffer.
step_time_limit_ms = (uint32_t) (2000 + ((float)num_dwell_cycles + pre_calc_cycles + 2.0f) * 1000.0f * M_2PI / start_frq);
}
chirp_input.init(0.001f * step_time_limit_ms, start_frq / M_2PI, stop_frq / M_2PI, 0.0f, 0.0001f * step_time_limit_ms, 0.0f);
}
freqresp_tgt.init(test_input_type, resp_type, num_dwell_cycles);
freqresp_mtr.init(test_input_type, resp_type, num_dwell_cycles);
dwell_start_time_ms = 0.0f;
settle_time = 200;
rotation_rate_filt.set_cutoff_frequency(filt_freq);
command_filt.set_cutoff_frequency(filt_freq);
target_rate_filt.set_cutoff_frequency(filt_freq);
rotation_rate_filt.reset(0);
command_filt.reset(0);
target_rate_filt.reset(0);
rotation_rate = 0.0f;
command_out = 0.0f;
filt_target_rate = 0.0f;
// filter at lower frequency to remove steady state
filt_command_reading.set_cutoff_frequency(0.2f * filt_freq);
filt_gyro_reading.set_cutoff_frequency(0.05f * filt_freq);
filt_tgt_rate_reading.set_cutoff_frequency(0.05f * filt_freq);
filt_att_fdbk_from_velxy_cd.set_cutoff_frequency(0.2f * filt_freq);
curr_test_mtr = {};
curr_test_tgt = {};
cycle_complete_tgt = false;
cycle_complete_mtr = false;
sweep_complete = false;
}
void AC_AutoTune_Heli::dwell_test_run(sweep_info &test_data)
{
float gyro_reading = 0.0f;
float command_reading = 0.0f;
float tgt_rate_reading = 0.0f;
const uint32_t now = AP_HAL::millis();
float target_angle_cd = 0.0f;
float dwell_freq = test_start_freq;
float cycle_time_ms = 0;
if (!is_zero(dwell_freq)) {
cycle_time_ms = 1000.0f * M_2PI / dwell_freq;
}
// body frame calculation of velocity
Vector3f velocity_ned, velocity_bf;
if (ahrs_view->get_velocity_NED(velocity_ned)) {
velocity_bf.x = velocity_ned.x * ahrs_view->cos_yaw() + velocity_ned.y * ahrs_view->sin_yaw();
velocity_bf.y = -velocity_ned.x * ahrs_view->sin_yaw() + velocity_ned.y * ahrs_view->cos_yaw();
}
if (settle_time == 0) {
target_angle_cd = -chirp_input.update((now - dwell_start_time_ms) * 0.001, degrees(tgt_attitude) * 100.0f);
dwell_freq = chirp_input.get_frequency_rads();
const Vector2f att_fdbk {
-5730.0f * vel_hold_gain * velocity_bf.y,
5730.0f * vel_hold_gain * velocity_bf.x
};
filt_att_fdbk_from_velxy_cd.apply(att_fdbk, AP::scheduler().get_loop_period_s());
} else {
target_angle_cd = 0.0f;
trim_yaw_tgt_reading_cd = (float)attitude_control->get_att_target_euler_cd().z;
trim_yaw_heading_reading_cd = (float)ahrs_view->yaw_sensor;
dwell_start_time_ms = now;
filt_att_fdbk_from_velxy_cd.reset(Vector2f(0.0f,0.0f));
settle_time--;
}
const Vector2f trim_angle_cd {
constrain_float(filt_att_fdbk_from_velxy_cd.get().x, -2000.0f, 2000.0f),
constrain_float(filt_att_fdbk_from_velxy_cd.get().y, -2000.0f, 2000.0f)
};
switch (axis) {
case AxisType::ROLL:
attitude_control->input_euler_angle_roll_pitch_euler_rate_yaw(target_angle_cd + trim_angle_cd.x, trim_angle_cd.y, 0.0f);
command_reading = motors->get_roll();
if (test_calc_type == DRB) {
tgt_rate_reading = radians(target_angle_cd * 0.01f);
gyro_reading = radians(((float)ahrs_view->roll_sensor + trim_angle_cd.x - target_angle_cd) * 0.01f);
} else if (test_calc_type == RATE) {
tgt_rate_reading = attitude_control->rate_bf_targets().x;
gyro_reading = ahrs_view->get_gyro().x;
} else {
tgt_rate_reading = radians((float)attitude_control->get_att_target_euler_cd().x * 0.01f);
gyro_reading = radians((float)ahrs_view->roll_sensor * 0.01f);
}
break;
case AxisType::PITCH:
attitude_control->input_euler_angle_roll_pitch_euler_rate_yaw(trim_angle_cd.x, target_angle_cd + trim_angle_cd.y, 0.0f);
command_reading = motors->get_pitch();
if (test_calc_type == DRB) {
tgt_rate_reading = radians(target_angle_cd * 0.01f);
gyro_reading = radians(((float)ahrs_view->pitch_sensor + trim_angle_cd.y - target_angle_cd) * 0.01f);
} else if (test_calc_type == RATE) {
tgt_rate_reading = attitude_control->rate_bf_targets().y;
gyro_reading = ahrs_view->get_gyro().y;
} else {
tgt_rate_reading = radians((float)attitude_control->get_att_target_euler_cd().y * 0.01f);
gyro_reading = radians((float)ahrs_view->pitch_sensor * 0.01f);
}
break;
case AxisType::YAW:
case AxisType::YAW_D:
attitude_control->input_euler_angle_roll_pitch_yaw(trim_angle_cd.x, trim_angle_cd.y, wrap_180_cd(trim_yaw_tgt_reading_cd + target_angle_cd), false);
command_reading = motors->get_yaw();
