ardupilot/libraries/AP_NavEKF3/AP_NavEKF3_Outputs.cpp
priseborough c7f6d52065 AP_NavEKF3: Add wheel encoder odometry
Uses the existing body frame odometry observation model.
Handles each sensored wheel as a separate sensor.
2017-07-27 16:52:27 +09:00

625 lines
24 KiB
C++

#include <AP_HAL/AP_HAL.h>
#if HAL_CPU_CLASS >= HAL_CPU_CLASS_150
#include "AP_NavEKF3.h"
#include "AP_NavEKF3_core.h"
#include <AP_AHRS/AP_AHRS.h>
#include <AP_Vehicle/AP_Vehicle.h>
extern const AP_HAL::HAL& hal;
// Check basic filter health metrics and return a consolidated health status
bool NavEKF3_core::healthy(void) const
{
uint16_t faultInt;
getFilterFaults(faultInt);
if (faultInt > 0) {
return false;
}
if (velTestRatio > 1 && posTestRatio > 1 && hgtTestRatio > 1) {
// all three metrics being above 1 means the filter is
// extremely unhealthy.
return false;
}
// Give the filter a second to settle before use
if ((imuSampleTime_ms - ekfStartTime_ms) < 1000 ) {
return false;
}
// position and height innovations must be within limits when on-ground and in a static mode of operation
float horizErrSq = sq(innovVelPos[3]) + sq(innovVelPos[4]);
if (onGround && (PV_AidingMode == AID_NONE) && ((horizErrSq > 1.0f) || (fabsf(hgtInnovFiltState) > 1.0f))) {
return false;
}
// all OK
return true;
}
// Return a consolidated error score where higher numbers represent larger errors
// Intended to be used by the front-end to determine which is the primary EKF
float NavEKF3_core::errorScore() const
{
float score = 0.0f;
if (tiltAlignComplete && yawAlignComplete) {
// Check GPS fusion performance
score = MAX(score, 0.5f * (velTestRatio + posTestRatio));
// Check altimeter fusion performance
score = MAX(score, hgtTestRatio);
}
return score;
}
// return data for debugging optical flow fusion
void NavEKF3_core::getFlowDebug(float &varFlow, float &gndOffset, float &flowInnovX, float &flowInnovY, float &auxInnov, float &HAGL, float &rngInnov, float &range, float &gndOffsetErr) const
{
varFlow = MAX(flowTestRatio[0],flowTestRatio[1]);
gndOffset = terrainState;
flowInnovX = innovOptFlow[0];
flowInnovY = innovOptFlow[1];
auxInnov = auxFlowObsInnov;
HAGL = terrainState - stateStruct.position.z;
rngInnov = innovRng;
range = rangeDataDelayed.rng;
gndOffsetErr = sqrtf(Popt); // note Popt is constrained to be non-negative in EstimateTerrainOffset()
}
// return data for debugging body frame odometry fusion
uint32_t NavEKF3_core::getBodyFrameOdomDebug(Vector3f &velInnov, Vector3f &velInnovVar)
{
velInnov.x = innovBodyVel[0];
velInnov.y = innovBodyVel[1];
velInnov.z = innovBodyVel[2];
velInnovVar.x = varInnovBodyVel[0];
velInnovVar.y = varInnovBodyVel[1];
velInnovVar.z = varInnovBodyVel[2];
return MAX(bodyOdmDataDelayed.time_ms,wheelOdmDataDelayed.time_ms);
}
// return data for debugging range beacon fusion one beacon at a time, incrementing the beacon index after each call
bool NavEKF3_core::getRangeBeaconDebug(uint8_t &ID, float &rng, float &innov, float &innovVar, float &testRatio, Vector3f &beaconPosNED,
float &offsetHigh, float &offsetLow, Vector3f &posNED)
{
// if the states have not been initialised or we have not received any beacon updates then return zeros
if (!statesInitialised || N_beacons == 0) {
return false;
}
// Ensure that beacons are not skipped due to calling this function at a rate lower than the updates
if (rngBcnFuseDataReportIndex >= N_beacons) {
rngBcnFuseDataReportIndex = 0;
}
// Output the fusion status data for the specified beacon
ID = rngBcnFuseDataReportIndex; // beacon identifier
rng = rngBcnFusionReport[rngBcnFuseDataReportIndex].rng; // measured range to beacon (m)
innov = rngBcnFusionReport[rngBcnFuseDataReportIndex].innov; // range innovation (m)
innovVar = rngBcnFusionReport[rngBcnFuseDataReportIndex].innovVar; // innovation variance (m^2)
testRatio = rngBcnFusionReport[rngBcnFuseDataReportIndex].testRatio; // innovation consistency test ratio
beaconPosNED = rngBcnFusionReport[rngBcnFuseDataReportIndex].beaconPosNED; // beacon receiver NED position (m)
offsetHigh = bcnPosDownOffsetMax; // beacon system vertical pos offset upper estimate (m)
offsetLow = bcnPosDownOffsetMin; // beacon system vertical pos offset lower estimate (m)
posNED = receiverPos; // beacon system NED offset (m)
rngBcnFuseDataReportIndex++;
return true;
