mirror of
https://github.com/ArduPilot/ardupilot
synced 2025-01-11 02:18:29 -04:00
0ed7f94bfc
Instead of just doing a static cast to the desired class, use a method named "from". Pros: - When we have data shared on the parent class, the code is cleaner in child class when it needs to access this data. Almost all the data we use in AP_HAL benefits from this - There's a minimal type checking because now we are using a method that can only receive the type of the parent class
562 lines
15 KiB
C++
562 lines
15 KiB
C++
/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
|
|
|
|
#include <AP_HAL/AP_HAL.h>
|
|
|
|
#if CONFIG_HAL_BOARD == HAL_BOARD_SITL
|
|
|
|
#include "AP_HAL_SITL.h"
|
|
#include "AP_HAL_SITL_Namespace.h"
|
|
#include "HAL_SITL_Class.h"
|
|
#include "UARTDriver.h"
|
|
#include "Scheduler.h"
|
|
|
|
#include <stdio.h>
|
|
#include <signal.h>
|
|
#include <unistd.h>
|
|
#include <stdlib.h>
|
|
#include <errno.h>
|
|
#include <sys/select.h>
|
|
|
|
#include <AP_Param/AP_Param.h>
|
|
|
|
extern const AP_HAL::HAL& hal;
|
|
|
|
using namespace HALSITL;
|
|
|
|
void SITL_State::_set_param_default(const char *parm)
|
|
{
|
|
char *pdup = strdup(parm);
|
|
char *p = strchr(pdup, '=');
|
|
if (p == NULL) {
|
|
printf("Please specify parameter as NAME=VALUE");
|
|
exit(1);
|
|
}
|
|
float value = atof(p+1);
|
|
*p = 0;
|
|
enum ap_var_type var_type;
|
|
AP_Param *vp = AP_Param::find(parm, &var_type);
|
|
if (vp == NULL) {
|
|
printf("Unknown parameter %s\n", parm);
|
|
exit(1);
|
|
}
|
|
if (var_type == AP_PARAM_FLOAT) {
|
|
((AP_Float *)vp)->set_and_save(value);
|
|
} else if (var_type == AP_PARAM_INT32) {
|
|
((AP_Int32 *)vp)->set_and_save(value);
|
|
} else if (var_type == AP_PARAM_INT16) {
|
|
((AP_Int16 *)vp)->set_and_save(value);
|
|
} else if (var_type == AP_PARAM_INT8) {
|
|
((AP_Int8 *)vp)->set_and_save(value);
|
|
} else {
|
|
printf("Unable to set parameter %s\n", parm);
|
|
exit(1);
|
|
}
|
|
printf("Set parameter %s to %f\n", parm, value);
|
|
free(pdup);
|
|
}
|
|
|
|
|
|
/*
|
|
setup for SITL handling
|
|
*/
|
|
void SITL_State::_sitl_setup(void)
|
|
{
|
|
#ifndef __CYGWIN__
|
|
_parent_pid = getppid();
|
|
#endif
|
|
_rcout_addr.sin_family = AF_INET;
|
|
_rcout_addr.sin_port = htons(_rcout_port);
|
|
inet_pton(AF_INET, _fdm_address, &_rcout_addr.sin_addr);
|
|
|
|
#ifndef HIL_MODE
|
|
_setup_fdm();
|
|
#endif
|
|
fprintf(stdout, "Starting SITL input\n");
|
|
|
|
// find the barometer object if it exists
|
|
_sitl = (SITL *)AP_Param::find_object("SIM_");
|
|
_barometer = (AP_Baro *)AP_Param::find_object("GND_");
|
|
_ins = (AP_InertialSensor *)AP_Param::find_object("INS_");
|
|
_compass = (Compass *)AP_Param::find_object("COMPASS_");
|
|
_terrain = (AP_Terrain *)AP_Param::find_object("TERRAIN_");
|
|
_optical_flow = (OpticalFlow *)AP_Param::find_object("FLOW");
|
|
|
|
if (_sitl != NULL) {
|
|
// setup some initial values
|
|
#ifndef HIL_MODE
|
|
_update_barometer(100);
|
|
_update_ins(0, 0, 0, 0, 0, 0, 0, 0, -9.8, 0, 100);
|
|
_update_compass(0, 0, 0);
|
|
_update_gps(0, 0, 0, 0, 0, 0, false);