if (test_calc_type == DRB) {
tgt_rate_reading = radians(target_angle_cd * 0.01f);
gyro_reading = radians((wrap_180_cd((float)ahrs_view->yaw_sensor - trim_yaw_heading_reading_cd - target_angle_cd)) * 0.01f);
} else if (test_calc_type == RATE) {
tgt_rate_reading = attitude_control->rate_bf_targets().z;
gyro_reading = ahrs_view->get_gyro().z;
} else {
tgt_rate_reading = radians((wrap_180_cd((float)attitude_control->get_att_target_euler_cd().z - trim_yaw_tgt_reading_cd)) * 0.01f);
gyro_reading = radians((wrap_180_cd((float)ahrs_view->yaw_sensor - trim_yaw_heading_reading_cd)) * 0.01f);
}
break;
}
if (settle_time == 0) {
filt_command_reading.apply(command_reading, AP::scheduler().get_loop_period_s());
filt_gyro_reading.apply(gyro_reading, AP::scheduler().get_loop_period_s());
filt_tgt_rate_reading.apply(tgt_rate_reading, AP::scheduler().get_loop_period_s());
} else {
filt_command_reading.reset(command_reading);
filt_gyro_reading.reset(gyro_reading);
filt_tgt_rate_reading.reset(tgt_rate_reading);
}
// looks at gain and phase of input rate to output rate
rotation_rate = rotation_rate_filt.apply((gyro_reading - filt_gyro_reading.get()),
AP::scheduler().get_loop_period_s());
filt_target_rate = target_rate_filt.apply((tgt_rate_reading - filt_tgt_rate_reading.get()),
AP::scheduler().get_loop_period_s());
command_out = command_filt.apply((command_reading - filt_command_reading.get()),
AP::scheduler().get_loop_period_s());
float dwell_gain_mtr = 0.0f;
float dwell_phase_mtr = 0.0f;
float dwell_gain_tgt = 0.0f;
float dwell_phase_tgt = 0.0f;
// wait for dwell to start before determining gain and phase
if ((float)(now - dwell_start_time_ms) > pre_calc_cycles * cycle_time_ms || (test_input_type == AC_AutoTune_FreqResp::InputType::SWEEP && settle_time == 0)) {
freqresp_mtr.update(command_out,command_out,rotation_rate, dwell_freq);
freqresp_tgt.update(command_out,filt_target_rate,rotation_rate, dwell_freq);
if (freqresp_mtr.is_cycle_complete()) {
if (test_input_type == AC_AutoTune_FreqResp::InputType::SWEEP) {
if (is_zero(curr_test_mtr.freq) && freqresp_mtr.get_freq() < test_start_freq) {
// don't set data since captured frequency is below the start frequency
} else {
curr_test_mtr.freq = freqresp_mtr.get_freq();
curr_test_mtr.gain = freqresp_mtr.get_gain();
curr_test_mtr.phase = freqresp_mtr.get_phase();
}
// reset cycle_complete to allow indication of next cycle
freqresp_mtr.reset_cycle_complete();
#if HAL_LOGGING_ENABLED
// log sweep data
Log_AutoTuneSweep();
#endif
} else {
dwell_gain_mtr = freqresp_mtr.get_gain();
dwell_phase_mtr = freqresp_mtr.get_phase();
cycle_complete_mtr = true;
}
}
if (freqresp_tgt.is_cycle_complete()) {
if (test_input_type == AC_AutoTune_FreqResp::InputType::SWEEP) {
if (is_zero(curr_test_tgt.freq) && freqresp_tgt.get_freq() < test_start_freq) {
// don't set data since captured frequency is below the start frequency
} else {
curr_test_tgt.freq = freqresp_tgt.get_freq();
curr_test_tgt.gain = freqresp_tgt.get_gain();
curr_test_tgt.phase = freqresp_tgt.get_phase();
if (test_calc_type == DRB) {test_accel_max = freqresp_tgt.get_accel_max();}
}
// reset cycle_complete to allow indication of next cycle
freqresp_tgt.reset_cycle_complete();
#if HAL_LOGGING_ENABLED
// log sweep data
Log_AutoTuneSweep();
#endif
} else {
dwell_gain_tgt = freqresp_tgt.get_gain();
dwell_phase_tgt = freqresp_tgt.get_phase();
if (test_calc_type == DRB) {test_accel_max = freqresp_tgt.get_accel_max();}
cycle_complete_tgt = true;
}
}
if (test_freq_resp_input == TARGET) {
if (test_input_type == AC_AutoTune_FreqResp::InputType::SWEEP) {
curr_test = curr_test_tgt;
} else {
test_data.freq = test_start_freq;
test_data.gain = dwell_gain_tgt;
test_data.phase = dwell_phase_tgt;
}
} else {
if (test_input_type == AC_AutoTune_FreqResp::InputType::SWEEP) {
curr_test = curr_test_mtr;
} else {
test_data.freq = test_start_freq;
test_data.gain = dwell_gain_mtr;
test_data.phase = dwell_phase_mtr;
}
}
}
// set sweep data if a frequency sweep is being conducted
if (test_input_type == AC_AutoTune_FreqResp::InputType::SWEEP && (float)(now - dwell_start_time_ms) > 2.5f * cycle_time_ms) {
// track sweep phase to prevent capturing 180 deg and 270 deg data after phase has wrapped.
