ardupilot/ArduCopterMega/Attitude.pde

284 lines
8.1 KiB
Plaintext

/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: t -*-
void
init_pids()
{
// create limits to how much dampening we'll allow
// this creates symmetry with the P gain value preventing oscillations
max_stabilize_dampener = g.pid_stabilize_roll.kP() * 2500; // = 0.6 * 2500 = 1500 or 15°
max_yaw_dampener = g.pid_yaw.kP() * 6000; // = .5 * 6000 = 3000
}
void
control_nav_mixer()
{
// control +- 45° is mixed with the navigation request by the Autopilot
// output is in degrees = target pitch and roll of copter
g.rc_1.servo_out = g.rc_1.control_mix(nav_roll);
g.rc_2.servo_out = g.rc_2.control_mix(nav_pitch);
}
void
fbw_nav_mixer()
{
// control +- 45° is mixed with the navigation request by the Autopilot
// output is in degrees = target pitch and roll of copter
g.rc_1.servo_out = nav_roll;
g.rc_2.servo_out = nav_pitch;
}
void
output_stabilize_roll()
{
float error, rate;
int dampener;
error = g.rc_1.servo_out - dcm.roll_sensor;
// limit the error we're feeding to the PID
error = constrain(error, -2500, 2500);
// write out angles back to servo out - this will be converted to PWM by RC_Channel
g.rc_1.servo_out = g.pid_stabilize_roll.get_pid(error, delta_ms_fast_loop, 1.0);
// We adjust the output by the rate of rotation:
// Rate control through bias corrected gyro rates
// omega is the raw gyro reading
// Limit dampening to be equal to propotional term for symmetry
rate = degrees(omega.x) * 100.0; // 6rad = 34377
dampener = (rate * g.stabilize_dampener); // 34377 * .175 = 6000
g.rc_1.servo_out -= constrain(dampener, -max_stabilize_dampener, max_stabilize_dampener); // limit to 1500 based on kP
}
void
output_stabilize_pitch()
{
float error, rate;
int dampener;
error = g.rc_2.servo_out - dcm.pitch_sensor;
// limit the error we're feeding to the PID
error = constrain(error, -2500, 2500);
// write out angles back to servo out - this will be converted to PWM by RC_Channel
g.rc_2.servo_out = g.pid_stabilize_pitch.get_pid(error, delta_ms_fast_loop, 1.0);
// We adjust the output by the rate of rotation:
// Rate control through bias corrected gyro rates
// omega is the raw gyro reading
// Limit dampening to be equal to propotional term for symmetry
rate = degrees(omega.y) * 100.0; // 6rad = 34377
dampener = (rate * g.stabilize_dampener); // 34377 * .175 = 6000
g.rc_2.servo_out -= constrain(dampener, -max_stabilize_dampener, max_stabilize_dampener); // limit to 1500 based on kP
}
void
clear_yaw_control()
{
//Serial.print("Clear ");
rate_yaw_flag = false; // exit rate_yaw_flag
nav_yaw = dcm.yaw_sensor; // save our Yaw
yaw_error = 0;
}
void
output_yaw_with_hold(boolean hold)
{
//digitalWrite(B_LED_PIN, LOW);
if(hold){
// look to see if we have exited rate control properly - ie stopped turning
if(rate_yaw_flag){
// we are still in motion from rate control
if(fabs(omega.z) < .5){
clear_yaw_control();
hold = true; // just to be explicit
//Serial.print("C");
}else{
//digitalWrite(B_LED_PIN, HIGH);
// return to rate control until we slow down.
hold = false;
//Serial.print("D");
}
}
}else{
// rate control
// this indicates we are under rate control, when we enter Yaw Hold and
// return to 0° per second, we exit rate control and hold the current Yaw
rate_yaw_flag = true;
yaw_error = 0;
}
if(hold){
//Serial.println("H");
// try and hold the current nav_yaw setting
yaw_error = nav_yaw - dcm.yaw_sensor; // +- 60°
yaw_error = wrap_180(yaw_error);
// limit the error we're feeding to the PID
yaw_error = constrain(yaw_error, -6000, 6000); // limit error to 60 degees
// Apply PID and save the new angle back to RC_Channel
g.rc_4.servo_out = g.pid_yaw.get_pid(yaw_error, delta_ms_fast_loop, 1.0); // .5 * 6000 = 3000
// We adjust the output by the rate of rotation
long rate = degrees(omega.z) * 100.0; // 3rad = 17188 , 6rad = 34377
int dampener = ((float)rate * g.hold_yaw_dampener); // 18000 * .17 = 3000
// Limit dampening to be equal to propotional term for symmetry
g.rc_4.servo_out -= constrain(dampener, -max_yaw_dampener, max_yaw_dampener); // -3000
}else{
//Serial.println("R");
// rate control
long rate = degrees(omega.z) * 100; // 3rad = 17188 , 6rad = 34377
rate = constrain(rate, -36000, 36000); // limit to something fun!
long error = ((long)g.rc_4.control_in * 6) - rate; // control is += 6000 * 6 = 36000
// -error = CCW, +error = CW
if(g.rc_4.control_in == 0){
// we are breaking;
g.rc_4.servo_out = (omega.z > 0) ? -1800 : 1800;
//switch comments to get old behavior.
