mirror of
https://github.com/ArduPilot/ardupilot
synced 2025-01-04 23:18:28 -04:00
1fecd135ef
this gives us a much less noisy magnetometer
2533 lines
84 KiB
Plaintext
2533 lines
84 KiB
Plaintext
/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
|
||
|
||
#define THISFIRMWARE "ArduCopter V2.7.3"
|
||
/*
|
||
* ArduCopter Version 2.7.3
|
||
* Lead author: Jason Short
|
||
* Based on code and ideas from the Arducopter team: Randy Mackay, Pat Hickey, Jose Julio, Jani Hirvinen, Andrew Tridgell, Justin Beech, Adam Rivera, Jean-Louis Naudin, Roberto Navoni
|
||
* Thanks to: Chris Anderson, Mike Smith, Jordi Munoz, Doug Weibel, James Goppert, Benjamin Pelletier, Robert Lefebvre, Marco Robustini
|
||
*
|
||
* This firmware is free software; you can redistribute it and/or
|
||
* modify it under the terms of the GNU Lesser General Public
|
||
* License as published by the Free Software Foundation; either
|
||
* version 2.1 of the License, or (at your option) any later version.
|
||
*
|
||
* Special Thanks for Contributors:
|
||
*
|
||
* Hein Hollander :Octo Support
|
||
* Dani Saez :V Ocoto Support
|
||
* Max Levine :Tri Support, Graphics
|
||
* Jose Julio :Stabilization Control laws
|
||
* Randy MacKay :Heli Support
|
||
* Jani Hiriven :Testing feedback
|
||
* Andrew Tridgell :Mavlink Support
|
||
* James Goppert :Mavlink Support
|
||
* Doug Weibel :Libraries
|
||
* Mike Smith :Libraries, Coding support
|
||
* HappyKillmore :Mavlink GCS
|
||
* Michael Oborne :Mavlink GCS
|
||
* Jack Dunkle :Alpha testing
|
||
* Christof Schmid :Alpha testing
|
||
* Oliver :Piezo support
|
||
* Guntars :Arming safety suggestion
|
||
* Igor van Airde :Control Law optimization
|
||
* Jean-Louis Naudin :Auto Landing
|
||
* Sandro Benigno :Camera support
|
||
* Olivier Adler :PPM Encoder
|
||
* John Arne Birkeland :PPM Encoder
|
||
* Adam M Rivera :Auto Compass Declination
|
||
* Marco Robustini :Alpha testing
|
||
* Angel Fernandez :Alpha testing
|
||
* Robert Lefebvre :Heli Support & LEDs
|
||
* Amilcar Lucas :mount and camera configuration
|
||
* Gregory Fletcher :mount orientation math
|
||
*
|
||
* And much more so PLEASE PM me on DIYDRONES to add your contribution to the List
|
||
*
|
||
* Requires modified "mrelax" version of Arduino, which can be found here:
|
||
* http://code.google.com/p/ardupilot-mega/downloads/list
|
||
*
|
||
*/
|
||
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
// Header includes
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
|
||
// AVR runtime
|
||
#include <avr/io.h>
|
||
#include <avr/eeprom.h>
|
||
#include <avr/pgmspace.h>
|
||
#include <math.h>
|
||
|
||
// Libraries
|
||
#include <FastSerial.h>
|
||
#include <AP_Common.h>
|
||
#include <Arduino_Mega_ISR_Registry.h>
|
||
#include <APM_RC.h> // ArduPilot Mega RC Library
|
||
#include <AP_GPS.h> // ArduPilot GPS library
|
||
#include <I2C.h> // Arduino I2C lib
|
||
#include <SPI.h> // Arduino SPI lib
|
||
#include <DataFlash.h> // ArduPilot Mega Flash Memory Library
|
||
#include <AP_ADC.h> // ArduPilot Mega Analog to Digital Converter Library
|
||
#include <AP_AnalogSource.h>
|
||
#include <AP_Baro.h>
|
||
#include <AP_Compass.h> // ArduPilot Mega Magnetometer Library
|
||
#include <AP_Math.h> // ArduPilot Mega Vector/Matrix math Library
|
||
#include <AP_InertialSensor.h> // ArduPilot Mega Inertial Sensor (accel & gyro) Library
|
||
#include <AP_IMU.h> // ArduPilot Mega IMU Library
|
||
#include <AP_PeriodicProcess.h> // Parent header of Timer
|
||
// (only included for makefile libpath to work)
|
||
#include <AP_TimerProcess.h> // TimerProcess is the scheduler for MPU6000 reads.
|
||
#include <AP_AHRS.h>
|
||
#include <APM_PI.h> // PI library
|
||
#include <AC_PID.h> // PID library
|
||
#include <RC_Channel.h> // RC Channel Library
|
||
#include <AP_Motors.h> // AP Motors library
|
||
#include <AP_MotorsQuad.h> // AP Motors library for Quad
|
||
#include <AP_MotorsTri.h> // AP Motors library for Tri
|
||
#include <AP_MotorsHexa.h> // AP Motors library for Hexa
|
||
#include <AP_MotorsY6.h> // AP Motors library for Y6
|
||
#include <AP_MotorsOcta.h> // AP Motors library for Octa
|
||
#include <AP_MotorsOctaQuad.h> // AP Motors library for OctaQuad
|
||
#include <AP_MotorsHeli.h> // AP Motors library for Heli
|
||
#include <AP_MotorsMatrix.h> // AP Motors library for Heli
|
||
#include <AP_RangeFinder.h> // Range finder library
|
||
#include <AP_OpticalFlow.h> // Optical Flow library
|
||
#include <Filter.h> // Filter library
|
||
#include <ModeFilter.h> // Mode Filter from Filter library
|
||
#include <AverageFilter.h> // Mode Filter from Filter library
|
||
#include <AP_LeadFilter.h> // GPS Lead filter
|
||
#include <AP_Relay.h> // APM relay
|
||
#include <AP_Camera.h> // Photo or video camera
|
||
#include <AP_Mount.h> // Camera/Antenna mount
|
||
#include <AP_Airspeed.h> // needed for AHRS build
|
||
#include <memcheck.h>
|
||
|
||
// Configuration
|
||
#include "defines.h"
|
||
#include "config.h"
|
||
#include "config_channels.h"
|
||
|
||
#include <GCS_MAVLink.h> // MAVLink GCS definitions
|
||
|
||
// Local modules
|
||
#include "Parameters.h"
|
||
#include "GCS.h"
|
||
|
||
#include <AP_Declination.h> // ArduPilot Mega Declination Helper Library
|
||
|
||
// Limits library - Puts limits on the vehicle, and takes recovery actions
|
||
#include <AP_Limits.h>
|
||
#include <AP_Limit_GPSLock.h> // a limits library module
|
||
#include <AP_Limit_Geofence.h> // a limits library module
|
||
#include <AP_Limit_Altitude.h> // a limits library module
|
||
|
||
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
// Serial ports
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
//
|
||
// Note that FastSerial port buffers are allocated at ::begin time,
|
||
// so there is not much of a penalty to defining ports that we don't
|
||
// use.
|
||
//
|
||
FastSerialPort0(Serial); // FTDI/console
|
||
FastSerialPort1(Serial1); // GPS port
|
||
FastSerialPort3(Serial3); // Telemetry port
|
||
|
||
// this sets up the parameter table, and sets the default values. This
|
||
// must be the first AP_Param variable declared to ensure its
|
||
// constructor runs before the constructors of the other AP_Param
|
||
// variables
|
||
AP_Param param_loader(var_info, WP_START_BYTE);
|
||
|
||
Arduino_Mega_ISR_Registry isr_registry;
|
||
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
// Parameters
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
//
|
||
// Global parameters are all contained within the 'g' class.
|
||
//
|
||
static Parameters g;
|
||
|
||
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
// prototypes
|
||
static void update_events(void);
|
||
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
// RC Hardware
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
#if CONFIG_APM_HARDWARE == APM_HARDWARE_APM2
|
||
APM_RC_APM2 APM_RC;
|
||
#else
|
||
APM_RC_APM1 APM_RC;
|
||
#endif
|
||
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
// Dataflash
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
#if CONFIG_APM_HARDWARE == APM_HARDWARE_APM2
|
||
DataFlash_APM2 DataFlash;
|
||
#else
|
||
DataFlash_APM1 DataFlash;
|
||
#endif
|
||
|
||
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
// Sensors
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
//
|
||
// There are three basic options related to flight sensor selection.
|
||
//
|
||
// - Normal flight mode. Real sensors are used.
|
||
// - HIL Attitude mode. Most sensors are disabled, as the HIL
|
||
// protocol supplies attitude information directly.
|
||
// - HIL Sensors mode. Synthetic sensors are configured that
|
||
// supply data from the simulation.
|
||
//
|
||
|
||
// All GPS access should be through this pointer.
|
||
static GPS *g_gps;
|
||
|
||
// flight modes convenience array
|
||
static AP_Int8 *flight_modes = &g.flight_mode1;
|
||
|
||
#if HIL_MODE == HIL_MODE_DISABLED
|
||
|
||
// real sensors
|
||
#if CONFIG_ADC == ENABLED
|
||
AP_ADC_ADS7844 adc;
|
||
#endif
|
||
|
||
#ifdef DESKTOP_BUILD
|
||
AP_Baro_BMP085_HIL barometer;
|
||
AP_Compass_HIL compass;
|
||
#include <SITL.h>
|
||
SITL sitl;
|
||
#else
|
||
|
||
#if CONFIG_BARO == AP_BARO_BMP085
|
||
# if CONFIG_APM_HARDWARE == APM_HARDWARE_APM2
|
||
AP_Baro_BMP085 barometer(true);
|
||
# else
|
||
AP_Baro_BMP085 barometer(false);
|
||
# endif
|
||
#elif CONFIG_BARO == AP_BARO_MS5611
|
||
AP_Baro_MS5611 barometer;
|
||
#endif
|
||
|
||
AP_Compass_HMC5843 compass;
|
||
#endif
|
||
|
||
#ifdef OPTFLOW_ENABLED
|
||
#if CONFIG_APM_HARDWARE == APM_HARDWARE_APM2
|
||
AP_OpticalFlow_ADNS3080_APM2 optflow(OPTFLOW_CS_PIN);
|
||
#else
|
||
AP_OpticalFlow_ADNS3080 optflow(OPTFLOW_CS_PIN);
|
||
#endif
|
||
#else
|
||
AP_OpticalFlow optflow;
|
||
#endif
|
||
|
||
// real GPS selection
|
||
#if GPS_PROTOCOL == GPS_PROTOCOL_AUTO
|
||
AP_GPS_Auto g_gps_driver(&Serial1, &g_gps);
|
||
|
||
#elif GPS_PROTOCOL == GPS_PROTOCOL_NMEA
|
||
AP_GPS_NMEA g_gps_driver(&Serial1);
|
||
|
||
#elif GPS_PROTOCOL == GPS_PROTOCOL_SIRF
|
||
AP_GPS_SIRF g_gps_driver(&Serial1);
|
||
|
||
#elif GPS_PROTOCOL == GPS_PROTOCOL_UBLOX
|
||
AP_GPS_UBLOX g_gps_driver(&Serial1);
|
||
|
||
#elif GPS_PROTOCOL == GPS_PROTOCOL_MTK
|
||
AP_GPS_MTK g_gps_driver(&Serial1);
|
||
|
||
#elif GPS_PROTOCOL == GPS_PROTOCOL_MTK16
|
||
AP_GPS_MTK16 g_gps_driver(&Serial1);
|
||
|
||
#elif GPS_PROTOCOL == GPS_PROTOCOL_NONE
|
||
AP_GPS_None g_gps_driver(NULL);
|
||
|
||
#else
|
||
#error Unrecognised GPS_PROTOCOL setting.