if (curr_test_tgt.phase > 180.0f && sweep_tgt.progress == 0) {
sweep_tgt.progress = 1;
} else if (curr_test_tgt.phase > 270.0f && sweep_tgt.progress == 1) {
sweep_tgt.progress = 2;
}
if (curr_test_tgt.phase <= 160.0f && curr_test_tgt.phase >= 150.0f && sweep_tgt.progress == 0) {
sweep_tgt.ph180 = curr_test_tgt;
}
if (curr_test_tgt.phase <= 250.0f && curr_test_tgt.phase >= 240.0f && sweep_tgt.progress == 1) {
sweep_tgt.ph270 = curr_test_tgt;
}
if (curr_test_tgt.gain > sweep_tgt.maxgain.gain) {
sweep_tgt.maxgain = curr_test_tgt;
}
// Determine sweep info for motor input to response output
if (curr_test_mtr.phase > 180.0f && sweep_mtr.progress == 0) {
sweep_mtr.progress = 1;
} else if (curr_test_mtr.phase > 270.0f && sweep_mtr.progress == 1) {
sweep_mtr.progress = 2;
}
if (curr_test_mtr.phase <= 160.0f && curr_test_mtr.phase >= 150.0f && sweep_mtr.progress == 0) {
sweep_mtr.ph180 = curr_test_mtr;
}
if (curr_test_mtr.phase <= 250.0f && curr_test_mtr.phase >= 240.0f && sweep_mtr.progress == 1) {
sweep_mtr.ph270 = curr_test_mtr;
}
if (curr_test_mtr.gain > sweep_mtr.maxgain.gain) {
sweep_mtr.maxgain = curr_test_mtr;
}
if (now - step_start_time_ms >= sweep_time_ms + 200) {
// we have passed the maximum stop time
sweep_complete = true;
step = UPDATE_GAINS;
}
} else {
if (now - step_start_time_ms >= step_time_limit_ms || (freqresp_tgt.is_cycle_complete() && freqresp_mtr.is_cycle_complete())) {
if (now - step_start_time_ms >= step_time_limit_ms) {
GCS_SEND_TEXT(MAV_SEVERITY_INFO, "AutoTune: Step time limit exceeded");
}
cycle_complete_tgt = false;
cycle_complete_tgt = false;
// we have passed the maximum stop time
step = UPDATE_GAINS;
}
}
}
// update gains for the rate p up tune type
void AC_AutoTune_Heli::updating_rate_p_up_all(AxisType test_axis)
{
switch (test_axis) {
case AxisType::ROLL:
updating_rate_p_up(tune_roll_rp, curr_data, next_test_freq, max_rate_p);
break;
case AxisType::PITCH:
updating_rate_p_up(tune_pitch_rp, curr_data, next_test_freq, max_rate_p);
break;
case AxisType::YAW:
case AxisType::YAW_D:
updating_rate_p_up(tune_yaw_rp, curr_data, next_test_freq, max_rate_p);
break;
}
}
// update gains for the rate d up tune type
void AC_AutoTune_Heli::updating_rate_d_up_all(AxisType test_axis)
{
switch (test_axis) {
case AxisType::ROLL:
updating_rate_d_up(tune_roll_rd, curr_data, next_test_freq, max_rate_d);
break;
case AxisType::PITCH:
updating_rate_d_up(tune_pitch_rd, curr_data, next_test_freq, max_rate_d);
break;
case AxisType::YAW:
case AxisType::YAW_D:
updating_rate_d_up(tune_yaw_rd, curr_data, next_test_freq, max_rate_d);
break;
}
}
// update gains for the rate ff up tune type
void AC_AutoTune_Heli::updating_rate_ff_up_all(AxisType test_axis)
{
switch (test_axis) {
case AxisType::ROLL:
updating_rate_ff_up(tune_roll_rff, curr_data, next_test_freq);
break;
case AxisType::PITCH:
updating_rate_ff_up(tune_pitch_rff, curr_data, next_test_freq);
break;
case AxisType::YAW:
case AxisType::YAW_D:
updating_rate_ff_up(tune_yaw_rff, curr_data, next_test_freq);
// TODO make FF updating routine determine when to set rff gain to zero based on A/C response
if (tune_yaw_rff <= AUTOTUNE_RFF_MIN && counter == AUTOTUNE_SUCCESS_COUNT) {
tune_yaw_rff = 0.0f;
}
break;
}
}
// update gains for the angle p up tune type
void AC_AutoTune_Heli::updating_angle_p_up_all(AxisType test_axis)
{
attitude_control->bf_feedforward(orig_bf_feedforward);
// sweep doesn't require gain update so return immediately after setting next test freq
// determine next_test_freq for dwell testing
if (sweep_complete && input_type == AC_AutoTune_FreqResp::InputType::SWEEP){
// if a max gain frequency was found then set the start of the dwells to that freq otherwise start at min frequency
if (!is_zero(sweep_tgt.maxgain.freq)) {
next_test_freq = constrain_float(sweep_tgt.maxgain.freq, min_sweep_freq, max_sweep_freq);
freq_max = next_test_freq;
sp_prev_gain = sweep_tgt.maxgain.gain;
phase_max = sweep_tgt.maxgain.phase;
found_max_gain_freq = true;
} else {
next_test_freq = min_sweep_freq;
}
return;
}
switch (test_axis) {
case AxisType::ROLL:
updating_angle_p_up(tune_roll_sp, curr_data, next_test_freq);
break;
case AxisType::PITCH:
updating_angle_p_up(tune_pitch_sp, curr_data, next_test_freq);
break;
case AxisType::YAW:
case AxisType::YAW_D:
updating_angle_p_up(tune_yaw_sp, curr_data, next_test_freq);
break;
}
}
// update gains for the max gain tune type
void AC_AutoTune_Heli::updating_max_gains_all(AxisType test_axis)
{
// sweep doesn't require gain update so return immediately after setting next test freq
// determine next_test_freq for dwell testing
if (sweep_complete && input_type == AC_AutoTune_FreqResp::InputType::SWEEP) {
// if a max gain frequency was found then set the start of the dwells to that freq otherwise start at min frequency
if (!is_zero(sweep_mtr.ph180.freq)) {
next_test_freq = constrain_float(sweep_mtr.ph180.freq, min_sweep_freq, max_sweep_freq);
reset_maxgains_update_gain_variables();
} else {
next_test_freq = min_sweep_freq;
}
return;
}
switch (test_axis) {
case AxisType::ROLL:
updating_max_gains(curr_data, next_test_freq, max_rate_p, max_rate_d, tune_roll_rp, tune_roll_rd);
break;
case AxisType::PITCH:
updating_max_gains(curr_data, next_test_freq, max_rate_p, max_rate_d, tune_pitch_rp, tune_pitch_rd);
break;
case AxisType::YAW:
case AxisType::YAW_D:
updating_max_gains(curr_data, next_test_freq, max_rate_p, max_rate_d, tune_yaw_rp, tune_yaw_rd);
// rate P and rate D can be non zero for yaw and need to be included in the max allowed gain
if (!is_zero(max_rate_p.max_allowed) && counter == AUTOTUNE_SUCCESS_COUNT) {
max_rate_p.max_allowed += tune_yaw_rp;
}
if (!is_zero(max_rate_d.max_allowed) && counter == AUTOTUNE_SUCCESS_COUNT) {
max_rate_d.max_allowed += tune_yaw_rd;
}
break;
}
}
// set gains post tune for the tune type
void AC_AutoTune_Heli::set_gains_post_tune(AxisType test_axis)
{
switch (tune_type) {
case RD_UP:
switch (test_axis) {
case AxisType::ROLL:
tune_roll_rd = MAX(0.0f, tune_roll_rd * AUTOTUNE_RD_BACKOFF);
break;
case AxisType::PITCH:
tune_pitch_rd = MAX(0.0f, tune_pitch_rd * AUTOTUNE_RD_BACKOFF);
break;
case AxisType::YAW:
case AxisType::YAW_D:
tune_yaw_rd = MAX(0.0f, tune_yaw_rd * AUTOTUNE_RD_BACKOFF);
break;
}
break;
case RP_UP:
switch (test_axis) {
case AxisType::ROLL:
tune_roll_rp = MAX(0.0f, tune_roll_rp * AUTOTUNE_RP_BACKOFF);
break;
case AxisType::PITCH:
tune_pitch_rp = MAX(0.0f, tune_pitch_rp * AUTOTUNE_RP_BACKOFF);
break;
case AxisType::YAW:
case AxisType::YAW_D:
tune_yaw_rp = MAX(AUTOTUNE_RP_MIN, tune_yaw_rp * AUTOTUNE_RP_BACKOFF);
break;
}
break;
case SP_UP:
switch (test_axis) {
case AxisType::ROLL:
tune_roll_sp = MAX(AUTOTUNE_SP_MIN, tune_roll_sp * AUTOTUNE_SP_BACKOFF);
break;
case AxisType::PITCH:
tune_pitch_sp = MAX(AUTOTUNE_SP_MIN, tune_pitch_sp * AUTOTUNE_SP_BACKOFF);
break;
case AxisType::YAW:
case AxisType::YAW_D:
tune_yaw_sp = MAX(AUTOTUNE_SP_MIN, tune_yaw_sp * AUTOTUNE_SP_BACKOFF);
break;
}
break;
case RFF_UP:
break;
default:
break;
}
}
// updating_rate_ff_up - adjust FF to ensure the target is reached
// FF is adjusted until rate requested is achieved
void AC_AutoTune_Heli::updating_rate_ff_up(float &tune_ff, sweep_info &test_data, float &next_freq)
{
float tune_tgt = 0.95;
float tune_tol = 0.025;
next_freq = test_data.freq;
// handle axes where FF gain is initially zero
if (test_data.gain < tune_tgt - tune_tol && !is_positive(tune_ff)) {
tune_ff = 0.03f;
return;
}
if (test_data.gain < tune_tgt - 0.2 || test_data.gain > tune_tgt + 0.2) {
tune_ff = tune_ff * constrain_float(tune_tgt / test_data.gain, 0.75, 1.25); //keep changes less than 25%
} else if (test_data.gain < tune_tgt - 0.1 || test_data.gain > tune_tgt + 0.1) {
if (test_data.gain < tune_tgt - 0.1) {
tune_ff *= 1.05;
} else {
tune_ff *= 0.95;
}
} else if (test_data.gain < tune_tgt - tune_tol || test_data.gain > tune_tgt + tune_tol) {
if (test_data.gain < tune_tgt - tune_tol) {
tune_ff *= 1.02;
} else {
tune_ff *= 0.98;
}
} else if (test_data.gain >= tune_tgt - tune_tol && test_data.gain <= tune_tgt + tune_tol) {
counter = AUTOTUNE_SUCCESS_COUNT;
// reset next_freq for next test
next_freq = 0.0f;
tune_ff = constrain_float(tune_ff,0.0f,1.0f);
}
}
// updating_rate_p_up - uses maximum allowable gain determined from max_gain test to determine rate p gain that does not
// exceed max response gain. A phase of 161 deg is used to conduct the tuning as this phase is where analytically
// max gain to 6db gain margin is determined for a unity feedback controller.