}
// provides the height limit to be observed by the control loops
// returns false if no height limiting is required
// this is needed to ensure the vehicle does not fly too high when using optical flow navigation
bool NavEKF3_core::getHeightControlLimit(float &height) const
{
// only ask for limiting if we are doing optical flow navigation
if (frontend->_fusionModeGPS == 3) {
// If are doing optical flow nav, ensure the height above ground is within range finder limits after accounting for vehicle tilt and control errors
height = MAX(float(frontend->_rng.max_distance_cm_orient(ROTATION_PITCH_270)) * 0.007f - 1.0f, 1.0f);
// If we are are not using the range finder as the height reference, then compensate for the difference between terrain and EKF origin
if (frontend->_altSource != 1) {
height -= terrainState;
}
return true;
} else {
return false;
}
}
// return the Euler roll, pitch and yaw angle in radians
void NavEKF3_core::getEulerAngles(Vector3f &euler) const
{
outputDataNew.quat.to_euler(euler.x, euler.y, euler.z);
euler = euler - _ahrs->get_trim();
}
// return body axis gyro bias estimates in rad/sec
void NavEKF3_core::getGyroBias(Vector3f &gyroBias) const
{
if (dtEkfAvg < 1e-6f) {
gyroBias.zero();
return;
}
gyroBias = stateStruct.gyro_bias / dtEkfAvg;
}
// return accelerometer bias in m/s/s
void NavEKF3_core::getAccelBias(Vector3f &accelBias) const
{
if (!statesInitialised) {
accelBias.zero();
return;
}
accelBias = stateStruct.accel_bias / dtEkfAvg;
}
// return tilt error convergence metric
void NavEKF3_core::getTiltError(float &ang) const
{
ang = stateStruct.quat.length();
}
// return the transformation matrix from XYZ (body) to NED axes
void NavEKF3_core::getRotationBodyToNED(Matrix3f &mat) const
{
outputDataNew.quat.rotation_matrix(mat);
mat = mat * _ahrs->get_rotation_vehicle_body_to_autopilot_body();
}
// return the quaternions defining the rotation from NED to XYZ (body) axes
void NavEKF3_core::getQuaternion(Quaternion& ret) const
{
ret = outputDataNew.quat;
}
// return the amount of yaw angle change due to the last yaw angle reset in radians
// returns the time of the last yaw angle reset or 0 if no reset has ever occurred
uint32_t NavEKF3_core::getLastYawResetAngle(float &yawAng) const
{
yawAng = yawResetAngle;
return lastYawReset_ms;
}
// return the amount of NE position change due to the last position reset in metres
// returns the time of the last reset or 0 if no reset has ever occurred
uint32_t NavEKF3_core::getLastPosNorthEastReset(Vector2f &pos) const
{
pos = posResetNE;
return lastPosReset_ms;
}
// return the amount of vertical position change due to the last vertical position reset in metres
// returns the time of the last reset or 0 if no reset has ever occurred
uint32_t NavEKF3_core::getLastPosDownReset(float &posD) const
{
posD = posResetD;
return lastPosResetD_ms;
}
// return the amount of NE velocity change due to the last velocity reset in metres/sec
// returns the time of the last reset or 0 if no reset has ever occurred
uint32_t NavEKF3_core::getLastVelNorthEastReset(Vector2f &vel) const
{
vel = velResetNE;
return lastVelReset_ms;
}
// return the NED wind speed estimates in m/s (positive is air moving in the direction of the axis)
void NavEKF3_core::getWind(Vector3f &wind) const
{
wind.x = stateStruct.wind_vel.x;
wind.y = stateStruct.wind_vel.y;
wind.z = 0.0f; // currently don't estimate this
}
// return the NED velocity of the body frame origin in m/s
//
void NavEKF3_core::getVelNED(Vector3f &vel) const
{
// correct for the IMU position offset (EKF calculations are at the IMU)
vel = outputDataNew.velocity + velOffsetNED;
}
// Return the rate of change of vertical position in the down diection (dPosD/dt) of the body frame origin in m/s
float NavEKF3_core::getPosDownDerivative(void) const
{
// return the value calculated from a complementary filter applied to the EKF height and vertical acceleration
// correct for the IMU offset (EKF calculations are at the IMU)
return posDownDerivative + velOffsetNED.z;
}
// This returns the specific forces in the NED frame
void NavEKF3_core::getAccelNED(Vector3f &accelNED) const {
accelNED = velDotNED;
accelNED.z -= GRAVITY_MSS;
}
// Write the last estimated NE position of the body frame origin relative to the reference point (m).