|
||
#endif // GPS PROTOCOL
|
||
|
||
#if CONFIG_IMU_TYPE == CONFIG_IMU_MPU6000
|
||
AP_InertialSensor_MPU6000 ins( CONFIG_MPU6000_CHIP_SELECT_PIN );
|
||
#else
|
||
AP_InertialSensor_Oilpan ins(&adc);
|
||
#endif
|
||
AP_IMU_INS imu(&ins);
|
||
|
||
// we don't want to use gps for yaw correction on ArduCopter, so pass
|
||
// a NULL GPS object pointer
|
||
static GPS *g_gps_null;
|
||
|
||
#if DMP_ENABLED == ENABLED && CONFIG_APM_HARDWARE == APM_HARDWARE_APM2
|
||
AP_AHRS_MPU6000 ahrs(&imu, g_gps, &ins); // only works with APM2
|
||
#else
|
||
AP_AHRS_DCM ahrs(&imu, g_gps);
|
||
#endif
|
||
|
||
AP_TimerProcess timer_scheduler;
|
||
#elif HIL_MODE == HIL_MODE_SENSORS
|
||
// sensor emulators
|
||
AP_ADC_HIL adc;
|
||
AP_Baro_BMP085_HIL barometer;
|
||
AP_Compass_HIL compass;
|
||
AP_GPS_HIL g_gps_driver(NULL);
|
||
AP_IMU_Shim imu;
|
||
AP_AHRS_DCM ahrs(&imu, g_gps);
|
||
AP_PeriodicProcessStub timer_scheduler;
|
||
AP_InertialSensor_Stub ins;
|
||
|
||
static int32_t gps_base_alt;
|
||
|
||
#elif HIL_MODE == HIL_MODE_ATTITUDE
|
||
AP_ADC_HIL adc;
|
||
AP_IMU_Shim imu; // never used
|
||
AP_AHRS_HIL ahrs(&imu, g_gps);
|
||
AP_GPS_HIL g_gps_driver(NULL);
|
||
AP_Compass_HIL compass; // never used
|
||
AP_Baro_BMP085_HIL barometer;
|
||
AP_InertialSensor_Stub ins;
|
||
AP_PeriodicProcessStub timer_scheduler;
|
||
#ifdef OPTFLOW_ENABLED
|
||
AP_OpticalFlow_ADNS3080 optflow(OPTFLOW_CS_PIN);
|
||
#endif
|
||
#ifdef DESKTOP_BUILD
|
||
#include <SITL.h>
|
||
SITL sitl;
|
||
#endif
|
||
static int32_t gps_base_alt;
|
||
#else
|
||
#error Unrecognised HIL_MODE setting.
|
||
#endif // HIL MODE
|
||
|
||
|
||
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
// GCS selection
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
GCS_MAVLINK gcs0;
|
||
GCS_MAVLINK gcs3;
|
||
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
// SONAR selection
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
//
|
||
ModeFilterInt16_Size5 sonar_mode_filter(2);
|
||
#if CONFIG_SONAR == ENABLED
|
||
#if CONFIG_SONAR_SOURCE == SONAR_SOURCE_ADC
|
||
AP_AnalogSource_ADC sonar_analog_source( &adc, CONFIG_SONAR_SOURCE_ADC_CHANNEL, 0.25);
|
||
#elif CONFIG_SONAR_SOURCE == SONAR_SOURCE_ANALOG_PIN
|
||
AP_AnalogSource_Arduino sonar_analog_source(CONFIG_SONAR_SOURCE_ANALOG_PIN);
|
||
#endif
|
||
AP_RangeFinder_MaxsonarXL sonar(&sonar_analog_source, &sonar_mode_filter);
|
||
#endif
|
||
|
||
// agmatthews USERHOOKS
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
// User variables
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
#ifdef USERHOOK_VARIABLES
|
||
#include USERHOOK_VARIABLES
|
||
#endif
|
||
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
// Global variables
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
|
||
static const char* flight_mode_strings[] = {
|
||
"STABILIZE", // 0
|
||
"ACRO", // 1
|
||
"ALT_HOLD", // 2
|
||
"AUTO", // 3
|
||
"GUIDED", // 4
|
||
"LOITER", // 5
|
||
"RTL", // 6
|
||
"CIRCLE", // 7
|
||
"POSITION", // 8
|
||
"LAND", // 9
|
||
"OF_LOITER", // 10
|
||
"TOY_M", // 11
|
||
"TOY_A"
|
||
}; // 12 THOR Added for additional Fligt mode
|
||
|
||
/* Radio values
|
||
* Channel assignments
|
||
* 1 Ailerons (rudder if no ailerons)
|
||
* 2 Elevator
|
||
* 3 Throttle
|
||
* 4 Rudder (if we have ailerons)
|
||
* 5 Mode - 3 position switch
|
||
* 6 User assignable
|
||
* 7 trainer switch - sets throttle nominal (toggle switch), sets accels to Level (hold > 1 second)
|
||
* 8 TBD
|
||
* Each Aux channel can be configured to have any of the available auxiliary functions assigned to it.
|
||
* See libraries/RC_Channel/RC_Channel_aux.h for more information
|
||
*/
|
||
|
||
//Documentation of GLobals:
|
||
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
// The GPS based velocity calculated by offsetting the Latitude and Longitude
|
||
// updated after GPS read - 5-10hz
|
||
static int16_t x_actual_speed;
|
||
static int16_t y_actual_speed;
|
||
|
||
|
||
// The difference between the desired rate of travel and the actual rate of travel
|
||
// updated after GPS read - 5-10hz
|
||
static int16_t x_rate_error;
|
||
static int16_t y_rate_error;
|
||
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
// Radio
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
// This is the state of the flight control system
|
||
// There are multiple states defined such as STABILIZE, ACRO,
|
||
static int8_t control_mode = STABILIZE;
|
||
// This is the state of simple mode.
|
||
// Set in the control_mode.pde file when the control switch is read
|
||
static bool do_simple = false;
|
||
// Used to maintain the state of the previous control switch position
|
||
// This is set to -1 when we need to re-read the switch
|
||
static byte oldSwitchPosition;
|
||
|
||
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
// Motor Output
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
// This is the array of PWM values being sent to the motors
|
||
//static int16_t motor_out[11];
|
||
// This is the array of PWM values being sent to the motors that has been lightly filtered with a simple LPF
|
||
// This was added to try and deal with biger motors
|
||
//static int16_t motor_filtered[11];
|
||
|
||
#if FRAME_CONFIG == QUAD_FRAME
|
||
#define MOTOR_CLASS AP_MotorsQuad
|
||
#endif
|
||
#if FRAME_CONFIG == TRI_FRAME
|
||
#define MOTOR_CLASS AP_MotorsTri
|
||
#endif
|
||
#if FRAME_CONFIG == HEXA_FRAME
|
||
#define MOTOR_CLASS AP_MotorsHexa
|
||
#endif
|
||
#if FRAME_CONFIG == Y6_FRAME
|
||
#define MOTOR_CLASS AP_MotorsY6
|
||
#endif
|
||
#if FRAME_CONFIG == OCTA_FRAME
|
||
#define MOTOR_CLASS AP_MotorsOcta
|
||
#endif
|
||
#if FRAME_CONFIG == OCTA_QUAD_FRAME
|
||
#define MOTOR_CLASS AP_MotorsOctaQuad
|
||
#endif
|
||
#if FRAME_CONFIG == HELI_FRAME
|
||
#define MOTOR_CLASS AP_MotorsHeli
|
||
#endif
|
||
|
||
#if FRAME_CONFIG == HELI_FRAME // helicopter constructor requires more arguments
|
||
#if INSTANT_PWM == 1
|
||
MOTOR_CLASS motors(CONFIG_APM_HARDWARE, &APM_RC, &g.rc_1, &g.rc_2, &g.rc_3, &g.rc_4, &g.rc_8, &g.heli_servo_1, &g.heli_servo_2, &g.heli_servo_3, &g.heli_servo_4, AP_MOTORS_SPEED_INSTANT_PWM); // this hardware definition is slightly bad because it assumes APM_HARDWARE_APM2 == AP_MOTORS_APM2
|
||
#else
|
||
MOTOR_CLASS motors(CONFIG_APM_HARDWARE, &APM_RC, &g.rc_1, &g.rc_2, &g.rc_3, &g.rc_4, &g.rc_8, &g.heli_servo_1, &g.heli_servo_2, &g.heli_servo_3, &g.heli_servo_4);
|
||
#endif
|
||
#elif FRAME_CONFIG == TRI_FRAME // tri constructor requires additional rc_7 argument to allow tail servo reversing
|
||
#if INSTANT_PWM == 1
|
||
MOTOR_CLASS motors(CONFIG_APM_HARDWARE, &APM_RC, &g.rc_1, &g.rc_2, &g.rc_3, &g.rc_4, &g.rc_7, AP_MOTORS_SPEED_INSTANT_PWM); // this hardware definition is slightly bad because it assumes APM_HARDWARE_APM2 == AP_MOTORS_APM2
|
||
#else
|
||
MOTOR_CLASS motors(CONFIG_APM_HARDWARE, &APM_RC, &g.rc_1, &g.rc_2, &g.rc_3, &g.rc_4, &g.rc_7);
|
||
#endif
|
||
#else
|
||
#if INSTANT_PWM == 1
|
||
MOTOR_CLASS motors(CONFIG_APM_HARDWARE, &APM_RC, &g.rc_1, &g.rc_2, &g.rc_3, &g.rc_4, AP_MOTORS_SPEED_INSTANT_PWM); // this hardware definition is slightly bad because it assumes APM_HARDWARE_APM2 == AP_MOTORS_APM2
|
||
#else
|
||
MOTOR_CLASS motors(CONFIG_APM_HARDWARE, &APM_RC, &g.rc_1, &g.rc_2, &g.rc_3, &g.rc_4);
|
||
#endif
|
||
#endif
|
||
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
// Mavlink/HIL control
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
// Used to track the GCS based control input
|
||
// Allow override of RC channel values for HIL
|
||
static int16_t rc_override[8] = {0,0,0,0,0,0,0,0};
|
||
// Status flag that tracks whether we are under GCS control
|
||
static bool rc_override_active = false;
|
||
// Status flag that tracks whether we are under GCS control
|
||
static uint32_t rc_override_fs_timer;
|
||
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
// Failsafe
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
// A status flag for the failsafe state
|
||
// did our throttle dip below the failsafe value?
|
||
static boolean failsafe;
|
||
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
// PIDs
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
// This is a convienience accessor for the IMU roll rates. It's currently the raw IMU rates
|
||
// and not the adjusted omega rates, but the name is stuck
|
||
static Vector3f omega;
|
||
// This is used to hold radio tuning values for in-flight CH6 tuning
|
||
float tuning_value;
|
||
// This will keep track of the percent of roll or pitch the user is applying
|
||
float roll_scale_d, pitch_scale_d;
|
||
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
// LED output
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
// status of LED based on the motor_armed variable
|
||
// Flashing indicates we are not armed
|
||
// Solid indicates Armed state
|
||
static boolean motor_light;
|
||
// Flashing indicates we are reading the GPS Strings
|
||
// Solid indicates we have full 3D lock and can navigate
|
||
static boolean GPS_light;
|
||
// This is current status for the LED lights state machine
|
||
// setting this value changes the output of the LEDs
|
||
static byte led_mode = NORMAL_LEDS;
|
||
// Blinking indicates GPS status
|
||
static byte copter_leds_GPS_blink = 0;
|
||
// Blinking indicates battery status
|
||
static byte copter_leds_motor_blink = 0;
|
||
// Navigation confirmation blinks
|
||
static int8_t copter_leds_nav_blink = 0;
|
||
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
// GPS variables
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
// This is used to scale GPS values for EEPROM storage
|
||
// 10^7 times Decimal GPS means 1 == 1cm
|
||
// This approximation makes calculations integer and it's easy to read
|
||
static const float t7 = 10000000.0;
|
||
// We use atan2 and other trig techniques to calaculate angles
|
||
// We need to scale the longitude up to make these calcs work
|
||
// to account for decreasing distance between lines of longitude away from the equator
|
||
static float scaleLongUp = 1;
|
||
// Sometimes we need to remove the scaling for distance calcs
|
||
static float scaleLongDown = 1;
|
||
|
||
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
// Mavlink specific
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
// Used by Mavlink for unknow reasons
|
||
static const float radius_of_earth = 6378100; // meters
|
||
// Used by Mavlink for unknow reasons
|
||
static const float gravity = 9.81; // meters/ sec^2
|
||
|
||
// Unions for getting byte values
|
||
union float_int {
|
||
int32_t int_value;
|
||
float float_value;
|
||
} float_int;
|
||
|
||
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
// Location & Navigation
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
// Status flag indicating we have data that can be used to navigate
|
||
// Set by a GPS read with 3D fix, or an optical flow read
|
||
static bool nav_ok;
|
||
// This is the angle from the copter to the "next_WP" location in degrees * 100
|
||
static int32_t target_bearing;
|
||
// Status of the Waypoint tracking mode. Options include:
|
||
// NO_NAV_MODE, WP_MODE, LOITER_MODE, CIRCLE_MODE
|
||
static byte wp_control;
|
||
// Register containing the index of the current navigation command in the mission script
|
||
static int16_t command_nav_index;
|
||
// Register containing the index of the previous navigation command in the mission script
|
||
// Used to manage the execution of conditional commands
|
||
static uint8_t prev_nav_index;
|
||
// Register containing the index of the current conditional command in the mission script
|
||
static uint8_t command_cond_index;
|
||
// Used to track the required WP navigation information
|
||
// options include
|
||
// NAV_ALTITUDE - have we reached the desired altitude?