void AC_AutoTune_Heli::updating_rate_p_up(float &tune_p, sweep_info &test_data, float &next_freq, max_gain_data &max_gain_p)
{
float test_freq_incr = 0.25f * M_2PI;
next_freq = test_data.freq;
sweep_info data_at_ph161;
float sugg_freq;
if (freq_search_for_phase(test_data, 161.0f, test_freq_incr, data_at_ph161, sugg_freq)) {
if (data_at_ph161.gain < max_resp_gain && tune_p < 0.6f * max_gain_p.max_allowed) {
tune_p += 0.05f * max_gain_p.max_allowed;
next_freq = data_at_ph161.freq;
} else {
counter = AUTOTUNE_SUCCESS_COUNT;
// reset next_freq for next test
next_freq = 0.0f;
tune_p -= 0.05f * max_gain_p.max_allowed;
tune_p = constrain_float(tune_p,0.0f,0.6f * max_gain_p.max_allowed);
}
} else {
next_freq = sugg_freq;
}
}
// updating_rate_d_up - uses maximum allowable gain determined from max_gain test to determine rate d gain where the response
// gain is at a minimum. A phase of 161 deg is used to conduct the tuning as this phase is where analytically
// max gain to 6db gain margin is determined for a unity feedback controller.
void AC_AutoTune_Heli::updating_rate_d_up(float &tune_d, sweep_info &test_data, float &next_freq, max_gain_data &max_gain_d)
{
float test_freq_incr = 0.25f * M_2PI; // set for 1/4 hz increments
next_freq = test_data.freq;
sweep_info data_at_ph161;
float sugg_freq;
if (freq_search_for_phase(test_data, 161.0f, test_freq_incr, data_at_ph161, sugg_freq)) {
if ((data_at_ph161.gain < rd_prev_gain || is_zero(rd_prev_gain)) && tune_d < 0.6f * max_gain_d.max_allowed) {
tune_d += 0.05f * max_gain_d.max_allowed;
rd_prev_gain = data_at_ph161.gain;
next_freq = data_at_ph161.freq;
} else {
counter = AUTOTUNE_SUCCESS_COUNT;
// reset next freq and rd_prev_gain for next test
next_freq = 0;
rd_prev_gain = 0.0f;
tune_d -= 0.05f * max_gain_d.max_allowed;
tune_d = constrain_float(tune_d,0.0f,0.6f * max_gain_d.max_allowed);
}
} else {
next_freq = sugg_freq;
}
}
// updating_angle_p_up - determines maximum angle p gain for pitch and roll. This is accomplished by determining the frequency
// for the maximum response gain that is the disturbance rejection peak.
void AC_AutoTune_Heli::updating_angle_p_up(float &tune_p, sweep_info &test_data, float &next_freq)
{
float test_freq_incr = 0.5f * M_2PI;
float gain_incr = 0.5f;
if (is_zero(test_data.phase)) {
// bad test point. increase slightly in hope of getting better result
next_freq += 0.5f * test_freq_incr;
return;
}
if (!found_max_gain_freq) {
if (test_data.gain > max_resp_gain && tune_p > AUTOTUNE_SP_MIN) {
// exceeded max response gain already, reduce tuning gain to remain under max response gain
tune_p -= gain_incr;
// force counter to stay on frequency
next_freq = test_data.freq;
return;
} else if (test_data.gain > max_resp_gain && tune_p <= AUTOTUNE_SP_MIN) {
// exceeded max response gain at the minimum allowable tuning gain. terminate testing.
tune_p = AUTOTUNE_SP_MIN;
counter = AUTOTUNE_SUCCESS_COUNT;
LOGGER_WRITE_EVENT(LogEvent::AUTOTUNE_REACHED_LIMIT);
} else if (test_data.gain > sp_prev_gain) {
freq_max = test_data.freq;
phase_max = test_data.phase;
sp_prev_gain = test_data.gain;
next_freq = test_data.freq + test_freq_incr;
return;
// Gain is expected to continue decreasing past gain peak. declare max gain freq found and refine search.
