ardupilot/Tools/ArduTracker/Mavlink_Common.h
James Bielman 5631f865b2 Update floating point calculations to use floats instead of doubles.
- Allows use of hardware floating point on the Cortex-M4.
- Added "f" suffix to floating point literals.
- Call floating point versions of stdlib math functions.
2013-01-16 13:52:01 +11:00

220 lines
6.7 KiB
C

#ifndef Mavlink_Common_H
#define Mavlink_Common_H
#if HIL_PROTOCOL == HIL_PROTOCOL_MAVLIK || GCS_PROTOCOL == GCS_PROTOCOL_MAVLINK
uint16_t system_type = MAV_FIXED_WING;
static uint8_t mavlink_check_target(uint8_t sysid, uint8_t compid)
{
if (sysid != mavlink_system.sysid)
{
return 1;
}
else if (compid != mavlink_system.compid)
{
gcs.send_text(SEVERITY_LOW,"component id mismatch");
return 0; // XXX currently not receiving correct compid from gcs
}
else return 0; // no error
}
/**
* @brief Send low-priority messages at a maximum rate of xx Hertz
*
* This function sends messages at a lower rate to not exceed the wireless
* bandwidth. It sends one message each time it is called until the buffer is empty.
* Call this function with xx Hertz to increase/decrease the bandwidth.
*/
static void mavlink_queued_send(mavlink_channel_t chan)
{
//send parameters one by one
if (global_data.parameter_i < global_data.param_count)
{
char param_name[ONBOARD_PARAM_NAME_LENGTH]; /// XXX HACK
strcpy_P(param_name, getParamName(global_data.parameter_i)); /// XXX HACK
mavlink_msg_param_value_send(chan,
(int8_t*)param_name,
getParamAsFloat(global_data.parameter_i),
global_data.param_count,global_data.parameter_i);
global_data.parameter_i++;
}
// request waypoints one by one
if (global_data.waypoint_receiving &&
global_data.waypoint_request_i < get(PARAM_WP_TOTAL))
{
mavlink_msg_waypoint_request_send(chan,
global_data.waypoint_dest_sysid,
global_data.waypoint_dest_compid ,global_data.waypoint_request_i);
}
}
void mavlink_send_message(mavlink_channel_t chan, uint8_t id, uint32_t param, uint16_t packet_drops)
{
uint64_t timeStamp = micros();
switch(id) {
case MSG_HEARTBEAT:
mavlink_msg_heartbeat_send(chan,system_type,MAV_AUTOPILOT_ARDUPILOTMEGA);
break;
case MSG_EXTENDED_STATUS:
{
uint8_t mode = MAV_MODE_UNINIT;
uint8_t nav_mode = MAV_NAV_VECTOR;
switch(control_mode) {
case MANUAL:
mode = MAV_MODE_MANUAL;
break;
case CIRCLE:
mode = MAV_MODE_TEST3;
break;
case STABILIZE:
mode = MAV_MODE_GUIDED;
break;
case FLY_BY_WIRE_A:
mode = MAV_MODE_TEST1;
break;
case FLY_BY_WIRE_B:
mode = MAV_MODE_TEST2;
break;
case AUTO:
mode = MAV_MODE_AUTO;
nav_mode = MAV_NAV_WAYPOINT;
break;
case RTL:
mode = MAV_MODE_AUTO;
nav_mode = MAV_NAV_RETURNING;
break;
case LOITER:
mode = MAV_MODE_AUTO;
nav_mode = MAV_NAV_HOLD;
break;
case TAKEOFF:
mode = MAV_MODE_AUTO;
nav_mode = MAV_NAV_LIFTOFF;
break;
case LAND:
mode = MAV_MODE_AUTO;
nav_mode = MAV_NAV_LANDING;
break;
}
uint8_t status = MAV_STATE_ACTIVE;
uint8_t motor_block = false;
mavlink_msg_sys_status_send(chan,mode,nav_mode,status,load*1000,
battery_voltage1*1000,motor_block,packet_drops);
break;
}
case MSG_ATTITUDE:
{
Vector3f omega = dcm.get_gyro();