|
|
#endif
|
|
if (enable_gimbal) {
|
|
gimbal = new Gimbal(_sitl->state);
|
|
}
|
|
}
|
|
|
|
if (_synthetic_clock_mode) {
|
|
// start with non-zero clock
|
|
hal.scheduler->stop_clock(1);
|
|
}
|
|
}
|
|
|
|
|
|
#ifndef HIL_MODE
|
|
/*
|
|
setup a SITL FDM listening UDP port
|
|
*/
|
|
void SITL_State::_setup_fdm(void)
|
|
{
|
|
int one=1, ret;
|
|
struct sockaddr_in sockaddr;
|
|
|
|
memset(&sockaddr,0,sizeof(sockaddr));
|
|
|
|
#ifdef HAVE_SOCK_SIN_LEN
|
|
sockaddr.sin_len = sizeof(sockaddr);
|
|
#endif
|
|
sockaddr.sin_port = htons(_simin_port);
|
|
sockaddr.sin_family = AF_INET;
|
|
|
|
_sitl_fd = socket(AF_INET, SOCK_DGRAM, 0);
|
|
if (_sitl_fd == -1) {
|
|
fprintf(stderr, "SITL: socket failed - %s\n", strerror(errno));
|
|
exit(1);
|
|
}
|
|
|
|
/* we want to be able to re-use ports quickly */
|
|
setsockopt(_sitl_fd, SOL_SOCKET, SO_REUSEADDR, &one, sizeof(one));
|
|
|
|
ret = bind(_sitl_fd, (struct sockaddr *)&sockaddr, sizeof(sockaddr));
|
|
if (ret == -1) {
|
|
fprintf(stderr, "SITL: bind failed on port %u - %s\n",
|
|
(unsigned)ntohs(sockaddr.sin_port), strerror(errno));
|
|
exit(1);
|
|
}
|
|
|
|
HALSITL::SITLUARTDriver::_set_nonblocking(_sitl_fd);
|
|
}
|
|
#endif
|
|
|
|
|
|
/*
|
|
step the FDM by one time step
|
|
*/
|
|
void SITL_State::_fdm_input_step(void)
|
|
{
|
|
static uint32_t last_pwm_input = 0;
|
|
fd_set fds;
|
|
struct timeval tv;
|
|
|
|
if (sitl_model != NULL) {
|
|
_fdm_input_local();
|
|
} else {
|
|
tv.tv_sec = 1;
|
|
tv.tv_usec = 0;
|
|
|
|
FD_ZERO(&fds);
|
|
FD_SET(_sitl_fd, &fds);
|
|
if (select(_sitl_fd+1, &fds, NULL, NULL, &tv) != 1) {
|
|
// internal error
|
|
_simulator_output(true);
|
|
return;
|
|
}
|
|
|
|
/* check for packet from flight sim */
|
|
_fdm_input();
|
|
}
|
|
|
|
/* make sure we die if our parent dies */
|
|
if (kill(_parent_pid, 0) != 0) {
|
|
exit(1);
|
|
}
|
|
|
|
if (_scheduler->interrupts_are_blocked() || _sitl == NULL) {
|
|
return;
|
|
}
|
|
|
|
// simulate RC input at 50Hz
|
|
if (hal.scheduler->millis() - last_pwm_input >= 20 && _sitl->rc_fail == 0) {
|
|
last_pwm_input = hal.scheduler->millis();
|
|
new_rc_input = true;
|
|
}
|
|
|
|
_scheduler->sitl_begin_atomic();
|
|
|
|
if (_update_count == 0 && _sitl != NULL) {
|
|
_update_gps(0, 0, 0, 0, 0, 0, false);
|
|
_update_barometer(0);
|
|
_scheduler->timer_event();
|
|
_scheduler->sitl_end_atomic();
|
|
return;
|
|
}
|
|
|
|
if (_sitl != NULL) {
|
|
_update_gps(_sitl->state.latitude, _sitl->state.longitude,
|
|
_sitl->state.altitude,
|
|
_sitl->state.speedN, _sitl->state.speedE, _sitl->state.speedD,
|
|
!_sitl->gps_disable);
|
|
_update_ins(_sitl->state.rollDeg, _sitl->state.pitchDeg, _sitl->state.yawDeg,
|
|
_sitl->state.rollRate, _sitl->state.pitchRate, _sitl->state.yawRate,
|
|
_sitl->state.xAccel, _sitl->state.yAccel, _sitl->state.zAccel,
|
|
_sitl->state.airspeed, _sitl->state.altitude);
|
|
_update_barometer(_sitl->state.altitude);
|
|
_update_compass(_sitl->state.rollDeg, _sitl->state.pitchDeg, _sitl->state.yawDeg);
|
|
_update_flow();
|
|
}
|
|
|
|
// trigger all APM timers.