|
||
// NAV_LOCATION - have we reached the desired location?
|
||
// NAV_DELAY - have we waited at the waypoint the desired time?
|
||
static uint8_t wp_verify_byte; // used for tracking state of navigating waypoints
|
||
// used to limit the speed ramp up of WP navigation
|
||
// Acceleration is limited to .5m/s/s
|
||
static int16_t waypoint_speed_gov;
|
||
// Used to track how many cm we are from the "next_WP" location
|
||
static int32_t long_error, lat_error;
|
||
// Are we navigating while holding a positon? This is set to false once the speed drops below 1m/s
|
||
static boolean loiter_override;
|
||
static int16_t waypoint_radius;
|
||
|
||
static int16_t control_roll;
|
||
static int16_t control_pitch;
|
||
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
// Orientation
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
// Convienience accessors for commonly used trig functions. These values are generated
|
||
// by the DCM through a few simple equations. They are used throughout the code where cos and sin
|
||
// would normally be used.
|
||
// The cos values are defaulted to 1 to get a decent initial value for a level state
|
||
static float cos_roll_x = 1;
|
||
static float cos_pitch_x = 1;
|
||
static float cos_yaw_x = 1;
|
||
static float sin_yaw_y;
|
||
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
// SIMPLE Mode
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
// Used to track the orientation of the copter for Simple mode. This value is reset at each arming
|
||
// or in SuperSimple mode when the copter leaves a 20m radius from home.
|
||
static int32_t initial_simple_bearing;
|
||
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
// ACRO Mode
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
// Used to control Axis lock
|
||
int32_t roll_axis;
|
||
int32_t pitch_axis;
|
||
|
||
// Filters
|
||
AP_LeadFilter xLeadFilter; // Long GPS lag filter
|
||
AP_LeadFilter yLeadFilter; // Lat GPS lag filter
|
||
|
||
AverageFilterInt32_Size3 roll_rate_d_filter; // filtered acceleration
|
||
AverageFilterInt32_Size3 pitch_rate_d_filter; // filtered pitch acceleration
|
||
|
||
// Barometer filter
|
||
AverageFilterInt32_Size5 baro_filter; // filtered pitch acceleration
|
||
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
// Circle Mode / Loiter control
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
// used to determin the desired location in Circle mode
|
||
// increments at circle_rate / second
|
||
static float circle_angle;
|
||
// used to control the speed of Circle mode
|
||
// units are in radians, default is 5° per second
|
||
static const float circle_rate = 0.0872664625;
|
||
// used to track the delat in Circle Mode
|
||
static int32_t old_target_bearing;
|
||
// deg : how many times to circle * 360 for Loiter/Circle Mission command
|
||
static int16_t loiter_total;
|
||
// deg : how far we have turned around a waypoint
|
||
static int16_t loiter_sum;
|
||
// How long we should stay in Loiter Mode for mission scripting
|
||
static uint16_t loiter_time_max;
|
||
// How long have we been loitering - The start time in millis
|
||
static uint32_t loiter_time;
|
||
// The synthetic location created to make the copter do circles around a WP
|
||
static struct Location circle_WP;
|
||
|
||
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
// CH7 control
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
// Used to enable Jose's flip code
|
||
// when true the Roll/Pitch/Throttle control is sent to the flip state machine
|
||
static bool do_flip = false;
|
||
// Used to track the CH7 toggle state.
|
||
// When CH7 goes LOW PWM from HIGH PWM, this value will have been set true
|
||
// Allows advanced functionality to know when to execute
|
||
static boolean CH7_flag;
|
||
// This register tracks the current Mission Command index when writing
|
||
// a mission using CH7 in flight
|
||
static int8_t CH7_wp_index;
|
||
|
||
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
// Battery Sensors
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
// Battery Voltage of battery, initialized above threshold for filter
|
||
static float battery_voltage1 = LOW_VOLTAGE * 1.05;
|
||
// refers to the instant amp draw – based on an Attopilot Current sensor
|
||
static float current_amps1;
|
||
// refers to the total amps drawn – based on an Attopilot Current sensor
|
||
static float current_total1;
|
||
// Used to track if the battery is low - LED output flashes when the batt is low
|
||
static bool low_batt = false;
|
||
|
||
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
// Altitude
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
// The cm we are off in altitude from next_WP.alt – Positive value means we are below the WP
|
||
static int32_t altitude_error;
|
||
// The cm/s we are moving up or down based on sensor data - Positive = UP
|
||
static int16_t climb_rate_actual;
|
||
// Used to dither our climb_rate over 50hz
|
||
static int16_t climb_rate_error;
|
||
// The cm/s we are moving up or down based on filtered data - Positive = UP
|
||
static int16_t climb_rate;
|
||
// The altitude as reported by Sonar in cm – Values are 20 to 700 generally.
|
||
static int16_t sonar_alt;
|
||
// The climb_rate as reported by sonar in cm/s
|
||
static int16_t sonar_rate;
|
||
// The altitude as reported by Baro in cm – Values can be quite high
|
||
static int32_t baro_alt;
|
||
// The climb_rate as reported by Baro in cm/s
|
||
static int16_t baro_rate;
|
||
// used to switch out of Manual Boost
|
||
static uint8_t reset_throttle_counter;
|
||
// used to track when to read sensors vs estimate alt
|
||
static boolean alt_sensor_flag;
|
||
static int16_t saved_toy_throttle;
|
||
|
||
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
// flight modes
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
// Flight modes are combinations of Roll/Pitch, Yaw and Throttle control modes
|
||
// Each Flight mode is a unique combination of these modes
|
||
//
|
||
// The current desired control scheme for Yaw
|
||
static byte yaw_mode;
|
||
// The current desired control scheme for roll and pitch / navigation
|
||
static byte roll_pitch_mode;
|
||
// The current desired control scheme for altitude hold
|
||
static byte throttle_mode;
|
||
|
||
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
// flight specific
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
// Flag for monitoring the status of flight
|
||
// We must be in the air with throttle for 5 seconds before this flag is true
|
||
// This flag is reset when we are in a manual throttle mode with 0 throttle or disarmed
|
||
static boolean takeoff_complete;
|
||
// Used to see if we have landed and if we should shut our engines - not fully implemented
|
||
static boolean land_complete = true;
|
||
// An additional throttle added to keep the copter at the same altitude when banking
|
||
static int16_t angle_boost;
|
||
// Push copter down for clean landing
|
||
static int16_t landing_boost;
|
||
// for controlling the landing throttle curve
|
||
//verifies landings
|
||
static int16_t ground_detector;
|
||
// have we reached our desired altitude brefore heading home?
|
||
static bool rtl_reached_alt;
|
||
|
||
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
// Navigation general
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
// The location of the copter in relation to home, updated every GPS read
|
||
static int32_t home_to_copter_bearing;
|
||
// distance between plane and home in cm
|
||
static int32_t home_distance;
|
||
// distance between plane and next_WP in cm
|
||
// is not static because AP_Camera uses it
|
||
int32_t wp_distance;
|
||
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
// 3D Location vectors
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
// home location is stored when we have a good GPS lock and arm the copter
|
||
// Can be reset each the copter is re-armed
|
||
static struct Location home;
|
||
// Flag for if we have g_gps lock and have set the home location
|
||
static boolean home_is_set;
|
||
// Current location of the copter
|
||
static struct Location current_loc;
|
||
// lead filtered loc
|
||
static struct Location filtered_loc;
|
||
// Next WP is the desired location of the copter - the next waypoint or loiter location
|
||
static struct Location next_WP;
|
||
// Prev WP is used to get the optimum path from one WP to the next
|
||
static struct Location prev_WP;
|
||
// Holds the current loaded command from the EEPROM for navigation
|
||
static struct Location command_nav_queue;
|
||
// Holds the current loaded command from the EEPROM for conditional scripts
|
||
static struct Location command_cond_queue;
|
||
// Holds the current loaded command from the EEPROM for guided mode
|
||
static struct Location guided_WP;
|
||
|
||
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
// Crosstrack
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
// deg * 100, The original angle to the next_WP when the next_WP was set
|
||
// Also used to check when we pass a WP
|
||
static int32_t original_target_bearing;
|
||
// The amount of angle correction applied to target_bearing to bring the copter back on its optimum path
|
||
static int16_t crosstrack_error;
|
||
// should we take the waypoint quickly or slow down?
|
||
static bool fast_corner;
|
||
|
||
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
// Navigation Roll/Pitch functions
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
// all angles are deg * 100 : target yaw angle
|
||
// The Commanded ROll from the autopilot.
|
||
static int32_t nav_roll;
|
||
// The Commanded pitch from the autopilot. negative Pitch means go forward.
|
||
static int32_t nav_pitch;
|
||
// The desired bank towards North (Positive) or South (Negative)
|
||
static int32_t auto_roll;
|
||
static int32_t auto_pitch;
|
||
|
||
// Don't be fooled by the fact that Pitch is reversed from Roll in its sign!
|
||
static int16_t nav_lat;
|
||
// The desired bank towards East (Positive) or West (Negative)
|
||
static int16_t nav_lon;
|
||
// The Commanded ROll from the autopilot based on optical flow sensor.
|
||
static int32_t of_roll;
|
||
// The Commanded pitch from the autopilot based on optical flow sensor. negative Pitch means go forward.
|
||
static int32_t of_pitch;
|
||
static bool slow_wp = false;
|
||
|
||
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
// Navigation Throttle control
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
// The Commanded Throttle from the autopilot.
|
||
static int16_t nav_throttle; // 0-1000 for throttle control
|
||
// This is a simple counter to track the amount of throttle used during flight
|
||
// This could be useful later in determining and debuging current usage and predicting battery life
|
||
static uint32_t throttle_integrator;
|
||
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
// Climb rate control
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
// Time when we intiated command in millis - used for controlling decent rate
|
||
// Used to track the altitude offset for climbrate control
|
||
static int8_t alt_change_flag;
|
||
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
// Navigation Yaw control
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
// The Commanded Yaw from the autopilot.
|
||
static int32_t nav_yaw;
|
||
// A speed governer for Yaw control - limits the rate the quad can be turned by the autopilot
|
||
static int32_t auto_yaw;
|
||
// Used to manage the Yaw hold capabilities -
|
||
static bool yaw_stopped;
|
||
static uint8_t yaw_timer;
|
||
// Options include: no tracking, point at next wp, or at a target
|
||
static byte yaw_tracking = MAV_ROI_WPNEXT;
|
||
// In AP Mission scripting we have a fine level of control for Yaw
|
||
// This is our initial angle for relative Yaw movements
|
||
static int32_t command_yaw_start;
|
||
// Timer values used to control the speed of Yaw movements
|
||
static uint32_t command_yaw_start_time;
|
||
static uint16_t command_yaw_time; // how long we are turning
|
||
static int32_t command_yaw_end; // what angle are we trying to be
|
||
// how many degrees will we turn
|
||
static int32_t command_yaw_delta;
|
||
// Deg/s we should turn
|
||
static int16_t command_yaw_speed;
|
||
// Direction we will turn – 1 = CW, 0 or -1 = CCW
|
||
static byte command_yaw_dir;
|
||
// Direction we will turn – 1 = relative, 0 = Absolute
|
||
static byte command_yaw_relative;
|
||
// Yaw will point at this location if yaw_tracking is set to MAV_ROI_LOCATION
|
||
static struct Location target_WP;
|
||
|
||
|
||
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
// Repeat Mission Scripting Command
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
// The type of repeating event - Toggle a servo channel, Toggle the APM1 relay, etc
|
||
static byte event_id;
|
||
// Used to manage the timimng of repeating events
|
||
static uint32_t event_timer;
|
||
// How long to delay the next firing of event in millis
|
||
static uint16_t event_delay;
|
||
// how many times to fire : 0 = forever, 1 = do once, 2 = do twice
|
||
static int16_t event_repeat;
|
||
// per command value, such as PWM for servos
|
||
static int16_t event_value;
|
||
// the stored value used to undo commands - such as original PWM command
|
||
static int16_t event_undo_value;
|
||
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
// Delay Mission Scripting Command
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
static int32_t condition_value; // used in condition commands (eg delay, change alt, etc.)