// Return true if the estimate is valid
bool NavEKF3_core::getPosNE(Vector2f &posNE) const
{
// There are three modes of operation, absolute position (GPS fusion), relative position (optical flow fusion) and constant position (no position estimate available)
if (PV_AidingMode != AID_NONE) {
// This is the normal mode of operation where we can use the EKF position states
// correct for the IMU offset (EKF calculations are at the IMU)
posNE.x = outputDataNew.position.x + posOffsetNED.x;
posNE.y = outputDataNew.position.y + posOffsetNED.y;
return true;
} else {
// In constant position mode the EKF position states are at the origin, so we cannot use them as a position estimate
if(validOrigin) {
if ((_ahrs->get_gps().status() >= AP_GPS::GPS_OK_FIX_2D)) {
// If the origin has been set and we have GPS, then return the GPS position relative to the origin
const struct Location &gpsloc = _ahrs->get_gps().location();
Vector2f tempPosNE = location_diff(EKF_origin, gpsloc);
posNE.x = tempPosNE.x;
posNE.y = tempPosNE.y;
return false;
} else if (rngBcnAlignmentStarted) {
// If we are attempting alignment using range beacon data, then report the position
posNE.x = receiverPos.x;
posNE.y = receiverPos.y;
return false;
} else {
// If no GPS fix is available, all we can do is provide the last known position
posNE.x = outputDataNew.position.x;
posNE.y = outputDataNew.position.y;
return false;
}
} else {
// If the origin has not been set, then we have no means of providing a relative position
posNE.x = 0.0f;
posNE.y = 0.0f;
return false;
}
}
return false;
}
// Write the last calculated D position of the body frame origin relative to the EKF origin (m).
// Return true if the estimate is valid
bool NavEKF3_core::getPosD(float &posD) const
{
// The EKF always has a height estimate regardless of mode of operation
// Correct for the IMU offset (EKF calculations are at the IMU)
// Also correct for changes to the origin height
if ((frontend->_originHgtMode & (1<<2)) == 0) {
// Any sensor height drift corrections relative to the WGS-84 reference are applied to the origin.