|
|
_scheduler->timer_event();
|
|
_scheduler->sitl_end_atomic();
|
|
}
|
|
|
|
|
|
void SITL_State::wait_clock(uint64_t wait_time_usec)
|
|
{
|
|
while (hal.scheduler->micros64() < wait_time_usec) {
|
|
_fdm_input_step();
|
|
}
|
|
}
|
|
|
|
#ifndef HIL_MODE
|
|
/*
|
|
check for a SITL FDM packet
|
|
*/
|
|
void SITL_State::_fdm_input(void)
|
|
{
|
|
ssize_t size;
|
|
struct pwm_packet {
|
|
uint16_t pwm[8];
|
|
};
|
|
union {
|
|
struct sitl_fdm fg_pkt;
|
|
struct pwm_packet pwm_pkt;
|
|
} d;
|
|
bool got_fg_input = false;
|
|
|
|
size = recv(_sitl_fd, &d, sizeof(d), MSG_DONTWAIT);
|
|
switch (size) {
|
|
case 148:
|
|
static uint32_t last_report;
|
|
static uint32_t count;
|
|
|
|
if (d.fg_pkt.magic != 0x4c56414f) {
|
|
fprintf(stdout, "Bad FDM packet - magic=0x%08x\n", d.fg_pkt.magic);
|
|
return;
|
|
}
|
|
|
|
if (d.fg_pkt.latitude == 0 ||
|
|
d.fg_pkt.longitude == 0 ||
|
|
d.fg_pkt.altitude <= 0) {
|
|
// garbage input
|
|
return;
|
|
}
|
|
|
|
hal.scheduler->stop_clock(d.fg_pkt.timestamp_us);
|
|
_synthetic_clock_mode = true;
|
|
got_fg_input = true;
|
|
|
|
if (_sitl != NULL) {
|
|
_sitl->state = d.fg_pkt;
|
|
// prevent bad inputs from SIM from corrupting our state
|
|
double *v = &_sitl->state.latitude;
|
|
for (uint8_t i=0; i<17; i++) {
|
|
if (isinf(v[i]) || isnan(v[i]) || fabs(v[i]) > 1.0e10) {
|
|
v[i] = 0;
|
|
}
|
|
}
|
|
}
|
|
_update_count++;
|
|
|
|
count++;
|
|
if (hal.scheduler->millis() - last_report > 1000) {
|
|
//fprintf(stdout, "SIM %u FPS\n", count);
|
|
count = 0;
|
|
last_report = hal.scheduler->millis();
|
|
}
|
|
break;
|
|
|
|
case 16: {
|
|
// a packet giving the receiver PWM inputs
|
|
uint8_t i;
|
|
for (i=0; i<8; i++) {
|
|
// setup the pwn input for the RC channel inputs
|
|
if (d.pwm_pkt.pwm[i] != 0) {
|
|
pwm_input[i] = d.pwm_pkt.pwm[i];
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (got_fg_input) {
|
|
// send RC output to flight sim
|
|
_simulator_output(_synthetic_clock_mode);
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
get FDM input from a local model
|
|
*/
|
|
void SITL_State::_fdm_input_local(void)
|
|
{
|
|
Aircraft::sitl_input input;
|
|
|
|
// check for direct RC input
|
|
_fdm_input();
|
|
|
|
// construct servos structure for FDM
|
|
_simulator_servos(input);
|
|
|
|
// update the model
|
|
sitl_model->update(input);
|
|
|
|
// get FDM output from the model
|
|
sitl_model->fill_fdm(_sitl->state);
|
|
|
|
if (gimbal != NULL) {
|
|
gimbal->update();
|
|
}
|
|
|
|
// update simulation time
|
|
hal.scheduler->stop_clock(_sitl->state.timestamp_us);
|
|
|
|
_synthetic_clock_mode = true;
|
|
_update_count++;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
apply servo rate filtering
|
|
This allows simulation of servo lag
|
|
*/
|
|
void SITL_State::_apply_servo_filter(float deltat)
|
|
{
|
|
if (_sitl->servo_rate < 1.0f) {
|
|
// no limit
|
|
return;
|
|
}
|
|
// 1000 usec == 90 degrees
|
|
uint16_t max_change = deltat * _sitl->servo_rate * 1000 / 90;
|
|
if (max_change == 0) {
|
|
max_change = 1;
|
|
}
|
|
for (uint8_t i=0; i<SITL_NUM_CHANNELS; i++) {
|
|