|
||
static uint32_t condition_start;
|
||
|
||
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
// IMU variables
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
// Integration time for the gyros (DCM algorithm)
|
||
// Updated with the fast loop
|
||
static float G_Dt = 0.02;
|
||
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
// Inertial Navigation
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
#if INERTIAL_NAV == ENABLED
|
||
// The rotated accelerometer values
|
||
static Vector3f accels_velocity;
|
||
static Vector3f accels_position;
|
||
|
||
// accels rotated to world frame
|
||
static Vector3f accels_rotated;
|
||
//static Vector3f position_error;
|
||
|
||
// error correction
|
||
static Vector3f speed_error;
|
||
|
||
// Manage accel drift
|
||
//static float z_offset;
|
||
//static Vector3f accels_scale;
|
||
|
||
#endif
|
||
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
// Performance monitoring
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
// Used to manage the rate of performance logging messages
|
||
static int16_t perf_mon_counter;
|
||
// The number of GPS fixes we have had
|
||
static int16_t gps_fix_count;
|
||
// gps_watchdog checks for bad reads and if we miss 12 in a row, we stop navigating
|
||
// by lowering nav_lat and navlon to 0 gradually
|
||
static byte gps_watchdog;
|
||
|
||
// System Timers
|
||
// --------------
|
||
// Time in microseconds of main control loop
|
||
static uint32_t fast_loopTimer;
|
||
// Time in microseconds of 50hz control loop
|
||
static uint32_t fiftyhz_loopTimer;
|
||
// Counters for branching from 10 hz control loop
|
||
static byte medium_loopCounter;
|
||
// Counters for branching from 3 1/3hz control loop
|
||
static byte slow_loopCounter;
|
||
// Counters for branching at 1 hz
|
||
static byte counter_one_herz;
|
||
// used to track the elapsed time between GPS reads
|
||
static uint32_t nav_loopTimer;
|
||
// Delta Time in milliseconds for navigation computations, updated with every good GPS read
|
||
static float dTnav;
|
||
// Counters for branching from 4 minute control loop used to save Compass offsets
|
||
static int16_t superslow_loopCounter;
|
||
// Loiter timer - Records how long we have been in loiter
|
||
static uint32_t loiter_timer;
|
||
// disarms the copter while in Acro or Stabilize mode after 30 seconds of no flight
|
||
static uint8_t auto_disarming_counter;
|
||
// prevents duplicate GPS messages from entering system
|
||
static uint32_t last_gps_time;
|
||
|
||
// Tracks if GPS is enabled based on statup routine
|
||
// If we do not detect GPS at startup, we stop trying and assume GPS is not connected
|
||
static bool GPS_enabled = false;
|
||
// Set true if we have new PWM data to act on from the Radio
|
||
static bool new_radio_frame;
|
||
// Used to auto exit the in-flight leveler
|
||
static int16_t auto_level_counter;
|
||
|
||
// Reference to the AP relay object - APM1 only
|
||
AP_Relay relay;
|
||
|
||
// APM2 only
|
||
#if USB_MUX_PIN > 0
|
||
static bool usb_connected;
|
||
#endif
|
||
|
||
|
||
// Camera/Antenna mount tracking and stabilisation stuff
|
||
// --------------------------------------
|
||
#if MOUNT == ENABLED
|
||
// current_loc uses the baro/gps soloution for altitude rather than gps only.
|
||
// mabe one could use current_loc for lat/lon too and eliminate g_gps alltogether?
|
||
AP_Mount camera_mount(¤t_loc, g_gps, &ahrs, 0);
|
||
#endif
|
||
|
||
#if MOUNT2 == ENABLED
|
||
// current_loc uses the baro/gps soloution for altitude rather than gps only.
|
||
// mabe one could use current_loc for lat/lon too and eliminate g_gps alltogether?
|
||
AP_Mount camera_mount2(¤t_loc, g_gps, &ahrs, 1);
|
||
#endif
|
||
|
||
#if CAMERA == ENABLED
|
||
//pinMode(camtrig, OUTPUT); // these are free pins PE3(5), PH3(15), PH6(18), PB4(23), PB5(24), PL1(36), PL3(38), PA6(72), PA7(71), PK0(89), PK1(88), PK2(87), PK3(86), PK4(83), PK5(84), PK6(83), PK7(82)
|
||
#endif
|
||
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
// Experimental AP_Limits library - set constraints, limits, fences, minima, maxima on various parameters
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
#ifdef AP_LIMITS
|
||
|
||
AP_Limits limits;
|
||
|
||
AP_Limit_GPSLock gpslock_limit(g_gps);
|
||
|
||
AP_Limit_Geofence geofence_limit(FENCE_START_BYTE, FENCE_WP_SIZE, MAX_FENCEPOINTS, g_gps, &home, ¤t_loc);
|
||
|
||
AP_Limit_Altitude altitude_limit(¤t_loc);
|
||
|
||
#endif
|
||
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
// Top-level logic
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
|
||
void setup() {
|
||
memcheck_init();
|
||
init_ardupilot();
|
||
}
|
||
|
||
void loop()
|
||
{
|
||
uint32_t timer = micros();
|
||
bool spare_time = true;
|
||
|
||
// We want this to execute fast
|
||
// ----------------------------
|
||
if ((timer - fast_loopTimer) >= 10000 && imu.new_data_available()) {
|
||
#if DEBUG_FAST_LOOP == ENABLED
|
||
Log_Write_Data(50, (int32_t)(timer - fast_loopTimer));
|
||
#endif
|
||
|
||
//PORTK |= B00010000;
|
||
G_Dt = (float)(timer - fast_loopTimer) / 1000000.f; // used by PI Loops
|
||
fast_loopTimer = timer;
|
||
|
||
// Execute the fast loop
|
||
// ---------------------
|
||
fast_loop();
|
||
spare_time = false;
|
||
} else {
|
||
#ifdef DESKTOP_BUILD
|
||
usleep(1000);
|
||
#endif
|
||
}
|
||
|
||
// port manipulation for external timing of main loops
|
||
//PORTK &= B11101111;
|
||
|
||
if ((timer - fiftyhz_loopTimer) >= 20000) {
|
||
|
||
#if DEBUG_MED_LOOP == ENABLED
|
||
Log_Write_Data(51, (int32_t)(timer - fiftyhz_loopTimer));
|
||
#endif
|
||
|
||
// store the micros for the 50 hz timer
|
||
fiftyhz_loopTimer = timer;
|
||
|
||
// port manipulation for external timing of main loops
|
||
//PORTK |= B01000000;
|
||
|
||
// reads all of the necessary trig functions for cameras, throttle, etc.
|
||
// --------------------------------------------------------------------
|
||
update_trig();
|
||
|
||
// Rotate the Nav_lon and nav_lat vectors based on Yaw
|
||
// ---------------------------------------------------
|
||
calc_loiter_pitch_roll();
|
||
|
||
// check for new GPS messages
|
||
// --------------------------
|
||
update_GPS();
|
||
|
||
// perform 10hz tasks
|
||
// ------------------
|
||
medium_loop();
|
||
|
||
// Stuff to run at full 50hz, but after the med loops
|
||
// --------------------------------------------------
|
||
fifty_hz_loop();
|
||
|
||
counter_one_herz++;
|
||
|
||
// trgger our 1 hz loop
|
||
if(counter_one_herz >= 50) {
|
||
super_slow_loop();
|
||
counter_one_herz = 0;
|
||
}
|
||
perf_mon_counter++;
|
||
if (perf_mon_counter > 600 ) {
|
||
if (g.log_bitmask & MASK_LOG_PM)
|
||
Log_Write_Performance();
|
||
|
||
gps_fix_count = 0;
|
||
perf_mon_counter = 0;
|
||
}
|
||
//PORTK &= B10111111;
|
||
spare_time = false;
|
||
}
|
||
|
||
if (spare_time && g.compass_enabled) {
|
||
compass.accumulate();
|
||
}
|
||
}
|
||
// PORTK |= B01000000;
|
||
// PORTK &= B10111111;
|
||
|
||
// Main loop - 100hz
|
||
static void fast_loop()
|
||
{
|
||
// try to send any deferred messages if the serial port now has
|
||
// some space available
|
||
gcs_send_message(MSG_RETRY_DEFERRED);
|
||
|
||
// Read radio
|
||
// ----------
|
||
read_radio();
|
||
|
||
// IMU DCM Algorithm
|
||
// --------------------
|
||
read_AHRS();
|
||
|
||
// Inertial Nav
|
||
// --------------------
|
||
#if INERTIAL_NAV == ENABLED
|
||
calc_inertia();
|
||
#endif
|
||
|
||
// custom code/exceptions for flight modes
|
||
// ---------------------------------------
|
||
update_yaw_mode();
|
||
update_roll_pitch_mode();
|
||
|
||
// write out the servo PWM values
|
||
// ------------------------------
|
||
set_servos_4();
|
||
|
||
// agmatthews - USERHOOKS
|
||
#ifdef USERHOOK_FASTLOOP
|
||
USERHOOK_FASTLOOP
|
||
#endif
|
||
|
||
}
|
||
|
||
static void medium_loop()
|
||
{
|
||
// This is the start of the medium (10 Hz) loop pieces
|
||
// -----------------------------------------
|
||
switch(medium_loopCounter) {
|
||
|
||
// This case deals with the GPS and Compass
|
||
//-----------------------------------------
|
||
case 0:
|
||
medium_loopCounter++;
|
||
|
||
#if HIL_MODE != HIL_MODE_ATTITUDE // don't execute in HIL mode
|
||
if(g.compass_enabled) {
|
||
if (compass.read()) {
|
||
compass.null_offsets();
|
||
}
|
||
}
|
||
#endif
|
||
|
||
// auto_trim, uses an auto_level algorithm
|
||
auto_trim();
|
||
|
||
// record throttle output
|
||
// ------------------------------
|
||
throttle_integrator += g.rc_3.servo_out;
|
||
break;
|
||
|
||
// This case performs some navigation computations
|
||
//------------------------------------------------
|
||
case 1:
|
||
medium_loopCounter++;
|
||
|
||
// calculate the copter's desired bearing and WP distance
|
||
// ------------------------------------------------------