posD = outputDataNew.position.z + posOffsetNED.z;
} else {
// The origin height is static and corrections are applied to the local vertical position
// so that height returned by getLLH() = height returned by getOriginLLH - posD
posD = outputDataNew.position.z + posOffsetNED.z + 0.01f * (float)EKF_origin.alt - (float)ekfGpsRefHgt;
}
// Return the current height solution status
return filterStatus.flags.vert_pos;
}
// return the estimated height of body frame origin above ground level
bool NavEKF3_core::getHAGL(float &HAGL) const
{
HAGL = terrainState - outputDataNew.position.z - posOffsetNED.z;
// If we know the terrain offset and altitude, then we have a valid height above ground estimate
return !hgtTimeout && gndOffsetValid && healthy();
}
// Return the last calculated latitude, longitude and height in WGS-84
// If a calculated location isn't available, return a raw GPS measurement
// The status will return true if a calculation or raw measurement is available
// The getFilterStatus() function provides a more detailed description of data health and must be checked if data is to be used for flight control
bool NavEKF3_core::getLLH(struct Location &loc) const
{
if(validOrigin) {
// Altitude returned is an absolute altitude relative to the WGS-84 spherioid
loc.alt = 100 * (int32_t)(ekfGpsRefHgt - (double)outputDataNew.position.z);
loc.flags.relative_alt = 0;
loc.flags.terrain_alt = 0;
// there are three modes of operation, absolute position (GPS fusion), relative position (optical flow fusion) and constant position (no aiding)
if (filterStatus.flags.horiz_pos_abs || filterStatus.flags.horiz_pos_rel) {
loc.lat = EKF_origin.lat;
loc.lng = EKF_origin.lng;
location_offset(loc, outputDataNew.position.x, outputDataNew.position.y);
return true;
} else {
// we could be in constant position mode because the vehicle has taken off without GPS, or has lost GPS
// in this mode we cannot use the EKF states to estimate position so will return the best available data
if ((_ahrs->get_gps().status() >= AP_GPS::GPS_OK_FIX_2D)) {
// we have a GPS position fix to return
const struct Location &gpsloc = _ahrs->get_gps().location();
loc.lat = gpsloc.lat;
loc.lng = gpsloc.lng;
return true;
} else {
// if no GPS fix, provide last known position before entering the mode
location_offset(loc, lastKnownPositionNE.x, lastKnownPositionNE.y);
return false;
}
}
} else {
// If no origin has been defined for the EKF, then we cannot use its position states so return a raw
// GPS reading if available and return false
if ((_ahrs->get_gps().status() >= AP_GPS::GPS_OK_FIX_3D)) {
const struct Location &gpsloc = _ahrs->get_gps().location();
loc = gpsloc;
loc.flags.relative_alt = 0;
loc.flags.terrain_alt = 0;
}
return false;
}
}
// return the horizontal speed limit in m/s set by optical flow sensor limits
// return the scale factor to be applied to navigation velocity gains to compensate for increase in velocity noise with height when using optical flow
void NavEKF3_core::getEkfControlLimits(float &ekfGndSpdLimit, float &ekfNavVelGainScaler) const
{
// If in the last 10 seconds we have received flow data and no odometry data, then we are relying on optical flow
bool relyingOnFlowData = (imuSampleTime_ms - prevBodyVelFuseTime_ms > 1000)
&& (imuSampleTime_ms - flowValidMeaTime_ms <= 10000);
// If relying on optical flow, limit speed to prevent sensor limit being exceeded and adjust
// nav gains to prevent body rate feedback into flow rates destabilising the control loop
if (PV_AidingMode == AID_RELATIVE && relyingOnFlowData) {
// allow 1.0 rad/sec margin for angular motion
ekfGndSpdLimit = MAX((frontend->_maxFlowRate - 1.0f), 0.0f) * MAX((terrainState - stateStruct.position[2]), rngOnGnd);
// use standard gains up to 5.0 metres height and reduce above that
ekfNavVelGainScaler = 4.0f / MAX((terrainState - stateStruct.position[2]),4.0f);
} else {
ekfGndSpdLimit = 400.0f; //return 80% of max filter speed
ekfNavVelGainScaler = 1.0f;
}
}