int16_t change = (int16_t)pwm_output[i] - (int16_t)last_pwm_output[i];
|
|
if (change > max_change) {
|
|
pwm_output[i] = last_pwm_output[i] + max_change;
|
|
} else if (change < -max_change) {
|
|
pwm_output[i] = last_pwm_output[i] - max_change;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
create sitl_input structure for sending to FDM
|
|
*/
|
|
void SITL_State::_simulator_servos(Aircraft::sitl_input &input)
|
|
{
|
|
static uint32_t last_update_usec;
|
|
|
|
/* this maps the registers used for PWM outputs. The RC
|
|
* driver updates these whenever it wants the channel output
|
|
* to change */
|
|
uint8_t i;
|
|
|
|
if (last_update_usec == 0) {
|
|
for (i=0; i<SITL_NUM_CHANNELS; i++) {
|
|
pwm_output[i] = 1000;
|
|
}
|
|
if (_vehicle == ArduPlane) {
|
|
pwm_output[0] = pwm_output[1] = pwm_output[3] = 1500;
|
|
pwm_output[7] = 1800;
|
|
}
|
|
if (_vehicle == APMrover2) {
|
|
pwm_output[0] = pwm_output[1] = pwm_output[2] = pwm_output[3] = 1500;
|
|
pwm_output[7] = 1800;
|
|
}
|
|
for (i=0; i<SITL_NUM_CHANNELS; i++) {
|
|
last_pwm_output[i] = pwm_output[i];
|
|
}
|
|
}
|
|
|
|
// output at chosen framerate
|
|
uint32_t now = hal.scheduler->micros();
|
|
float deltat = (now - last_update_usec) * 1.0e-6f;
|
|
last_update_usec = now;
|
|
|
|
_apply_servo_filter(deltat);
|
|
|
|
// pass wind into simulators, using a wind gradient below 60m
|
|
float altitude = _barometer?_barometer->get_altitude():0;
|
|
float wind_speed = _sitl->wind_speed;
|
|
if (altitude < 0) {
|
|
altitude = 0;
|
|
}
|
|
if (altitude < 60) {
|
|
wind_speed *= altitude / 60;
|
|
}
|
|
input.wind.speed = wind_speed;
|
|
input.wind.direction = _sitl->wind_direction;
|
|
input.wind.turbulence = _sitl->wind_turbulance;
|
|
|
|
for (i=0; i<SITL_NUM_CHANNELS; i++) {
|
|
if (pwm_output[i] == 0xFFFF) {
|
|
input.servos[i] = 0;
|
|
} else {
|
|
input.servos[i] = pwm_output[i];
|
|
}
|
|
last_pwm_output[i] = pwm_output[i];
|
|
}
|
|
|
|
if (_vehicle == ArduPlane) {
|
|
// add in engine multiplier
|
|
if (input.servos[2] > 1000) {
|
|
input.servos[2] = ((input.servos[2]-1000) * _sitl->engine_mul) + 1000;
|
|
if (input.servos[2] > 2000) input.servos[2] = 2000;
|
|
}
|
|
_motors_on = ((input.servos[2]-1000)/1000.0f) > 0;
|
|
} else if (_vehicle == APMrover2) {
|
|
// add in engine multiplier
|
|
if (input.servos[2] != 1500) {
|
|
input.servos[2] = ((input.servos[2]-1500) * _sitl->engine_mul) + 1500;
|
|
if (input.servos[2] > 2000) input.servos[2] = 2000;
|
|
if (input.servos[2] < 1000) input.servos[2] = 1000;
|
|
}
|
|
_motors_on = ((input.servos[2]-1500)/500.0f) != 0;
|
|
} else {
|
|
_motors_on = false;
|
|
// apply engine multiplier to first motor
|
|
input.servos[0] = ((input.servos[0]-1000) * _sitl->engine_mul) + 1000;
|
|
// run checks on each motor
|
|
for (i=0; i<4; i++) {
|
|
// check motors do not exceed their limits
|
|
if (input.servos[i] > 2000) input.servos[i] = 2000;
|
|
if (input.servos[i] < 1000) input.servos[i] = 1000;
|
|
// update motor_on flag
|
|
if ((input.servos[i]-1000)/1000.0f > 0) {
|
|
_motors_on = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
float throttle = _motors_on?(input.servos[2]-1000) / 1000.0f:0;