} else if (test_data.gain < 0.95f * sp_prev_gain) {
found_max_gain_freq = true;
next_freq = freq_max + 0.5 * test_freq_incr;
return;
} else {
next_freq = test_data.freq + test_freq_incr;
return;
}
}
// refine peak
if (!found_peak) {
// look at frequency above max gain freq found
if (test_data.freq > freq_max && test_data.gain > sp_prev_gain) {
// found max at frequency greater than initial max gain frequency
found_peak = true;
} else if (test_data.freq > freq_max && test_data.gain < sp_prev_gain) {
// look at frequency below initial max gain frequency
next_freq = test_data.freq - 0.5 * test_freq_incr;
return;
} else if (test_data.freq < freq_max && test_data.gain > sp_prev_gain) {
// found max at frequency less than initial max gain frequency
found_peak = true;
} else {
found_peak = true;
test_data.freq = freq_max;
test_data.gain = sp_prev_gain;
}
sp_prev_gain = test_data.gain;
}
// start increasing gain
if (found_max_gain_freq && found_peak) {
if (test_data.gain < max_resp_gain && tune_p < AUTOTUNE_SP_MAX) {
tune_p += gain_incr;
next_freq = test_data.freq;
if (tune_p >= AUTOTUNE_SP_MAX) {
tune_p = AUTOTUNE_SP_MAX;
counter = AUTOTUNE_SUCCESS_COUNT;
LOGGER_WRITE_EVENT(LogEvent::AUTOTUNE_REACHED_LIMIT);
}
sp_prev_gain = test_data.gain;
} else if (test_data.gain > 1.1f * max_resp_gain && tune_p > AUTOTUNE_SP_MIN) {
tune_p -= gain_incr;
} else {
// adjust tuning gain so max response gain is not exceeded
if (sp_prev_gain < max_resp_gain && test_data.gain > max_resp_gain) {
float adj_factor = (max_resp_gain - test_data.gain) / (test_data.gain - sp_prev_gain);
tune_p = tune_p + gain_incr * adj_factor;
}
counter = AUTOTUNE_SUCCESS_COUNT;
}
}
if (counter == AUTOTUNE_SUCCESS_COUNT) {
next_freq = 0.0f; //initializes next test that uses dwell test
sweep_complete = false;
reset_sweep_variables();
}
}
// updating_max_gains: use dwells at increasing frequency to determine gain at which instability will occur. This uses the frequency
// response of motor class input to rate response to determine the max allowable gain for rate P gain. A phase of 161 deg is used to
// determine analytically the max gain to 6db gain margin for a unity feedback controller. Since acceleration can be more noisy, the
// response of the motor class input to rate response to determine the max allowable gain for rate D gain. A phase of 251 deg is used
// to determine analytically the max gain to 6db gain margin for a unity feedback controller.
void AC_AutoTune_Heli::updating_max_gains(sweep_info &test_data, float &next_freq, max_gain_data &max_gain_p, max_gain_data &max_gain_d, float &tune_p, float &tune_d)
{
float test_freq_incr = 0.5f * M_2PI;
next_freq = test_data.freq;
sweep_info data_at_phase;
float sugg_freq;
if (!found_max_p) {
if (freq_search_for_phase(test_data, 161.0f, test_freq_incr, data_at_phase, sugg_freq)) {
max_gain_p.freq = data_at_phase.freq;
max_gain_p.gain = data_at_phase.gain;
max_gain_p.phase = data_at_phase.phase;
max_gain_p.max_allowed = powf(10.0f,-1 * (log10f(max_gain_p.gain) * 20.0f + 2.42) / 20.0f);
// limit max gain allowed to be no more than 2x the max p gain limit to keep initial gains bounded
max_gain_p.max_allowed = constrain_float(max_gain_p.max_allowed, 0.0f, 2.0f * AUTOTUNE_RP_MAX);
found_max_p = true;
if (!is_zero(sweep_mtr.ph270.freq)) {
next_freq = sweep_mtr.ph270.freq;
} else {
next_freq = data_at_phase.freq;
}
} else {
next_freq = sugg_freq;
}
} else if (!found_max_d) {
if (freq_search_for_phase(test_data, 251.0f, test_freq_incr, data_at_phase, sugg_freq)) {
max_gain_d.freq = data_at_phase.freq;
max_gain_d.gain = data_at_phase.gain;
max_gain_d.phase = data_at_phase.phase;
max_gain_d.max_allowed = powf(10.0f,-1 * (log10f(max_gain_d.freq * max_gain_d.gain) * 20.0f + 2.42) / 20.0f);
// limit max gain allowed to be no more than 2x the max d gain limit to keep initial gains bounded
max_gain_d.max_allowed = constrain_float(max_gain_d.max_allowed, 0.0f, 2.0f * AUTOTUNE_RD_MAX);
found_max_d = true;
} else {
next_freq = sugg_freq;
}
}
if (found_max_p && found_max_d) {
counter = AUTOTUNE_SUCCESS_COUNT;
// reset variables for next test
next_freq = 0.0f; //initializes next test that uses dwell test
GCS_SEND_TEXT(MAV_SEVERITY_INFO, "AutoTune: Max rate P freq=%f gain=%f", (double)(max_rate_p.freq), (double)(max_rate_p.gain));
GCS_SEND_TEXT(MAV_SEVERITY_INFO, "AutoTune: ph=%f rate_p=%f", (double)(max_rate_p.phase), (double)(max_rate_p.max_allowed));
GCS_SEND_TEXT(MAV_SEVERITY_INFO, "AutoTune: Max Rate D freq=%f gain=%f", (double)(max_rate_d.freq), (double)(max_rate_d.gain));
GCS_SEND_TEXT(MAV_SEVERITY_INFO, "AutoTune: ph=%f rate_d=%f", (double)(max_rate_d.phase), (double)(max_rate_d.max_allowed));
}
}
float AC_AutoTune_Heli::target_angle_max_rp_cd() const
{
return AUTOTUNE_ANGLE_TARGET_MAX_RP_CD;
}
float AC_AutoTune_Heli::target_angle_max_y_cd() const
{
return AUTOTUNE_ANGLE_TARGET_MAX_Y_CD;
}
float AC_AutoTune_Heli::target_angle_min_rp_cd() const
{
return AUTOTUNE_ANGLE_TARGET_MIN_RP_CD;
}
float AC_AutoTune_Heli::target_angle_min_y_cd() const
{
return AUTOTUNE_ANGLE_TARGET_MIN_Y_CD;
}
float AC_AutoTune_Heli::angle_lim_max_rp_cd() const
{
return AUTOTUNE_ANGLE_MAX_RP_CD;
}
float AC_AutoTune_Heli::angle_lim_neg_rpy_cd() const
{
return AUTOTUNE_ANGLE_NEG_RPY_CD;
}
// freq_search_for_phase: general search strategy for specified phase. interpolation done once specified phase has been bounded.