// return the LLH location of the filters NED origin
bool NavEKF3_core::getOriginLLH(struct Location &loc) const
{
if (validOrigin) {
loc = EKF_origin;
// report internally corrected reference height if enabled
if ((frontend->_originHgtMode & (1<<2)) == 0) {
loc.alt = (int32_t)(100.0f * (float)ekfGpsRefHgt);
}
}
return validOrigin;
}
// return earth magnetic field estimates in measurement units / 1000
void NavEKF3_core::getMagNED(Vector3f &magNED) const
{
magNED = stateStruct.earth_magfield * 1000.0f;
}
// return body magnetic field estimates in measurement units / 1000
void NavEKF3_core::getMagXYZ(Vector3f &magXYZ) const
{
magXYZ = stateStruct.body_magfield*1000.0f;
}
// return magnetometer offsets
// return true if offsets are valid
bool NavEKF3_core::getMagOffsets(uint8_t mag_idx, Vector3f &magOffsets) const
{
// compass offsets are valid if we have finalised magnetic field initialisation, magnetic field learning is not prohibited,
// primary compass is valid and state variances have converged
const float maxMagVar = 5E-6f;
bool variancesConverged = (P[19][19] < maxMagVar) && (P[20][20] < maxMagVar) && (P[21][21] < maxMagVar);
if ((mag_idx == magSelectIndex) &&
finalInflightMagInit &&
!inhibitMagStates &&
_ahrs->get_compass()->healthy(magSelectIndex) &&
variancesConverged) {
magOffsets = _ahrs->get_compass()->get_offsets(magSelectIndex) - stateStruct.body_magfield*1000.0f;
return true;
} else {
magOffsets = _ahrs->get_compass()->get_offsets(magSelectIndex);
return false;
}
}
// return the index for the active magnetometer
uint8_t NavEKF3_core::getActiveMag() const
{
return (uint8_t)magSelectIndex;
}
// return the innovations for the NED Pos, NED Vel, XYZ Mag and Vtas measurements
void NavEKF3_core::getInnovations(Vector3f &velInnov, Vector3f &posInnov, Vector3f &magInnov, float &tasInnov, float &yawInnov) const
{
velInnov.x = innovVelPos[0];
velInnov.y = innovVelPos[1];
velInnov.z = innovVelPos[2];
posInnov.x = innovVelPos[3];
posInnov.y = innovVelPos[4];
posInnov.z = innovVelPos[5];
magInnov.x = 1e3f*innovMag[0]; // Convert back to sensor units
magInnov.y = 1e3f*innovMag[1]; // Convert back to sensor units
magInnov.z = 1e3f*innovMag[2]; // Convert back to sensor units
tasInnov = innovVtas;
yawInnov = innovYaw;
}
// return the innovation consistency test ratios for the velocity, position, magnetometer and true airspeed measurements
// this indicates the amount of margin available when tuning the various error traps
// also return the delta in position due to the last position reset
void NavEKF3_core::getVariances(float &velVar, float &posVar, float &hgtVar, Vector3f &magVar, float &tasVar, Vector2f &offset) const
{
velVar = sqrtf(velTestRatio);
posVar = sqrtf(posTestRatio);
hgtVar = sqrtf(hgtTestRatio);
// If we are using simple compass yaw fusion, populate all three components with the yaw test ratio to provide an equivalent output
magVar.x = sqrtf(MAX(magTestRatio.x,yawTestRatio));
magVar.y = sqrtf(MAX(magTestRatio.y,yawTestRatio));
magVar.z = sqrtf(MAX(magTestRatio.z,yawTestRatio));
tasVar = sqrtf(tasTestRatio);
offset = posResetNE;
}
// return the diagonals from the covariance matrix
void NavEKF3_core::getStateVariances(float stateVar[24])
{
for (uint8_t i=0; i<24; i++) {
stateVar[i] = P[i][i];
}
}
/*
return the filter fault status as a bitmasked integer
0 = quaternions are NaN
1 = velocities are NaN
2 = badly conditioned X magnetometer fusion
3 = badly conditioned Y magnetometer fusion
5 = badly conditioned Z magnetometer fusion
6 = badly conditioned airspeed fusion
7 = badly conditioned synthetic sideslip fusion
7 = filter is not initialised
*/
void NavEKF3_core::getFilterFaults(uint16_t &faults) const
{
faults = (stateStruct.quat.is_nan()<<0 |
stateStruct.velocity.is_nan()<<1 |
faultStatus.bad_xmag<<2 |
faultStatus.bad_ymag<<3 |
faultStatus.bad_zmag<<4 |
faultStatus.bad_airspeed<<5 |
faultStatus.bad_sideslip<<6 |
!statesInitialised<<7);
}
/*
return filter timeout status as a bitmasked integer
0 = position measurement timeout