|
|
// lose 0.7V at full throttle
|
|
float voltage = _sitl->batt_voltage - 0.7f*throttle;
|
|
|
|
// assume 50A at full throttle
|
|
_current = 50.0f * throttle;
|
|
|
|
// assume 3DR power brick
|
|
voltage_pin_value = ((voltage / 10.1f) / 5.0f) * 1024;
|
|
current_pin_value = ((_current / 17.0f) / 5.0f) * 1024;
|
|
}
|
|
|
|
|
|
/*
|
|
send RC outputs to simulator
|
|
*/
|
|
void SITL_State::_simulator_output(bool synthetic_clock_mode)
|
|
{
|
|
struct {
|
|
uint16_t pwm[SITL_NUM_CHANNELS];
|
|
uint16_t speed, direction, turbulance;
|
|
} control;
|
|
Aircraft::sitl_input input;
|
|
|
|
_simulator_servos(input);
|
|
|
|
if (_sitl == NULL) {
|
|
return;
|
|
}
|
|
|
|
memcpy(control.pwm, input.servos, sizeof(control.pwm));
|
|
|
|
// setup wind control
|
|
float wind_speed = _sitl->wind_speed * 100;
|
|
float altitude = _barometer?_barometer->get_altitude():0;
|
|
if (altitude < 0) {
|
|
altitude = 0;
|
|
}
|
|
if (altitude < 60) {
|
|
wind_speed *= altitude / 60.0f;
|
|
}
|
|
control.speed = wind_speed;
|
|
float direction = _sitl->wind_direction;
|
|
if (direction < 0) {
|
|
direction += 360;
|
|
}
|
|
control.direction = direction * 100;
|
|
control.turbulance = _sitl->wind_turbulance * 100;
|
|
|
|
// zero the wind for the first 15s to allow pitot calibration
|
|
if (hal.scheduler->millis() < 15000) {
|
|
control.speed = 0;
|
|
}
|
|
|
|
sendto(_sitl_fd, (void*)&control, sizeof(control), MSG_DONTWAIT, (const sockaddr *)&_rcout_addr, sizeof(_rcout_addr));
|
|
}
|
|
|
|
// generate a random float between -1 and 1
|
|
float SITL_State::_rand_float(void)
|
|
{
|
|
return ((((unsigned)random()) % 2000000) - 1.0e6) / 1.0e6;
|
|
}
|
|
|
|
// generate a random Vector3f of size 1
|
|
Vector3f SITL_State::_rand_vec3f(void)
|
|
{
|
|
Vector3f v = Vector3f(_rand_float(),
|
|
_rand_float(),
|
|
_rand_float());
|
|
if (v.length() != 0.0f) {
|
|
v.normalize();
|
|
}
|
|
return v;
|
|
}
|
|
|
|
|
|
void SITL_State::init(int argc, char * const argv[])
|
|
{
|
|
pwm_input[0] = pwm_input[1] = pwm_input[3] = 1500;
|
|
pwm_input[4] = pwm_input[7] = 1800;
|
|
pwm_input[2] = pwm_input[5] = pwm_input[6] = 1000;
|
|
|
|
_scheduler = SITLScheduler::from(hal.scheduler);
|
|
_parse_command_line(argc, argv);
|
|
}
|
|
|
|
/*
|
|
return height above the ground in meters
|
|
*/
|
|
float SITL_State::height_agl(void)
|
|
{
|
|
static float home_alt = -1;
|
|
|
|
if (home_alt == -1 && _sitl->state.altitude > 0) {
|
|
// remember home altitude as first non-zero altitude
|
|
home_alt = _sitl->state.altitude;
|
|
}
|
|
|
|
if (_terrain &&
|
|
_sitl->terrain_enable) {
|
|
// get height above terrain from AP_Terrain. This assumes
|
|
// AP_Terrain is working
|
|
float terrain_height_amsl;
|
|
struct Location location;
|
|
location.lat = _sitl->state.latitude*1.0e7;
|
|
location.lng = _sitl->state.longitude*1.0e7;
|
|
|
|
if (_terrain->height_amsl(location, terrain_height_amsl)) {
|
|
return _sitl->state.altitude - terrain_height_amsl;
|
|
}
|
|
}
|
|
|
|
// fall back to flat earth model
|
|
return _sitl->state.altitude - home_alt;
|
|
}
|
|
|
|
#endif
|