|
||
if(nav_ok) {
|
||
// clear nav flag
|
||
nav_ok = false;
|
||
|
||
// calculate distance, angles to target
|
||
navigate();
|
||
|
||
// update flight control system
|
||
update_navigation();
|
||
|
||
// update log
|
||
if (g.log_bitmask & MASK_LOG_NTUN && motors.armed()) {
|
||
Log_Write_Nav_Tuning();
|
||
}
|
||
}
|
||
break;
|
||
|
||
// command processing
|
||
//-------------------
|
||
case 2:
|
||
medium_loopCounter++;
|
||
|
||
if(control_mode == TOY_A) {
|
||
update_toy_throttle();
|
||
|
||
if(throttle_mode == THROTTLE_AUTO) {
|
||
update_toy_altitude();
|
||
}
|
||
}
|
||
|
||
alt_sensor_flag = true;
|
||
break;
|
||
|
||
// This case deals with sending high rate telemetry
|
||
//-------------------------------------------------
|
||
case 3:
|
||
medium_loopCounter++;
|
||
|
||
// perform next command
|
||
// --------------------
|
||
if(control_mode == AUTO) {
|
||
if(home_is_set == true && g.command_total > 1) {
|
||
update_commands();
|
||
}
|
||
}
|
||
|
||
if(motors.armed()) {
|
||
if (g.log_bitmask & MASK_LOG_ATTITUDE_MED)
|
||
Log_Write_Attitude();
|
||
|
||
if (g.log_bitmask & MASK_LOG_MOTORS)
|
||
Log_Write_Motors();
|
||
}
|
||
break;
|
||
|
||
// This case controls the slow loop
|
||
//---------------------------------
|
||
case 4:
|
||
medium_loopCounter = 0;
|
||
|
||
if (g.battery_monitoring != 0) {
|
||
read_battery();
|
||
}
|
||
|
||
// Accel trims = hold > 2 seconds
|
||
// Throttle cruise = switch less than 1 second
|
||
// --------------------------------------------
|
||
read_trim_switch();
|
||
|
||
// Check for engine arming
|
||
// -----------------------
|
||
arm_motors();
|
||
|
||
// Do an extra baro read for Temp sensing
|
||
// ---------------------------------------
|
||
#if HIL_MODE != HIL_MODE_ATTITUDE
|
||
barometer.read();
|
||
#endif
|
||
|
||
// agmatthews - USERHOOKS
|
||
#ifdef USERHOOK_MEDIUMLOOP
|
||
USERHOOK_MEDIUMLOOP
|
||
#endif
|
||
|
||
#if COPTER_LEDS == ENABLED
|
||
update_copter_leds();
|
||
#endif
|
||
|
||
slow_loop();
|
||
break;
|
||
|
||
default:
|
||
// this is just a catch all
|
||
// ------------------------
|
||
medium_loopCounter = 0;
|
||
break;
|
||
}
|
||
}
|
||
|
||
// stuff that happens at 50 hz
|
||
// ---------------------------
|
||
static void fifty_hz_loop()
|
||
{
|
||
// read altitude sensors or estimate altitude
|
||
// ------------------------------------------
|
||
update_altitude_est();
|
||
|
||
// Update the throttle ouput
|
||
// -------------------------
|
||
update_throttle_mode();
|
||
|
||
// Read Sonar
|
||
// ----------
|
||
# if CONFIG_SONAR == ENABLED
|
||
if(g.sonar_enabled) {
|
||
sonar_alt = sonar.read();
|
||
}
|
||
#endif
|
||
|
||
#if TOY_EDF == ENABLED
|
||
edf_toy();
|
||
#endif
|
||
|
||
// syncronise optical flow reads with altitude reads
|
||
#ifdef OPTFLOW_ENABLED
|
||
if(g.optflow_enabled) {
|
||
update_optical_flow();
|
||
}
|
||
#endif
|
||
|
||
|
||
#ifdef USERHOOK_50HZLOOP
|
||
USERHOOK_50HZLOOP
|
||
#endif
|
||
|
||
|
||
#if HIL_MODE != HIL_MODE_DISABLED && FRAME_CONFIG != HELI_FRAME
|
||
// HIL for a copter needs very fast update of the servo values
|
||
gcs_send_message(MSG_RADIO_OUT);
|
||
#endif
|
||
|
||
#if MOUNT == ENABLED
|
||
// update camera mount's position
|
||
camera_mount.update_mount_position();
|
||
#endif
|
||
|
||
#if MOUNT2 == ENABLED
|
||
// update camera mount's position
|
||
camera_mount2.update_mount_position();
|
||
#endif
|
||
|
||
#if CAMERA == ENABLED
|
||
g.camera.trigger_pic_cleanup();
|
||
#endif
|
||
|
||
# if HIL_MODE == HIL_MODE_DISABLED
|
||
if (g.log_bitmask & MASK_LOG_ATTITUDE_FAST && motors.armed())
|
||
Log_Write_Attitude();
|
||
|
||
if (g.log_bitmask & MASK_LOG_RAW && motors.armed())
|
||
Log_Write_Raw();
|
||
#endif
|
||
|
||
// kick the GCS to process uplink data
|
||
gcs_update();
|
||
gcs_data_stream_send();
|
||
}
|
||
|
||
|
||
static void slow_loop()
|
||
{
|
||
|
||
#if AP_LIMITS == ENABLED
|
||
|
||
// Run the AP_Limits main loop
|
||
limits_loop();
|
||
|
||
#endif // AP_LIMITS_ENABLED
|
||
|
||
// This is the slow (3 1/3 Hz) loop pieces
|
||
//----------------------------------------
|
||
switch (slow_loopCounter) {
|
||
case 0:
|
||
slow_loopCounter++;
|
||
superslow_loopCounter++;
|
||
|
||
if(superslow_loopCounter > 1200) {
|
||
#if HIL_MODE != HIL_MODE_ATTITUDE
|
||
if(g.rc_3.control_in == 0 && control_mode == STABILIZE && g.compass_enabled) {
|
||
compass.save_offsets();
|
||
superslow_loopCounter = 0;
|
||
}
|
||
#endif
|
||
}
|
||
|
||
// check the user hasn't updated the frame orientation
|
||
if( !motors.armed() ) {
|
||
motors.set_frame_orientation(g.frame_orientation);
|
||
}
|
||
|
||
break;
|
||
|
||
case 1:
|
||
slow_loopCounter++;
|
||
|
||
// Read 3-position switch on radio
|
||
// -------------------------------
|
||
read_control_switch();
|
||
|
||
#if MOUNT == ENABLED
|
||
update_aux_servo_function(&g.rc_5, &g.rc_6, &g.rc_7, &g.rc_8, &g.rc_10, &g.rc_11);
|
||
#endif
|
||
enable_aux_servos();
|
||
|
||
#if MOUNT == ENABLED
|
||
camera_mount.update_mount_type();
|
||
#endif
|
||
|
||
#if MOUNT2 == ENABLED
|
||
camera_mount2.update_mount_type();
|
||
#endif
|
||
|
||
// agmatthews - USERHOOKS
|
||
#ifdef USERHOOK_SLOWLOOP
|
||
USERHOOK_SLOWLOOP
|
||
#endif
|
||
|
||
break;
|
||
|
||
case 2:
|
||
slow_loopCounter = 0;
|
||
update_events();
|
||
|
||
// blink if we are armed
|
||
update_lights();
|
||
|
||
if(g.radio_tuning > 0)
|
||
tuning();
|
||
|
||
#if USB_MUX_PIN > 0
|
||
check_usb_mux();
|
||
#endif
|
||
break;
|
||
|
||
default:
|
||
slow_loopCounter = 0;
|
||
break;
|
||
}
|
||
}
|
||
|
||
#define AUTO_DISARMING_DELAY 25
|
||
// 1Hz loop
|
||
static void super_slow_loop()
|
||
{
|
||
if (g.log_bitmask & MASK_LOG_CUR && motors.armed())
|
||
Log_Write_Current();
|
||
|
||
|
||
#if 0 //CENTER_THROTTLE == 1
|
||
// recalibrate the throttle_cruise to center on the sticks
|
||
g.rc_3.set_range((g.throttle_cruise - (MAXIMUM_THROTTLE - g.throttle_cruise)), MAXIMUM_THROTTLE);
|
||
g.rc_3.set_range_out(0,1000);
|
||
#endif
|
||
|
||
// this function disarms the copter if it has been sitting on the ground for any moment of time greater than 25 seconds
|
||
// but only of the control mode is manual
|
||
if((control_mode <= ACRO) && (g.rc_3.control_in == 0)) {
|
||
auto_disarming_counter++;
|
||
|
||
if(auto_disarming_counter == AUTO_DISARMING_DELAY) {
|
||
init_disarm_motors();
|
||
}else if (auto_disarming_counter > AUTO_DISARMING_DELAY) {
|
||
auto_disarming_counter = AUTO_DISARMING_DELAY + 1;
|
||
}
|
||
}else{
|
||
auto_disarming_counter = 0;
|
||
}
|
||
|
||
gcs_send_message(MSG_HEARTBEAT);
|
||
|
||
// agmatthews - USERHOOKS
|
||
#ifdef USERHOOK_SUPERSLOWLOOP
|
||
USERHOOK_SUPERSLOWLOOP
|
||
#endif
|
||
|
||
/*
|
||
* //Serial.printf("alt %d, next.alt %d, alt_err: %d, cruise: %d, Alt_I:%1.2f, wp_dist %d, tar_bear %d, home_d %d, homebear %d\n",
|
||
* current_loc.alt,
|
||
* next_WP.alt,
|
||
* altitude_error,
|
||
* g.throttle_cruise.get(),
|
||
* g.pi_alt_hold.get_integrator(),
|
||
* wp_distance,
|
||
* target_bearing,
|
||
* home_distance,
|
||
* home_to_copter_bearing);
|
||
*/
|
||
}
|
||
|
||
// updated at 10 Hz
|
||
#ifdef OPTFLOW_ENABLED
|
||
static void update_optical_flow(void)
|
||
{
|
||
static int log_counter = 0;
|
||
|
||
optflow.update();
|
||
optflow.update_position(ahrs.roll, ahrs.pitch, cos_yaw_x, sin_yaw_y, current_loc.alt); // updates internal lon and lat with estimation based on optical flow
|
||
|
||
// write to log
|
||
log_counter++;
|
||
if( log_counter >= 5 ) {
|
||
log_counter = 0;
|
||
if (g.log_bitmask & MASK_LOG_OPTFLOW) {
|
||
Log_Write_Optflow();
|
||
}
|
||
}
|
||
|
||
/*if(g.optflow_enabled && current_loc.alt < 500){
|
||
* if(GPS_enabled){
|
||
* // if we have a GPS, we add some detail to the GPS
|
||
* // XXX this may not ne right
|
||
* current_loc.lng += optflow.vlon;
|
||
* current_loc.lat += optflow.vlat;
|
||
*
|
||
* // some sort of error correction routine
|
||
* //current_loc.lng -= ERR_GAIN * (float)(current_loc.lng - x_GPS_speed); // error correction
|
||
* //current_loc.lng -= ERR_GAIN * (float)(current_loc.lng - x_GPS_speed); // error correction
|
||
* }else{
|
||
* // if we do not have a GPS, use relative from 0 for lat and lon
|
||
* current_loc.lng = optflow.vlon;
|
||
* current_loc.lat = optflow.vlat;
|
||
* }
|
||
* // OK to run the nav routines
|
||
* nav_ok = true;
|
||
* }*/
|
||
}
|
||
#endif
|
||
|
||
// called at 50hz
|
||
static void update_GPS(void)
|
||
{
|
||
// A counter that is used to grab at least 10 reads before commiting the Home location
|
||
static byte ground_start_count = 10;
|
||
|
||
// return immediately if GPS is not enabled
|
||
if( !GPS_enabled ) {
|
||
return;
|
||
}
|
||
|
||
g_gps->update();
|
||
update_GPS_light();
|
||
|
||
if(gps_watchdog < 30) {