mavlink_msg_attitude_send(chan,timeStamp,dcm.roll,dcm.pitch,dcm.yaw,
omega.x,omega.y,omega.z);
break;
}
case MSG_LOCATION:
{
float gamma = dcm.pitch; // neglecting angle of attack for now
float yaw = dcm.yaw;
mavlink_msg_global_position_send(chan,timeStamp,current_loc.lat/1.0e7f,
current_loc.lng/1.0e7f,current_loc.alt/1.0e2f,gps.ground_speed/1.0e2f*cosf(gamma)*cosf(yaw),
gps.ground_speed/1.0e2f*cosf(gamma)*sinf(yaw),gps.ground_speed/1.0e2f*sinf(gamma));
break;
}
case MSG_LOCAL_LOCATION:
{
float gamma = dcm.pitch; // neglecting angle of attack for now
float yaw = dcm.yaw;
mavlink_msg_local_position_send(chan,timeStamp,ToRad((current_loc.lat-home.lat)/1.0e7f)*radius_of_earth,
ToRad((current_loc.lng-home.lng)/1.0e7f)*radius_of_earth*cosf(ToRad(home.lat/1.0e7f)),
(current_loc.alt-home.alt)/1.0e2f, gps.ground_speed/1.0e2f*cosf(gamma)*cosf(yaw),
gps.ground_speed/1.0e2f*cosf(gamma)*sinf(yaw),gps.ground_speed/1.0e2f*sinf(gamma));
break;
}
case MSG_GPS_RAW:
{
mavlink_msg_gps_raw_send(chan,timeStamp,gps.status(),
gps.latitude/1.0e7f,gps.longitude/1.0e7f,gps.altitude/100.0f,
2.0f,10.0f,gps.ground_speed/100.0f,gps.ground_course/100.0f);
break;
}
case MSG_AIRSPEED:
{
mavlink_msg_airspeed_send(chan,float(airspeed)/100.0);
break;
}
case MSG_SERVO_OUT:
{
uint8_t rssi = 1; // TODO: can we calculated this?
// receive signal strength 0(0%)-255(100%)
Serial.printf_P(PSTR("sending servo out: %d %d %d %d\n"),
servo_out[0],servo_out[1], servo_out[2], servo_out[3]);
mavlink_msg_rc_channels_scaled_send(chan,
servo_out[0],servo_out[1],
servo_out[2]*100, // account for throttle scaling 0-100
servo_out[3],servo_out[4],servo_out[5],
servo_out[6],servo_out[7],rssi);
break;
}
case MSG_RADIO_OUT:
{
uint8_t rssi = 1; // TODO: can we calculated this?
// receive signal strength 0(0%)-255(100%)
mavlink_msg_rc_channels_raw_send(chan,
radio_out[0],radio_out[1],radio_out[2],
radio_out[3],radio_out[4],radio_out[5],
radio_out[6],radio_out[7],rssi);
break;
}
#if HIL_MODE != HIL_MODE_ATTITUDE
case MSG_RAW_IMU:
{
Vector3f accel = imu.get_accel();
Vector3f gyro = imu.get_gyro();
//Serial.printf_P(PSTR("sending accel: %f %f %f\n"), accel.x, accel.y, accel.z);
//Serial.printf_P(PSTR("sending gyro: %f %f %f\n"), gyro.x, gyro.y, gyro.z);
mavlink_msg_raw_imu_send(chan,timeStamp,
accel.x*1000.0f/gravity,accel.y*1000.0f/gravity,accel.z*1000.0f/gravity,
gyro.x*1000.0f,gyro.y*1000.0f,gyro.z*1000.0f,
compass.mag_x,compass.mag_y,compass.mag_z);
mavlink_msg_raw_pressure_send(chan,timeStamp,
adc.Ch(AIRSPEED_CH),pitot.RawPress,0);
break;
}
#endif // HIL_PROTOCOL != HIL_PROTOCOL_ATTITUDE
case MSG_GPS_STATUS:
{
mavlink_msg_gps_status_send(chan,gps.num_sats,NULL,NULL,NULL,NULL,NULL);
break;
}
case MSG_CURRENT_WAYPOINT:
{
mavlink_msg_waypoint_current_send(chan,get(PARAM_WP_INDEX));
break;
}
defualt:
break;
}
}
void mavlink_send_text(mavlink_channel_t chan, uint8_t severity, const char *str)
{
mavlink_msg_statustext_send(chan,severity,(const int8_t*)str);
}
void mavlink_acknowledge(mavlink_channel_t chan, uint8_t id, uint8_t sum1, uint8_t sum2)
{
}
#endif // mavlink in use
#endif // inclusion guard