ardupilot/libraries/AP_Baro/AP_Baro_BMP280.cpp
Andrew Tridgell 375c7b0f5f AP_Baro: rename macros to avoid conflicts
these macros were also defined in NuttX in clock.h
2017-05-06 15:21:14 +10:00

196 lines
5.5 KiB
C++

/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "AP_Baro_BMP280.h"
#include <utility>
extern const AP_HAL::HAL &hal;
#define BMP280_MODE_SLEEP 0
#define BMP280_MODE_FORCED 1
#define BMP280_MODE_NORMAL 3
#define BMP280_MODE BMP280_MODE_NORMAL
#define BMP280_OVERSAMPLING_1 1
#define BMP280_OVERSAMPLING_2 2
#define BMP280_OVERSAMPLING_4 3
#define BMP280_OVERSAMPLING_8 4
#define BMP280_OVERSAMPLING_16 5
#define BMP280_OVERSAMPLING_P BMP280_OVERSAMPLING_16
#define BMP280_OVERSAMPLING_T BMP280_OVERSAMPLING_2
#define BMP280_FILTER_COEFFICIENT 2
#define BMP280_ID 0x58
#define BMP280_REG_CALIB 0x88
#define BMP280_REG_ID 0xD0
#define BMP280_REG_RESET 0xE0
#define BMP280_REG_STATUS 0xF3
#define BMP280_REG_CTRL_MEAS 0xF4
#define BMP280_REG_CONFIG 0xF5
#define BMP280_REG_DATA 0xF7
AP_Baro_BMP280::AP_Baro_BMP280(AP_Baro &baro, AP_HAL::OwnPtr<AP_HAL::Device> dev)
: AP_Baro_Backend(baro)
, _dev(std::move(dev))
{
}
AP_Baro_Backend *AP_Baro_BMP280::probe(AP_Baro &baro,
AP_HAL::OwnPtr<AP_HAL::Device> dev)
{
if (!dev) {
return nullptr;
}
AP_Baro_BMP280 *sensor = new AP_Baro_BMP280(baro, std::move(dev));
if (!sensor || !sensor->_init()) {
delete sensor;
return nullptr;
}
return sensor;
}
bool AP_Baro_BMP280::_init()
{
if (!_dev | !_dev->get_semaphore()->take(HAL_SEMAPHORE_BLOCK_FOREVER)) {
return false;
}
_has_sample = false;
_dev->set_speed(AP_HAL::Device::SPEED_HIGH);
uint8_t whoami;
if (!_dev->read_registers(BMP280_REG_ID, &whoami, 1) ||
whoami != BMP280_ID) {
// not a BMP280
_dev->get_semaphore()->give();
return false;
}
// read the calibration data
uint8_t buf[24];
_dev->read_registers(BMP280_REG_CALIB, buf, sizeof(buf));
_t1 = ((int16_t)buf[1] << 8) | buf[0];
_t2 = ((int16_t)buf[3] << 8) | buf[2];
_t3 = ((int16_t)buf[5] << 8) | buf[4];
_p1 = ((int16_t)buf[7] << 8) | buf[6];
_p2 = ((int16_t)buf[9] << 8) | buf[8];
_p3 = ((int16_t)buf[11] << 8) | buf[10];
_p4 = ((int16_t)buf[13] << 8) | buf[12];
_p5 = ((int16_t)buf[15] << 8) | buf[14];
_p6 = ((int16_t)buf[17] << 8) | buf[16];
_p7 = ((int16_t)buf[19] << 8) | buf[18];
_p8 = ((int16_t)buf[21] << 8) | buf[20];
_p9 = ((int16_t)buf[23] << 8) | buf[22];
// SPI write needs bit mask
uint8_t mask = 0xFF;
if (_dev->bus_type() == AP_HAL::Device::BUS_TYPE_SPI) {
mask = 0x7F;
}
_dev->write_register((BMP280_REG_CTRL_MEAS & mask), (BMP280_OVERSAMPLING_T << 5) |
(BMP280_OVERSAMPLING_P << 2) | BMP280_MODE);
_dev->write_register((BMP280_REG_CONFIG & mask), BMP280_FILTER_COEFFICIENT << 2);
_instance = _frontend.register_sensor();
_dev->get_semaphore()->give();
// request 50Hz update
_dev->register_periodic_callback(20 * AP_USEC_PER_MSEC, FUNCTOR_BIND_MEMBER(&AP_Baro_BMP280::_timer, void));
return true;
}
// acumulate a new sensor reading
void AP_Baro_BMP280::_timer(void)
{
uint8_t buf[6];
_dev->read_registers(BMP280_REG_DATA, buf, sizeof(buf));
_update_temperature((buf[3] << 12) | (buf[4] << 4) | (buf[5] >> 4));
_update_pressure((buf[0] << 12) | (buf[1] << 4) | (buf[2] >> 4));
}
// transfer data to the frontend
void AP_Baro_BMP280::update(void)
{
if (_sem->take_nonblocking()) {
if (!_has_sample) {
_sem->give();
return;
}
_copy_to_frontend(_instance, _pressure, _temperature);
_has_sample = false;
_sem->give();
}
}
// calculate temperature
void AP_Baro_BMP280::_update_temperature(int32_t temp_raw)
{
int32_t var1, var2, t;
// according to datasheet page 22
var1 = ((((temp_raw >> 3) - ((int32_t)_t1 << 1))) * ((int32_t)_t2)) >> 11;
var2 = (((((temp_raw >> 4) - ((int32_t)_t1)) * ((temp_raw >> 4) - ((int32_t)_t1))) >> 12) * ((int32_t)_t3)) >> 14;
_t_fine = var1 + var2;
t = (_t_fine * 5 + 128) >> 8;
if (_sem->take(HAL_SEMAPHORE_BLOCK_FOREVER)) {
_temperature = ((float)t) / 100;
_sem->give();
}
}
// calculate pressure
void AP_Baro_BMP280::_update_pressure(int32_t press_raw)
{
int64_t var1, var2, p;
// according to datasheet page 22
var1 = ((int64_t)_t_fine) - 128000;
var2 = var1 * var1 * (int64_t)_p6;
var2 = var2 + ((var1 * (int64_t)_p5) << 17);
var2 = var2 + (((int64_t)_p4) << 35);
var1 = ((var1 * var1 * (int64_t)_p3) >> 8) + ((var1 * (int64_t)_p2) << 12);
var1 = (((((int64_t)1) << 47) + var1)) * ((int64_t)_p1) >> 33;
if (var1 == 0) {
return;
}
p = 1048576 - press_raw;
p = (((p << 31) - var2) * 3125) / var1;
var1 = (((int64_t)_p9) * (p >> 13) * (p >> 13)) >> 25;
var2 = (((int64_t)_p8) * p) >> 19;
p = ((p + var1 + var2) >> 8) + (((int64_t)_p7) << 4);
if (_sem->take(HAL_SEMAPHORE_BLOCK_FOREVER)) {
_pressure = (float)p / 25600;
_has_sample = true;
_sem->give();
}
}