|
||
gps_watchdog++;
|
||
}else{
|
||
// after 12 reads we guess we may have lost GPS signal, stop navigating
|
||
// we have lost GPS signal for a moment. Reduce our error to avoid flyaways
|
||
auto_roll >>= 1;
|
||
auto_pitch >>= 1;
|
||
}
|
||
|
||
if (g_gps->new_data && g_gps->fix) {
|
||
// clear new data flag
|
||
g_gps->new_data = false;
|
||
|
||
// check for duiplicate GPS messages
|
||
if(last_gps_time != g_gps->time) {
|
||
|
||
// look for broken GPS
|
||
// ---------------
|
||
gps_watchdog = 0;
|
||
|
||
// OK to run the nav routines
|
||
// ---------------
|
||
nav_ok = true;
|
||
|
||
// for performance monitoring
|
||
// --------------------------
|
||
gps_fix_count++;
|
||
|
||
// used to calculate speed in X and Y, iterms
|
||
// ------------------------------------------
|
||
dTnav = (float)(millis() - nav_loopTimer)/ 1000.0;
|
||
nav_loopTimer = millis();
|
||
|
||
// prevent runup from bad GPS
|
||
// --------------------------
|
||
dTnav = min(dTnav, 1.0);
|
||
|
||
if(ground_start_count > 1) {
|
||
ground_start_count--;
|
||
|
||
} else if (ground_start_count == 1) {
|
||
|
||
// We countdown N number of good GPS fixes
|
||
// so that the altitude is more accurate
|
||
// -------------------------------------
|
||
if (current_loc.lat == 0) {
|
||
ground_start_count = 5;
|
||
|
||
}else{
|
||
if (g.compass_enabled) {
|
||
// Set compass declination automatically
|
||
compass.set_initial_location(g_gps->latitude, g_gps->longitude);
|
||
}
|
||
// save home to eeprom (we must have a good fix to have reached this point)
|
||
init_home();
|
||
ground_start_count = 0;
|
||
}
|
||
}
|
||
|
||
current_loc.lng = g_gps->longitude; // Lon * 10^7
|
||
current_loc.lat = g_gps->latitude; // Lat * 10^7
|
||
|
||
calc_XY_velocity();
|
||
|
||
if (g.log_bitmask & MASK_LOG_GPS && motors.armed()) {
|
||
Log_Write_GPS();
|
||
}
|
||
|
||
#if HIL_MODE == HIL_MODE_ATTITUDE // only execute in HIL mode
|
||
//update_altitude();
|
||
alt_sensor_flag = true;
|
||
#endif
|
||
}
|
||
|
||
// save GPS time so we don't get duplicate reads
|
||
last_gps_time = g_gps->time;
|
||
}
|
||
}
|
||
|
||
void update_yaw_mode(void)
|
||
{
|
||
switch(yaw_mode) {
|
||
case YAW_ACRO:
|
||
g.rc_4.servo_out = get_acro_yaw(g.rc_4.control_in);
|
||
return;
|
||
break;
|
||
|
||
// update to allow external roll/yaw mixing
|
||
#if TOY_LOOKUP == TOY_EXTERNAL_MIXER
|
||
case YAW_TOY:
|
||
#endif
|
||
|
||
case YAW_HOLD:
|
||
if(g.rc_4.control_in != 0) {
|
||
g.rc_4.servo_out = get_acro_yaw(g.rc_4.control_in);
|
||
yaw_stopped = false;
|
||
yaw_timer = 150;
|
||
|
||
}else if (!yaw_stopped) {
|
||
g.rc_4.servo_out = get_acro_yaw(0);
|
||
yaw_timer--;
|
||
|
||
if((yaw_timer == 0) || (fabs(omega.z) < .17)) {
|
||
yaw_stopped = true;
|
||
nav_yaw = ahrs.yaw_sensor;
|
||
}
|
||
}else{
|
||
// reset target yaw to current yaw if the motors are disarmed or throttle is zero
|
||
// Note: we do not want to reset yaw if failsafe has been triggered even though throttle maybe zero (in fact, normally throttle is zero in failsafe)
|
||
if(motors.armed() == false || ((g.rc_3.control_in == 0) && (control_mode <= ACRO) && !failsafe))
|
||
nav_yaw = ahrs.yaw_sensor;
|
||
|
||
g.rc_4.servo_out = get_stabilize_yaw(nav_yaw);
|
||
}
|
||
return;
|
||
break;
|
||
|
||
case YAW_LOOK_AT_HOME:
|
||
//nav_yaw updated in update_navigation()
|
||
g.rc_4.servo_out = get_stabilize_yaw(nav_yaw);
|
||
break;
|
||
|
||
case YAW_AUTO:
|
||
nav_yaw += constrain(wrap_180(auto_yaw - nav_yaw), -60, 60); // 40 deg a second
|
||
//Serial.printf("nav_yaw %d ", nav_yaw);
|
||
nav_yaw = wrap_360(nav_yaw);
|
||
g.rc_4.servo_out = get_stabilize_yaw(nav_yaw);
|
||
break;
|
||
}
|
||
}
|
||
|
||
void update_roll_pitch_mode(void)
|
||
{
|
||
if (do_flip) {
|
||
if(abs(g.rc_1.control_in) < 4000) {
|
||
roll_flip();
|
||
return;
|
||
}else{
|
||
// force an exit from the loop if we are not hands off sticks.
|
||
do_flip = false;
|
||
}
|
||
}
|
||
|
||
switch(roll_pitch_mode) {
|
||
case ROLL_PITCH_ACRO:
|
||
if(g.axis_enabled) {
|
||
roll_axis += (float)g.rc_1.control_in * g.axis_lock_p;
|
||
pitch_axis += (float)g.rc_2.control_in * g.axis_lock_p;
|
||
|
||
roll_axis = wrap_360(roll_axis);
|
||
pitch_axis = wrap_360(pitch_axis);
|
||
|
||
// in this mode, nav_roll and nav_pitch = the iterm
|
||
g.rc_1.servo_out = get_stabilize_roll(roll_axis);
|
||
g.rc_2.servo_out = get_stabilize_pitch(pitch_axis);
|
||
|
||
if (g.rc_3.control_in == 0) {
|
||
roll_axis = 0;
|
||
pitch_axis = 0;
|
||
}
|
||
|
||
}else{
|
||
// ACRO does not get SIMPLE mode ability
|
||
#if FRAME_CONFIG == HELI_FRAME
|
||
if (motors.flybar_mode == 1) {
|
||
g.rc_1.servo_out = g.rc_1.control_in;
|
||
g.rc_2.servo_out = g.rc_2.control_in;
|
||
} else {
|
||
g.rc_1.servo_out = get_acro_roll(g.rc_1.control_in);
|
||
g.rc_2.servo_out = get_acro_pitch(g.rc_2.control_in);
|
||
}
|
||
#else
|
||
g.rc_1.servo_out = get_acro_roll(g.rc_1.control_in);
|
||
g.rc_2.servo_out = get_acro_pitch(g.rc_2.control_in);
|
||
#endif
|
||
}
|
||
break;
|
||
|
||
case ROLL_PITCH_STABLE:
|
||
// apply SIMPLE mode transform
|
||
if(do_simple && new_radio_frame) {
|
||
update_simple_mode();
|
||
}
|
||
|
||
control_roll = g.rc_1.control_in;
|
||
control_pitch = g.rc_2.control_in;
|
||
|
||
// in this mode, nav_roll and nav_pitch = the iterm
|
||
g.rc_1.servo_out = get_stabilize_roll(control_roll);
|
||
g.rc_2.servo_out = get_stabilize_pitch(control_pitch);
|
||
break;
|
||
|
||
case ROLL_PITCH_AUTO:
|
||
// apply SIMPLE mode transform
|
||
if(do_simple && new_radio_frame) {
|
||
update_simple_mode();
|
||
}
|
||
// mix in user control with Nav control
|
||
nav_roll += constrain(wrap_180(auto_roll - nav_roll), -g.auto_slew_rate.get(), g.auto_slew_rate.get()); // 40 deg a second
|
||
nav_pitch += constrain(wrap_180(auto_pitch - nav_pitch), -g.auto_slew_rate.get(), g.auto_slew_rate.get()); // 40 deg a second
|
||
|
||
control_roll = g.rc_1.control_mix(nav_roll);
|
||
control_pitch = g.rc_2.control_mix(nav_pitch);
|
||
|
||
g.rc_1.servo_out = get_stabilize_roll(control_roll);
|
||
g.rc_2.servo_out = get_stabilize_pitch(control_pitch);
|
||
break;
|
||
|
||
case ROLL_PITCH_STABLE_OF:
|
||
// apply SIMPLE mode transform
|
||
if(do_simple && new_radio_frame) {
|
||
update_simple_mode();
|
||
}
|
||
|
||
control_roll = g.rc_1.control_in;
|
||
control_pitch = g.rc_2.control_in;
|
||
|
||
// mix in user control with optical flow
|
||
g.rc_1.servo_out = get_stabilize_roll(get_of_roll(control_roll));
|
||
g.rc_2.servo_out = get_stabilize_pitch(get_of_pitch(control_pitch));
|
||
break;
|
||
|
||
// THOR
|
||
// a call out to the main toy logic
|
||
case ROLL_PITCH_TOY:
|
||
roll_pitch_toy();
|
||
break;
|
||
}
|
||
|
||
if(g.rc_3.control_in == 0 && control_mode <= ACRO) {
|
||
reset_rate_I();
|
||
reset_stability_I();
|
||
}
|
||
|
||
//if(takeoff_complete == false){
|
||
// reset these I terms to prevent awkward tipping on takeoff
|
||
//reset_rate_I();
|
||
//reset_stability_I();
|
||
//}
|
||
|
||
if(new_radio_frame) {
|
||
// clear new radio frame info
|
||
new_radio_frame = false;
|
||
|
||
// These values can be used to scale the PID gains
|
||
// This allows for a simple gain scheduling implementation
|
||
roll_scale_d = g.stabilize_d_schedule * (float)abs(g.rc_1.control_in);
|
||
roll_scale_d = (1 - (roll_scale_d / 4500.0));
|
||
roll_scale_d = constrain(roll_scale_d, 0, 1) * g.stabilize_d;
|
||
|
||
pitch_scale_d = g.stabilize_d_schedule * (float)abs(g.rc_2.control_in);
|
||
pitch_scale_d = (1 - (pitch_scale_d / 4500.0));
|
||
pitch_scale_d = constrain(pitch_scale_d, 0, 1) * g.stabilize_d;
|
||
}
|
||
}
|
||
|
||
// new radio frame is used to make sure we only call this at 50hz
|
||
void update_simple_mode(void)
|
||
{
|
||
static byte simple_counter = 0; // State machine counter for Simple Mode
|
||
static float simple_sin_y=0, simple_cos_x=0;
|
||
|
||
// used to manage state machine
|
||
// which improves speed of function
|
||
simple_counter++;
|
||
|
||
int16_t delta = wrap_360(ahrs.yaw_sensor - initial_simple_bearing)/100;
|
||
|
||
if (simple_counter == 1) {
|
||
// roll
|
||
simple_cos_x = sin(radians(90 - delta));
|
||
|
||
}else if (simple_counter > 2) {
|
||
// pitch
|
||
simple_sin_y = cos(radians(90 - delta));
|
||
simple_counter = 0;
|
||
}
|
||
|
||
// Rotate input by the initial bearing
|
||
int16_t _roll = g.rc_1.control_in * simple_cos_x + g.rc_2.control_in * simple_sin_y;
|
||
int16_t _pitch = -(g.rc_1.control_in * simple_sin_y - g.rc_2.control_in * simple_cos_x);
|
||
|
||
g.rc_1.control_in = _roll;
|
||
g.rc_2.control_in = _pitch;
|
||
}
|
||
|
||
#define THROTTLE_FILTER_SIZE 2
|
||
|
||
// 50 hz update rate
|
||
// controls all throttle behavior
|
||
void update_throttle_mode(void)
|
||
{
|
||
if(do_flip) // this is pretty bad but needed to flip in AP modes.