bool AC_AutoTune_Heli::freq_search_for_phase(sweep_info test, float desired_phase, float freq_incr, sweep_info &est_data, float &new_freq)
{
new_freq = test.freq;
float phase_delta = 20.0f; // delta from desired phase below and above which full steps are taken
if (is_zero(test.phase)) {
// bad test point. increase slightly in hope of getting better result
new_freq += 0.1f * freq_incr;
return false;
}
// test to see if desired phase is bounded with a 0.5 freq_incr delta in freq
float freq_delta = fabsf(prev_test.freq - test.freq);
if (test.phase > desired_phase && prev_test.phase < desired_phase && freq_delta < 0.75f * freq_incr && is_positive(prev_test.freq)) {
est_data.freq = linear_interpolate(prev_test.freq,test.freq,desired_phase,prev_test.phase,test.phase);
est_data.gain = linear_interpolate(prev_test.gain,test.gain,desired_phase,prev_test.phase,test.phase);
est_data.phase = desired_phase;
prev_test = {};
return true;
} else if (test.phase < desired_phase && prev_test.phase > desired_phase && freq_delta < 0.75f * freq_incr && is_positive(prev_test.freq)) {
est_data.freq = linear_interpolate(test.freq,prev_test.freq,desired_phase,test.phase,prev_test.phase);
est_data.gain = linear_interpolate(test.gain,prev_test.gain,desired_phase,test.phase,prev_test.phase);
est_data.phase = desired_phase;
prev_test = {};
return true;
}
if (test.phase < desired_phase - phase_delta) {
new_freq += freq_incr;
} else if (test.phase > desired_phase + phase_delta) {
new_freq -= freq_incr;
} else if (test.phase >= desired_phase - phase_delta && test.phase < desired_phase) {
new_freq += 0.5f * freq_incr;
} else if (test.phase <= desired_phase + phase_delta && test.phase >= desired_phase) {
new_freq -= 0.5f * freq_incr;
}
prev_test = test;
return false;
}
#if HAL_LOGGING_ENABLED
// log autotune summary data
void AC_AutoTune_Heli::Log_AutoTune()
{
switch (axis) {
case AxisType::ROLL:
Log_Write_AutoTune(axis, tune_type, curr_data.freq, curr_data.gain, curr_data.phase, tune_roll_rff, tune_roll_rp, tune_roll_rd, tune_roll_sp, test_accel_max);
break;
case AxisType::PITCH:
Log_Write_AutoTune(axis, tune_type, curr_data.freq, curr_data.gain, curr_data.phase, tune_pitch_rff, tune_pitch_rp, tune_pitch_rd, tune_pitch_sp, test_accel_max);
break;
case AxisType::YAW:
case AxisType::YAW_D:
Log_Write_AutoTune(axis, tune_type, curr_data.freq, curr_data.gain, curr_data.phase, tune_yaw_rff, tune_yaw_rp, tune_yaw_rd, tune_yaw_sp, test_accel_max);
break;
}
}
// log autotune time history results for command, angular rate, and attitude
void AC_AutoTune_Heli::Log_AutoTuneDetails()
{
if (tune_type == SP_UP || tune_type == TUNE_CHECK) {
Log_Write_AutoTuneDetails(command_out, 0.0f, 0.0f, filt_target_rate, rotation_rate);
} else {
Log_Write_AutoTuneDetails(command_out, filt_target_rate, rotation_rate, 0.0f, 0.0f);
}
}
// log autotune frequency response data
void AC_AutoTune_Heli::Log_AutoTuneSweep()
{
Log_Write_AutoTuneSweep(curr_test_mtr.freq, curr_test_mtr.gain, curr_test_mtr.phase,curr_test_tgt.freq, curr_test_tgt.gain, curr_test_tgt.phase);
}
// @LoggerMessage: ATNH
// @Description: Heli AutoTune
// @Vehicles: Copter
// @Field: TimeUS: Time since system startup
// @Field: Axis: which axis is currently being tuned
// @Field: TuneStep: step in autotune process
// @Field: Freq: target dwell frequency
// @Field: Gain: measured gain of dwell
// @Field: Phase: measured phase of dwell
// @Field: RFF: new rate gain FF term
// @Field: RP: new rate gain P term
// @Field: RD: new rate gain D term
// @Field: SP: new angle P term
// @Field: ACC: new max accel term
// Write an Autotune summary data packet
void AC_AutoTune_Heli::Log_Write_AutoTune(AxisType _axis, uint8_t tune_step, float dwell_freq, float meas_gain, float meas_phase, float new_gain_rff, float new_gain_rp, float new_gain_rd, float new_gain_sp, float max_accel)
{
AP::logger().Write(
"ATNH",
"TimeUS,Axis,TuneStep,Freq,Gain,Phase,RFF,RP,RD,SP,ACC",
"s--E-d-----",
"F--000-----",
"QBBffffffff",
AP_HAL::micros64(),
(uint8_t)axis,
tune_step,
dwell_freq,