1 = velocity measurement timeout
2 = height measurement timeout
3 = magnetometer measurement timeout
4 = true airspeed measurement timeout
5 = unassigned
6 = unassigned
7 = unassigned
*/
void NavEKF3_core::getFilterTimeouts(uint8_t &timeouts) const
{
timeouts = (posTimeout<<0 |
velTimeout<<1 |
hgtTimeout<<2 |
magTimeout<<3 |
tasTimeout<<4);
}
// Return the navigation filter status message
void NavEKF3_core::getFilterStatus(nav_filter_status &status) const
{
status = filterStatus;
}
/*
return filter gps quality check status
*/
void NavEKF3_core::getFilterGpsStatus(nav_gps_status &faults) const
{
// init return value
faults.value = 0;
// set individual flags
faults.flags.bad_sAcc = gpsCheckStatus.bad_sAcc; // reported speed accuracy is insufficient
faults.flags.bad_hAcc = gpsCheckStatus.bad_hAcc; // reported horizontal position accuracy is insufficient
faults.flags.bad_vAcc = gpsCheckStatus.bad_vAcc; // reported vertical position accuracy is insufficient
faults.flags.bad_yaw = gpsCheckStatus.bad_yaw; // EKF heading accuracy is too large for GPS use
faults.flags.bad_sats = gpsCheckStatus.bad_sats; // reported number of satellites is insufficient
faults.flags.bad_horiz_drift = gpsCheckStatus.bad_horiz_drift; // GPS horizontal drift is too large to start using GPS (check assumes vehicle is static)
faults.flags.bad_hdop = gpsCheckStatus.bad_hdop; // reported HDoP is too large to start using GPS
faults.flags.bad_vert_vel = gpsCheckStatus.bad_vert_vel; // GPS vertical speed is too large to start using GPS (check assumes vehicle is static)
faults.flags.bad_fix = gpsCheckStatus.bad_fix; // The GPS cannot provide the 3D fix required
faults.flags.bad_horiz_vel = gpsCheckStatus.bad_horiz_vel; // The GPS horizontal speed is excessive (check assumes the vehicle is static)
}
// send an EKF_STATUS message to GCS
void NavEKF3_core::send_status_report(mavlink_channel_t chan)
{
// prepare flags
uint16_t flags = 0;
if (filterStatus.flags.attitude) {
flags |= EKF_ATTITUDE;
}
if (filterStatus.flags.horiz_vel) {
flags |= EKF_VELOCITY_HORIZ;
}
if (filterStatus.flags.vert_vel) {
flags |= EKF_VELOCITY_VERT;
}
if (filterStatus.flags.horiz_pos_rel) {
flags |= EKF_POS_HORIZ_REL;
}
if (filterStatus.flags.horiz_pos_abs) {
flags |= EKF_POS_HORIZ_ABS;
}
if (filterStatus.flags.vert_pos) {
flags |= EKF_POS_VERT_ABS;
}
if (filterStatus.flags.terrain_alt) {
flags |= EKF_POS_VERT_AGL;
}
if (filterStatus.flags.const_pos_mode) {
flags |= EKF_CONST_POS_MODE;
}
if (filterStatus.flags.pred_horiz_pos_rel) {
flags |= EKF_PRED_POS_HORIZ_REL;
}
if (filterStatus.flags.pred_horiz_pos_abs) {
flags |= EKF_PRED_POS_HORIZ_ABS;
}
if (filterStatus.flags.gps_glitching) {
flags |= (1<<15);
}
// get variances
float velVar, posVar, hgtVar, tasVar;
Vector3f magVar;
Vector2f offset;
getVariances(velVar, posVar, hgtVar, magVar, tasVar, offset);
// Only report range finder normalised innovation levels if the EKF needs the data for primary
// height estimation or optical flow operation. This prevents false alarms at the GCS if a
// range finder is fitted for other applications
float temp;
if ((frontend->_useRngSwHgt > 0) || PV_AidingMode == AID_RELATIVE || flowDataValid) {
temp = sqrtf(auxRngTestRatio);
} else {
temp = 0.0f;
}
// send message
mavlink_msg_ekf_status_report_send(chan, flags, velVar, posVar, hgtVar, magVar.length(), temp);
}
// report the reason for why the backend is refusing to initialise
const char *NavEKF3_core::prearm_failure_reason(void) const
{
if (imuSampleTime_ms - lastGpsVelFail_ms > 10000) {
// we are not failing
return nullptr;
}
return prearm_fail_string;
}
// report the number of frames lapsed since the last state prediction
// this is used by other instances to level load
uint8_t NavEKF3_core::getFramesSincePredict(void) const
{
return framesSincePredict;
}
// publish output observer angular, velocity and position tracking error
void NavEKF3_core::getOutputTrackingError(Vector3f &error) const
{
error = outputTrackError;
}
#endif // HAL_CPU_CLASS