//g.rc_4.servo_out = g.pid_acro_rate_yaw.get_pid(error, delta_ms_fast_loop, 1.0);// kP .07 * 36000 = 2520
}else{
g.rc_4.servo_out = g.pid_acro_rate_yaw.get_pid(error, delta_ms_fast_loop, 1.0);// kP .07 * 36000 = 2520
}
g.rc_4.servo_out = constrain(g.rc_4.servo_out, -2400, 2400); // limit to 24°
}
}
// slight left rudder give right roll.
void
output_rate_roll()
{
// rate control
long rate = degrees(omega.x) * 100; // 3rad = 17188 , 6rad = 34377
rate = constrain(rate, -36000, 36000); // limit to something fun!
long error = ((long)g.rc_1.control_in * 8) - rate; // control is += 4500 * 8 = 36000
g.rc_1.servo_out = g.pid_acro_rate_roll.get_pid(error, delta_ms_fast_loop, 1.0); // .075 * 36000 = 2700
g.rc_1.servo_out = constrain(g.rc_1.servo_out, -2400, 2400); // limit to 2400
}
void
output_rate_pitch()
{
// rate control
long rate = degrees(omega.y) * 100; // 3rad = 17188 , 6rad = 34377
rate = constrain(rate, -36000, 36000); // limit to something fun!
long error = ((long)g.rc_2.control_in * 8) - rate; // control is += 4500 * 8 = 36000
g.rc_2.servo_out = g.pid_acro_rate_pitch.get_pid(error, delta_ms_fast_loop, 1.0); // .075 * 36000 = 2700
g.rc_2.servo_out = constrain(g.rc_2.servo_out, -2400, 2400); // limit to 2400
}
// Zeros out navigation Integrators if we are changing mode, have passed a waypoint, etc.
// Keeps outdated data out of our calculations
void
reset_I(void)
{
g.pid_nav_lat.reset_I();
g.pid_nav_lon.reset_I();
g.pid_baro_throttle.reset_I();
g.pid_sonar_throttle.reset_I();
}
/*************************************************************
throttle control
****************************************************************/
// user input:
// -----------
void output_manual_throttle()
{
g.rc_3.servo_out = (float)g.rc_3.control_in * angle_boost();
}
// Autopilot
// ---------
void output_auto_throttle()
{
g.rc_3.servo_out = (float)nav_throttle * angle_boost();
// make sure we never send a 0 throttle that will cut the motors
g.rc_3.servo_out = max(g.rc_3.servo_out, 1);
}
void calc_nav_throttle()
{
// limit error
long error = constrain(altitude_error, -400, 400);
float scaler = 1.0;
if(error < 0){
scaler = (altitude_sensor == BARO) ? .5 : .8;
}
if(altitude_sensor == BARO){
nav_throttle = g.pid_baro_throttle.get_pid(error, delta_ms_fast_loop, scaler);
nav_throttle = g.throttle_cruise + constrain(nav_throttle, -30, 80);
}else{
nav_throttle = g.pid_sonar_throttle.get_pid(error, delta_ms_fast_loop, scaler);
nav_throttle = g.throttle_cruise + constrain(nav_throttle, -60, 100);
}
nav_throttle = (nav_throttle + nav_throttle_old) >> 1;
nav_throttle_old = nav_throttle;
//Serial.printf("nav_thr %d, scaler %2.2f ", nav_throttle, scaler);
}
float angle_boost()
{
float temp = cos_pitch_x * cos_roll_x;
temp = 2.0 - constrain(temp, .7, 1.0);
return temp;
}
/*************************************************************
yaw control
****************************************************************/
void output_manual_yaw()
{
if(g.rc_3.control_in == 0){
clear_yaw_control();
}else{
// Yaw control
if(g.rc_4.control_in == 0){
output_yaw_with_hold(true); // hold yaw
}else{
output_yaw_with_hold(false); // rate control yaw
}
}
}
void auto_yaw()
{
if(nav_yaw_towards_wp){
nav_yaw = target_bearing;
}
output_yaw_with_hold(true); // hold yaw
}