meas_gain,
meas_phase,
new_gain_rff,
new_gain_rp,
new_gain_rd,
new_gain_sp,
max_accel);
}
// Write an Autotune detailed data packet
void AC_AutoTune_Heli::Log_Write_AutoTuneDetails(float motor_cmd, float tgt_rate_rads, float rate_rads, float tgt_ang_rad, float ang_rad)
{
// @LoggerMessage: ATDH
// @Description: Heli AutoTune data packet
// @Vehicles: Copter
// @Field: TimeUS: Time since system startup
// @Field: Cmd: current motor command
// @Field: TRate: current target angular rate
// @Field: Rate: current angular rate
// @Field: TAng: current target angle
// @Field: Ang: current angle
AP::logger().WriteStreaming(
"ATDH",
"TimeUS,Cmd,TRate,Rate,TAng,Ang",
"s-kkdd",
"F00000",
"Qfffff",
AP_HAL::micros64(),
motor_cmd,
tgt_rate_rads*57.3,
rate_rads*57.3f,
tgt_ang_rad*57.3,
ang_rad*57.3f);
}
// Write an Autotune frequency response data packet
void AC_AutoTune_Heli::Log_Write_AutoTuneSweep(float freq_mtr, float gain_mtr, float phase_mtr, float freq_tgt, float gain_tgt, float phase_tgt)
{
// @LoggerMessage: ATSH
// @Description: Heli AutoTune Sweep packet
// @Vehicles: Copter
// @Field: TimeUS: Time since system startup
// @Field: freq_m: current frequency for motor input to rate
// @Field: gain_m: current response gain for motor input to rate
// @Field: phase_m: current response phase for motor input to rate
// @Field: freq_t: current frequency for target rate to rate
// @Field: gain_t: current response gain for target rate to rate
// @Field: phase_t: current response phase for target rate to rate
AP::logger().WriteStreaming(
"ATSH",
"TimeUS,freq_m,gain_m,phase_m,freq_t,gain_t,phase_t",
"sE-dE-d",
"F000000",
"Qffffff",
AP_HAL::micros64(),
freq_mtr,
gain_mtr,
phase_mtr,
freq_tgt,
gain_tgt,
phase_tgt);
}
#endif // HAL_LOGGING_ENABLED
// reset the test variables for each vehicle
void AC_AutoTune_Heli::reset_vehicle_test_variables()
{
// reset dwell test variables if sweep was interrupted in order to restart sweep
if (!is_equal(start_freq, stop_freq)) {
start_freq = 0.0f;
stop_freq = 0.0f;
next_test_freq = 0.0f;
sweep_complete = false;
}
}
// reset the update gain variables for heli
void AC_AutoTune_Heli::reset_update_gain_variables()
{
// reset max gain variables
reset_maxgains_update_gain_variables();
// reset rd_up variables
rd_prev_gain = 0.0f;
// reset sp_up variables
phase_max = 0.0f;
freq_max = 0.0f;
sp_prev_gain = 0.0f;
found_max_gain_freq = false;
found_peak = false;
}
// reset the max_gains update gain variables
void AC_AutoTune_Heli::reset_maxgains_update_gain_variables()
{
max_rate_p = {};
max_rate_d = {};
found_max_p = false;
found_max_d = false;
}
// reset the max_gains update gain variables
void AC_AutoTune_Heli::reset_sweep_variables()
{
sweep_tgt.ph180 = {};
sweep_tgt.ph270 = {};
sweep_tgt.maxgain = {};
sweep_tgt.progress = 0;
sweep_mtr.ph180 = {};
sweep_mtr.ph270 = {};
sweep_mtr.maxgain = {};
sweep_mtr.progress = 0;
}
// set the tuning test sequence
void AC_AutoTune_Heli::set_tune_sequence()
{
uint8_t seq_cnt = 0;
if (seq_bitmask & AUTOTUNE_SEQ_BITMASK_VFF) {
tune_seq[seq_cnt] = RFF_UP;
seq_cnt++;
}
if (seq_bitmask & AUTOTUNE_SEQ_BITMASK_RATE_D) {
tune_seq[seq_cnt] = MAX_GAINS;
seq_cnt++;
tune_seq[seq_cnt] = RD_UP;
seq_cnt++;
tune_seq[seq_cnt] = RP_UP;
seq_cnt++;
}
if (seq_bitmask & AUTOTUNE_SEQ_BITMASK_ANGLE_P) {
tune_seq[seq_cnt] = SP_UP;
seq_cnt++;
}
if (seq_bitmask & AUTOTUNE_SEQ_BITMASK_MAX_GAIN && !(seq_bitmask & AUTOTUNE_SEQ_BITMASK_RATE_D)) {
tune_seq[seq_cnt] = MAX_GAINS;
seq_cnt++;
}
if (seq_bitmask & AUTOTUNE_SEQ_BITMASK_TUNE_CHECK) {
tune_seq[seq_cnt] = TUNE_CHECK;
seq_cnt++;
}
tune_seq[seq_cnt] = TUNE_COMPLETE;
}
// get_testing_step_timeout_ms accessor
uint32_t AC_AutoTune_Heli::get_testing_step_timeout_ms() const
{
return AUTOTUNE_TESTING_STEP_TIMEOUT_MS;
}
// exceeded_freq_range - ensures tuning remains inside frequency range
bool AC_AutoTune_Heli::exceeded_freq_range(float frequency)
{
bool ret = false;
if (frequency < min_sweep_freq || frequency > max_sweep_freq) {
ret = true;
}
return ret;
}
#endif // AC_AUTOTUNE_ENABLED