|
||
return;
|
||
|
||
int16_t throttle_out;
|
||
|
||
#if AUTO_THROTTLE_HOLD != 0
|
||
static float throttle_avg = 0; // this is initialised to g.throttle_cruise later
|
||
#endif
|
||
|
||
#if FRAME_CONFIG != HELI_FRAME
|
||
// calculate angle boost
|
||
if(throttle_mode == THROTTLE_MANUAL) {
|
||
angle_boost = get_angle_boost(g.rc_3.control_in);
|
||
}else{
|
||
angle_boost = get_angle_boost(g.throttle_cruise);
|
||
}
|
||
#endif
|
||
|
||
switch(throttle_mode) {
|
||
case THROTTLE_MANUAL:
|
||
if (g.rc_3.control_in > 0) {
|
||
#if FRAME_CONFIG == HELI_FRAME
|
||
g.rc_3.servo_out = heli_get_angle_boost(g.rc_3.control_in);
|
||
#else
|
||
if (control_mode == ACRO) {
|
||
g.rc_3.servo_out = g.rc_3.control_in;
|
||
}else{
|
||
g.rc_3.servo_out = g.rc_3.control_in + angle_boost;
|
||
}
|
||
#endif
|
||
|
||
#if AUTO_THROTTLE_HOLD != 0
|
||
// ensure throttle_avg has been initialised
|
||
if( throttle_avg == 0 ) {
|
||
throttle_avg = g.throttle_cruise;
|
||
}
|
||
// calc average throttle
|
||
if ((g.rc_3.control_in > g.throttle_min) && abs(climb_rate) < 60) {
|
||
throttle_avg = throttle_avg * .99 + (float)g.rc_3.control_in * .01;
|
||
g.throttle_cruise = throttle_avg;
|
||
}
|
||
#endif
|
||
|
||
if (takeoff_complete == false && motors.armed()) {
|
||
if (g.rc_3.control_in > g.throttle_cruise) {
|
||
// we must be in the air by now
|
||
takeoff_complete = true;
|
||
}
|
||
}
|
||
|
||
}else{
|
||
|
||
// make sure we also request 0 throttle out
|
||
// so the props stop ... properly
|
||
// ----------------------------------------
|
||
g.rc_3.servo_out = 0;
|
||
}
|
||
break;
|
||
|
||
case THROTTLE_HOLD:
|
||
// allow interactive changing of atitude
|
||
/*
|
||
if(g.rc_3.control_in < 200) {
|
||
reset_throttle_counter = 150;
|
||
nav_throttle = get_throttle_rate(-120);
|
||
g.rc_3.servo_out = g.throttle_cruise + nav_throttle + angle_boost;
|
||
break;
|
||
}else if (g.rc_3.control_in > 800) {
|
||
reset_throttle_counter = 50;
|
||
nav_throttle = get_throttle_rate(180);
|
||
g.rc_3.servo_out = g.throttle_cruise + nav_throttle + angle_boost;
|
||
break;
|
||
}
|
||
*/
|
||
|
||
if(g.rc_3.radio_in < (g.rc_3.radio_min + 200)){
|
||
int16_t _rate = 120 - (((g.rc_3.radio_in - g.rc_3.radio_min) * 12) / 20);
|
||
reset_throttle_counter = 150;
|
||
nav_throttle = get_throttle_rate(-_rate);
|
||
g.rc_3.servo_out = g.throttle_cruise + nav_throttle + angle_boost;
|
||
break;
|
||
}else if(g.rc_3.radio_in > (g.rc_3.radio_max - 200)){
|
||
int16_t _rate = 180 - ((g.rc_3.radio_max - g.rc_3.radio_in) * 18) / 20;
|
||
reset_throttle_counter = 150;
|
||
nav_throttle = get_throttle_rate(_rate);
|
||
g.rc_3.servo_out = g.throttle_cruise + nav_throttle + angle_boost;
|
||
break;
|
||
}
|
||
|
||
|
||
// allow 1 second of slow down after pilot moves throttle back into deadzone
|
||
if(reset_throttle_counter > 0) {
|
||
reset_throttle_counter--;
|
||
// if 1 second has passed set the target altitude to the current altitude
|
||
if(reset_throttle_counter == 0) {
|
||
force_new_altitude(max(current_loc.alt, 100));
|
||
}else{
|
||
nav_throttle = get_throttle_rate(0);
|
||
g.rc_3.servo_out = g.throttle_cruise + nav_throttle + angle_boost;
|
||
break;
|
||
}
|
||
}
|
||
|
||
// else fall through
|
||
|
||
case THROTTLE_AUTO:
|
||
|
||
if(motors.auto_armed() == true) {
|
||
|
||
// how far off are we
|
||
altitude_error = get_altitude_error();
|
||
|
||
int16_t desired_speed;
|
||
if(alt_change_flag == REACHED_ALT) { // we are at or above the target alt
|
||
desired_speed = g.pi_alt_hold.get_p(altitude_error); // calculate desired speed from lon error
|
||
update_throttle_cruise(g.pi_alt_hold.get_i(altitude_error, .02));
|
||
desired_speed = constrain(desired_speed, -250, 250);
|
||
nav_throttle = get_throttle_rate(desired_speed);
|
||
}else{
|
||
desired_speed = get_desired_climb_rate();
|
||
nav_throttle = get_throttle_rate(desired_speed);
|
||
}
|
||
}
|
||
|
||
// hack to remove the influence of the ground effect
|
||
if(g.sonar_enabled && current_loc.alt < 100 && landing_boost != 0) {
|
||
nav_throttle = min(nav_throttle, 0);
|
||
}
|
||
|
||
#if FRAME_CONFIG == HELI_FRAME
|
||
throttle_out = heli_get_angle_boost(g.throttle_cruise + nav_throttle - landing_boost);
|
||
#else
|
||
throttle_out = g.throttle_cruise + nav_throttle + angle_boost - landing_boost;
|
||
#endif
|
||
|
||
g.rc_3.servo_out = throttle_out;
|
||
break;
|
||
}
|
||
}
|
||
|
||
// called after a GPS read
|
||
static void update_navigation()
|
||
{
|
||
// wp_distance is in CM
|
||
// --------------------
|
||
switch(control_mode) {
|
||
case AUTO:
|
||
// note: wp_control is handled by commands_logic
|
||
verify_commands();
|
||
|
||
// calculates desired Yaw
|
||
update_auto_yaw();
|
||
|
||
// calculates the desired Roll and Pitch
|
||
update_nav_wp();
|
||
break;
|
||
|
||
case GUIDED:
|
||
wp_control = WP_MODE;
|
||
// check if we are close to point > loiter
|
||
wp_verify_byte = 0;
|
||
verify_nav_wp();
|
||
|
||
if (wp_control == WP_MODE) {
|
||
update_auto_yaw();
|
||
} else {
|
||
set_mode(LOITER);
|
||
}
|
||
update_nav_wp();
|
||
break;
|
||
|
||
case RTL:
|
||
// have we reached the desired Altitude?
|
||
if(alt_change_flag <= REACHED_ALT) { // we are at or above the target alt
|
||
if(rtl_reached_alt == false) {
|
||
rtl_reached_alt = true;
|
||
do_RTL();
|
||
}
|
||
wp_control = WP_MODE;
|
||
// checks if we have made it to home
|
||
update_nav_RTL();
|
||
} else{
|
||
// we need to loiter until we are ready to come home
|
||
wp_control = LOITER_MODE;
|
||
}
|
||
|
||
// calculates desired Yaw
|
||
#if FRAME_CONFIG == HELI_FRAME
|
||
update_auto_yaw();
|
||
#endif
|
||
|
||
// calculates the desired Roll and Pitch
|
||
update_nav_wp();
|
||
break;
|
||
|
||
// switch passthrough to LOITER
|
||
case LOITER:
|
||
case POSITION:
|
||
// This feature allows us to reposition the quad when the user lets
|
||
// go of the sticks
|
||
|
||
if((abs(g.rc_2.control_in) + abs(g.rc_1.control_in)) > 500) {
|
||
if(wp_distance > 500)
|
||
loiter_override = true;
|
||
}
|
||
|
||
// Allow the user to take control temporarily,
|
||
if(loiter_override) {
|
||
// this sets the copter to not try and nav while we control it
|
||
wp_control = NO_NAV_MODE;
|
||
|
||
// reset LOITER to current position
|
||
next_WP.lat = current_loc.lat;
|
||
next_WP.lng = current_loc.lng;
|
||
|
||
if(g.rc_2.control_in == 0 && g.rc_1.control_in == 0) {
|
||
loiter_override = false;
|
||
wp_control = LOITER_MODE;
|
||
}
|
||
}else{
|
||
wp_control = LOITER_MODE;
|
||
}
|
||
|
||
if(loiter_timer != 0) {
|
||
// If we have a safe approach alt set and we have been loitering for 20 seconds(default), begin approach
|
||
if((millis() - loiter_timer) > (uint32_t)g.auto_land_timeout.get()) {
|
||
// just to make sure we clear the timer
|
||
loiter_timer = 0;
|
||
if(g.rtl_approach_alt == 0) {
|
||
set_mode(LAND);
|
||
if(home_distance < 300) {
|
||
next_WP.lat = home.lat;
|
||
next_WP.lng = home.lng;
|
||
}
|
||
}else{
|
||
if(g.rtl_approach_alt < current_loc.alt) {
|
||
set_new_altitude(g.rtl_approach_alt);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
// calculates the desired Roll and Pitch
|
||
update_nav_wp();
|
||
break;
|
||
|
||
case LAND:
|
||
if(g.sonar_enabled)
|
||
verify_land_sonar();
|
||
else
|
||
verify_land_baro();
|
||
|
||
// calculates the desired Roll and Pitch
|
||
update_nav_wp();
|
||
break;
|
||
|
||
case CIRCLE:
|
||
wp_control = CIRCLE_MODE;
|
||
|
||
// calculates desired Yaw
|
||
update_auto_yaw();
|
||
update_nav_wp();
|
||
break;
|
||
|
||
case STABILIZE:
|
||
case TOY_A:
|
||
case TOY_M:
|
||
wp_control = NO_NAV_MODE;
|
||
update_nav_wp();
|
||
break;
|
||
}
|
||
|
||
// are we in SIMPLE mode?
|
||
if(do_simple && g.super_simple) {
|
||
// get distance to home
|
||
if(home_distance > SUPER_SIMPLE_RADIUS) { // 10m from home
|
||
// we reset the angular offset to be a vector from home to the quad
|
||
initial_simple_bearing = home_to_copter_bearing;
|
||
//Serial.printf("ISB: %d\n", initial_simple_bearing);
|
||
}
|
||
}
|
||
|
||
if(yaw_mode == YAW_LOOK_AT_HOME) {
|
||
if(home_is_set) {
|
||
//nav_yaw = point_at_home_yaw();
|
||
nav_yaw = get_bearing_cd(¤t_loc, &home);
|
||
} else {
|
||
nav_yaw = 0;
|
||
}
|
||
}
|
||
}
|
||
|
||
static void update_nav_RTL()
|
||
{
|
||
// Have we have reached Home?
|
||
if(wp_distance <= 200 || check_missed_wp()) {
|
||
// if loiter_timer value > 0, we are set to trigger auto_land or approach
|
||
set_mode(LOITER);
|
||
|
||
// just un case we arrive and we aren't at the lower RTL alt yet.
