mirror of
https://github.com/ArduPilot/ardupilot
synced 2025-01-12 02:48:28 -04:00
130 lines
4.3 KiB
C++
130 lines
4.3 KiB
C++
/*
|
|
* ADC.cpp - Analog Digital Converter Base Class for Ardupilot Mega
|
|
* Code by James Goppert. DIYDrones.com
|
|
*
|
|
* This library is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2.1 of the License, or (at your option) any later version.
|
|
*/
|
|
|
|
#include "AP_OpticalFlow.h"
|
|
|
|
#define FORTYFIVE_DEGREES 0.78539816f
|
|
|
|
// pointer to the last instantiated optical flow sensor. Will be turned into
|
|
// a table if we ever add support for more than one sensor
|
|
AP_OpticalFlow* AP_OpticalFlow::_sensor = NULL;
|
|
// number of times we have been called by 1khz timer process.
|
|
// We use this to throttle read down to 20hz
|
|
uint8_t AP_OpticalFlow::_num_calls;
|
|
|
|
bool AP_OpticalFlow::init()
|
|
{
|
|
_orientation = ROTATION_NONE;
|
|
update_conversion_factors();
|
|
return true; // just return true by default
|
|
}
|
|
|
|
// set_orientation - Rotation vector to transform sensor readings to the body
|
|
// frame.
|
|
void AP_OpticalFlow::set_orientation(enum Rotation rotation)
|
|
{
|
|
_orientation = rotation;
|
|
}
|
|
|
|
// parent method called at 1khz by periodic process
|
|
// this is slowed down to 20hz and each instance's update function is called
|
|
// (only one instance is supported at the moment)
|
|
void AP_OpticalFlow::read(uint32_t now)
|
|
{
|
|
_num_calls++;
|
|
|
|
if( _num_calls >= AP_OPTICALFLOW_NUM_CALLS_FOR_20HZ ) {
|
|
_num_calls = 0;
|
|
// call to update all attached sensors
|
|
if( _sensor != NULL ) {
|
|
_sensor->update(now);
|
|
}
|
|
}
|
|
};
|
|
|
|
// read value from the sensor. Should be overridden by derived class
|
|
void AP_OpticalFlow::update(uint32_t now){ }
|
|
|
|
// reads a value from the sensor (will be sensor specific)
|
|
uint8_t AP_OpticalFlow::read_register(uint8_t address){ return 0; }
|
|
|
|
// writes a value to one of the sensor's register (will be sensor specific)
|
|
void AP_OpticalFlow::write_register(uint8_t address, uint8_t value) {}
|
|
|
|
// rotate raw values to arrive at final x,y,dx and dy values
|
|
void AP_OpticalFlow::apply_orientation_matrix()
|
|
{
|
|
Vector3f rot_vector;
|
|
rot_vector(raw_dx, raw_dy, 0);
|
|
|
|
// next rotate dx and dy
|
|
rot_vector.rotate(_orientation);
|
|
|
|
dx = rot_vector.x;
|
|
dy = rot_vector.y;
|
|
|
|
// add rotated values to totals (perhaps this is pointless as we need
|
|
// to take into account yaw, roll, pitch)
|
|
x += dx;
|
|
y += dy;
|
|
}
|
|
|
|
// updates conversion factors that are dependent upon field_of_view
|
|
void AP_OpticalFlow::update_conversion_factors()
|
|
{
|
|
// multiply this number by altitude and pixel change to get horizontal
|
|
// move (in same units as altitude)
|
|
conv_factor = ((1.0f / (float)(num_pixels * scaler))
|
|
* 2.0f * tanf(field_of_view / 2.0f));
|
|
// 0.00615
|
|
radians_to_pixels = (num_pixels * scaler) / field_of_view;
|
|
// 162.99
|
|
}
|
|
|
|
// updates internal lon and lat with estimation based on optical flow
|
|
void AP_OpticalFlow::update_position(float roll, float pitch,
|
|
float sin_yaw, float cos_yaw, float altitude)
|
|
{
|
|
float diff_roll = roll - _last_roll;
|
|
float diff_pitch = pitch - _last_pitch;
|
|
|
|
// only update position if surface quality is good and angle is not
|
|
// over 45 degrees
|
|
if( surface_quality >= 10 && fabsf(roll) <= FORTYFIVE_DEGREES
|
|
&& fabsf(pitch) <= FORTYFIVE_DEGREES ) {
|
|
altitude = max(altitude, 0);
|
|
// calculate expected x,y diff due to roll and pitch change
|
|
exp_change_x = diff_roll * radians_to_pixels;
|
|
exp_change_y = -diff_pitch * radians_to_pixels;
|
|
|
|
// real estimated raw change from mouse
|
|
change_x = dx - exp_change_x;
|
|
change_y = dy - exp_change_y;
|
|
|
|
float avg_altitude = (altitude + _last_altitude)*0.5f;
|
|
|
|
// convert raw change to horizontal movement in cm
|
|
// perhaps this altitude should actually be the distance to the
|
|
// ground? i.e. if we are very rolled over it should be longer?
|
|
x_cm = -change_x * avg_altitude * conv_factor;
|
|
// for example if you are leaned over at 45 deg the ground will
|
|
// appear farther away and motion from opt flow sensor will be less
|
|
y_cm = -change_y * avg_altitude * conv_factor;
|
|
|
|
// convert x/y movements into lon/lat movement
|
|
vlon = x_cm * cos_yaw + y_cm * sin_yaw;
|
|
vlat = y_cm * cos_yaw - x_cm * sin_yaw;
|
|
}
|
|
|
|
_last_altitude = altitude;
|
|
_last_roll = roll;
|
|
_last_pitch = pitch;
|
|
}
|