|
||
set_new_altitude(get_RTL_alt());
|
||
|
||
// force loitering above home
|
||
next_WP.lat = home.lat;
|
||
next_WP.lng = home.lng;
|
||
|
||
// If failsafe OR auto approach altitude is set
|
||
// we will go into automatic land, (g.rtl_approach_alt) is the lowest point
|
||
// -1 means disable feature
|
||
if(failsafe || g.rtl_approach_alt >= 0)
|
||
loiter_timer = millis();
|
||
else
|
||
loiter_timer = 0;
|
||
}
|
||
|
||
slow_wp = true;
|
||
}
|
||
|
||
static void read_AHRS(void)
|
||
{
|
||
// Perform IMU calculations and get attitude info
|
||
//-----------------------------------------------
|
||
#if HIL_MODE != HIL_MODE_DISABLED
|
||
// update hil before ahrs update
|
||
gcs_update();
|
||
#endif
|
||
|
||
ahrs.update();
|
||
omega = imu.get_gyro();
|
||
}
|
||
|
||
static void update_trig(void){
|
||
Vector2f yawvector;
|
||
Matrix3f temp = ahrs.get_dcm_matrix();
|
||
|
||
yawvector.x = temp.a.x; // sin
|
||
yawvector.y = temp.b.x; // cos
|
||
yawvector.normalize();
|
||
|
||
cos_pitch_x = safe_sqrt(1 - (temp.c.x * temp.c.x)); // level = 1
|
||
cos_roll_x = temp.c.z / cos_pitch_x; // level = 1
|
||
|
||
cos_pitch_x = constrain(cos_pitch_x, 0, 1.0);
|
||
// this relies on constrain() of infinity doing the right thing,
|
||
// which it does do in avr-libc
|
||
cos_roll_x = constrain(cos_roll_x, -1.0, 1.0);
|
||
|
||
sin_yaw_y = yawvector.x; // 1y = north
|
||
cos_yaw_x = yawvector.y; // 0x = north
|
||
|
||
//flat:
|
||
// 0 ° = cos_yaw: 0.00, sin_yaw: 1.00,
|
||
// 90° = cos_yaw: 1.00, sin_yaw: 0.00,
|
||
// 180 = cos_yaw: 0.00, sin_yaw: -1.00,
|
||
// 270 = cos_yaw: -1.00, sin_yaw: 0.00,
|
||
}
|
||
|
||
// updated at 10hz
|
||
static void update_altitude()
|
||
{
|
||
static int16_t old_sonar_alt = 0;
|
||
static int32_t old_baro_alt = 0;
|
||
|
||
#if HIL_MODE == HIL_MODE_ATTITUDE
|
||
// we are in the SIM, fake out the baro and Sonar
|
||
int16_t fake_relative_alt = g_gps->altitude - gps_base_alt;
|
||
baro_alt = fake_relative_alt;
|
||
sonar_alt = fake_relative_alt;
|
||
|
||
baro_rate = (baro_alt - old_baro_alt) * 5; // 5hz
|
||
old_baro_alt = baro_alt;
|
||
|
||
#else
|
||
// This is real life
|
||
|
||
#if INERTIAL_NAV == ENABLED
|
||
baro_rate = accels_velocity.z;
|
||
|
||
#else
|
||
// read in Actual Baro Altitude
|
||
baro_alt = read_barometer();
|
||
|
||
// calc the vertical accel rate
|
||
|
||
// 2.6 way
|
||
int16_t temp = (baro_alt - old_baro_alt) * 10;
|
||
baro_rate = (temp + baro_rate) >> 1;
|
||
baro_rate = constrain(baro_rate, -300, 300);
|
||
old_baro_alt = baro_alt;
|
||
|
||
// Using Tridge's new clamb rate calc
|
||
/*
|
||
int16_t temp = barometer.get_climb_rate() * 100;
|
||
baro_rate = (temp + baro_rate) >> 1;
|
||
baro_rate = constrain(baro_rate, -300, 300);
|
||
*/
|
||
#endif
|
||
|
||
// Note: sonar_alt is calculated in a faster loop and filtered with a mode filter
|
||
#endif
|
||
|
||
if(g.sonar_enabled) {
|
||
// filter out offset
|
||
float scale;
|
||
|
||
// calc rate of change for Sonar
|
||
#if HIL_MODE == HIL_MODE_ATTITUDE
|
||
// we are in the SIM, fake outthe Sonar rate
|
||
sonar_rate = baro_rate;
|
||
#else
|
||
// This is real life
|
||
// calc the vertical accel rate
|
||
// positive = going up.
|
||
sonar_rate = (sonar_alt - old_sonar_alt) * 10;
|
||
sonar_rate = constrain(sonar_rate, -150, 150);
|
||
old_sonar_alt = sonar_alt;
|
||
#endif
|
||
|
||
if(baro_alt < 800) {
|
||
#if SONAR_TILT_CORRECTION == 1
|
||
// correct alt for angle of the sonar
|
||
float temp = cos_pitch_x * cos_roll_x;
|
||
temp = max(temp, 0.707);
|
||
sonar_alt = (float)sonar_alt * temp;
|
||
#endif
|
||
|
||
scale = (float)(sonar_alt - 400) / 200.0;
|
||
scale = constrain(scale, 0.0, 1.0);
|
||
// solve for a blended altitude
|
||
current_loc.alt = ((float)sonar_alt * (1.0 - scale)) + ((float)baro_alt * scale);
|
||
|
||
// solve for a blended climb_rate
|
||
climb_rate_actual = ((float)sonar_rate * (1.0 - scale)) + (float)baro_rate * scale;
|
||
|
||
}else{
|
||
// we must be higher than sonar (>800), don't get tricked by bad sonar reads
|
||
current_loc.alt = baro_alt;
|
||
// dont blend, go straight baro
|
||
|
||
climb_rate_actual = baro_rate;
|
||
}
|
||
|
||
}else{
|
||
// NO Sonar case
|
||
current_loc.alt = baro_alt;
|
||
climb_rate_actual = baro_rate;
|
||
}
|
||
|
||
// update the target altitude
|
||
verify_altitude();
|
||
|
||
// calc error
|
||
climb_rate_error = (climb_rate_actual - climb_rate) / 5;
|
||
|
||
#if INERTIAL_NAV == ENABLED
|
||
// inertial_nav
|
||
z_error_correction();
|
||
#endif
|
||
}
|
||
|
||
static void update_altitude_est()
|
||
{
|
||
if(alt_sensor_flag) {
|
||
update_altitude();
|
||
alt_sensor_flag = false;
|
||
|
||
if(g.log_bitmask & MASK_LOG_CTUN && motors.armed()) {
|
||
Log_Write_Control_Tuning();
|
||
}
|
||
|
||
}else{
|
||
// simple dithering of climb rate
|
||
climb_rate += climb_rate_error;
|
||
current_loc.alt += (climb_rate / 50);
|
||
}
|
||
//Serial.printf(" %d, %d, %d, %d\n", climb_rate_actual, climb_rate_error, climb_rate, current_loc.alt);
|
||
}
|
||
|
||
/*
|
||
* #define THROTTLE_ADJUST 225
|
||
* static void
|
||
* adjust_altitude()
|
||
* {
|
||
* if(g.rc_3.control_in <= (g.throttle_min + THROTTLE_ADJUST)){
|
||
* // we remove 0 to 100 PWM from hover
|
||
* manual_boost = (g.rc_3.control_in - g.throttle_min) - THROTTLE_ADJUST;
|
||
* manual_boost = max(-THROTTLE_ADJUST, manual_boost);
|
||
*
|
||
* }else if (g.rc_3.control_in >= (g.throttle_max - THROTTLE_ADJUST)){
|
||
* // we add 0 to 100 PWM to hover
|
||
* manual_boost = g.rc_3.control_in - (g.throttle_max - THROTTLE_ADJUST);
|
||
* manual_boost = min(THROTTLE_ADJUST, manual_boost);
|
||
*
|
||
* }else {
|
||
* manual_boost = 0;
|
||
* }
|
||
* }
|
||
*/
|
||
|
||
static void tuning(){
|
||
tuning_value = (float)g.rc_6.control_in / 1000.0;
|
||
g.rc_6.set_range(g.radio_tuning_low,g.radio_tuning_high); // 0 to 1
|
||
|
||
switch(g.radio_tuning) {
|
||
|
||
case CH6_RATE_KD:
|
||
g.pid_rate_roll.kD(tuning_value);
|
||
g.pid_rate_pitch.kD(tuning_value);
|
||
break;
|
||
|
||
case CH6_STABILIZE_KP:
|
||
g.pi_stabilize_roll.kP(tuning_value);
|
||
g.pi_stabilize_pitch.kP(tuning_value);
|
||
break;
|
||
|
||
case CH6_STABILIZE_KI:
|
||
g.pi_stabilize_roll.kI(tuning_value);
|
||
g.pi_stabilize_pitch.kI(tuning_value);
|
||
break;
|
||
|
||
case CH6_DAMP:
|
||
case CH6_STABILIZE_KD:
|
||
g.stabilize_d = tuning_value;
|
||
break;
|
||
|
||
case CH6_ACRO_KP:
|
||
g.acro_p = tuning_value;
|
||
break;
|
||
|
||
case CH6_RATE_KP:
|
||
g.pid_rate_roll.kP(tuning_value);
|
||
g.pid_rate_pitch.kP(tuning_value);
|
||
break;
|
||
|
||
case CH6_RATE_KI:
|
||
g.pid_rate_roll.kI(tuning_value);
|
||
g.pid_rate_pitch.kI(tuning_value);
|
||
break;
|
||
|
||
case CH6_YAW_KP:
|
||
g.pi_stabilize_yaw.kP(tuning_value);
|
||
break;
|
||
|
||
case CH6_YAW_KI:
|
||
g.pi_stabilize_yaw.kI(tuning_value);
|
||
break;
|
||
|
||
case CH6_YAW_RATE_KP:
|
||
g.pid_rate_yaw.kP(tuning_value);
|
||
break;
|
||
|
||
case CH6_YAW_RATE_KD:
|
||
g.pid_rate_yaw.kD(tuning_value);
|
||
break;
|
||
|
||
case CH6_THROTTLE_KP:
|
||
g.pid_throttle.kP(tuning_value);
|
||
break;
|
||
|
||
case CH6_TOP_BOTTOM_RATIO:
|
||
motors.top_bottom_ratio = tuning_value;
|
||
break;
|
||
|
||
case CH6_RELAY:
|
||
if (g.rc_6.control_in > 525) relay.on();
|
||
if (g.rc_6.control_in < 475) relay.off();
|
||
break;
|
||
|
||
case CH6_TRAVERSE_SPEED:
|
||
g.waypoint_speed_max = g.rc_6.control_in;
|
||
break;
|
||
|
||
case CH6_LOITER_KP:
|
||
g.pi_loiter_lat.kP(tuning_value);
|
||
g.pi_loiter_lon.kP(tuning_value);
|
||
break;
|
||
|
||
case CH6_LOITER_KI:
|
||
g.pi_loiter_lat.kI(tuning_value);
|
||
g.pi_loiter_lon.kI(tuning_value);
|
||
break;
|
||
|
||
case CH6_NAV_KP:
|
||
g.pid_nav_lat.kP(tuning_value);
|
||
g.pid_nav_lon.kP(tuning_value);
|
||
break;
|
||
|
||
case CH6_LOITER_RATE_KP:
|
||
g.pid_loiter_rate_lon.kP(tuning_value);
|
||
g.pid_loiter_rate_lat.kP(tuning_value);
|
||
break;
|
||
|
||
case CH6_LOITER_RATE_KI:
|
||
g.pid_loiter_rate_lon.kI(tuning_value);
|
||
g.pid_loiter_rate_lat.kI(tuning_value);
|
||
break;
|
||
|
||
case CH6_LOITER_RATE_KD:
|
||
g.pid_loiter_rate_lon.kD(tuning_value);
|
||
g.pid_loiter_rate_lat.kD(tuning_value);
|
||
break;
|
||
|
||
case CH6_NAV_I:
|
||
g.pid_nav_lat.kI(tuning_value);
|
||
g.pid_nav_lon.kI(tuning_value);
|
||
break;
|
||
|
||
#if FRAME_CONFIG == HELI_FRAME
|
||
case CH6_HELI_EXTERNAL_GYRO:
|
||
motors.ext_gyro_gain = tuning_value;
|
||
break;
|
||
#endif
|
||
|
||
case CH6_THR_HOLD_KP:
|
||
g.pi_alt_hold.kP(tuning_value);
|
||
break;
|
||
|
||
case CH6_OPTFLOW_KP:
|
||
g.pid_optflow_roll.kP(tuning_value);
|
||
g.pid_optflow_pitch.kP(tuning_value);
|
||
break;
|
||
|
||
case CH6_OPTFLOW_KI:
|
||
g.pid_optflow_roll.kI(tuning_value);
|
||
g.pid_optflow_pitch.kI(tuning_value);
|
||
break;
|
||
|
||
case CH6_OPTFLOW_KD:
|
||
g.pid_optflow_roll.kD(tuning_value);
|
||
g.pid_optflow_pitch.kD(tuning_value);
|
||
break;
|
||
|
||
#if HIL_MODE != HIL_MODE_ATTITUDE // do not allow modifying _kp or _kp_yaw gains in HIL mode
|
||
case CH6_AHRS_YAW_KP:
|
||
ahrs._kp_yaw.set(tuning_value);
|
||
break;
|
||
|
||
case CH6_AHRS_KP:
|
||
ahrs._kp.set(tuning_value);
|
||
break;
|
||
#endif
|
||
|
||
}
|
||
}
|
||
|
||
// Outputs Nav_Pitch and Nav_Roll
|
||
static void update_nav_wp()
|
||
{
|
||
if(wp_control == LOITER_MODE) {
|
||
|
||
// calc error to target
|
||
calc_location_error(&next_WP);
|
||
|
||
// use error as the desired rate towards the target
|
||
calc_loiter(long_error, lat_error);
|
||
|
||
}else if(wp_control == CIRCLE_MODE) {
|
||
|
||
// check if we have missed the WP
|
||
int16_t loiter_delta = (target_bearing - old_target_bearing)/100;
|
||
|
||
// reset the old value
|
||
old_target_bearing = target_bearing;
|
||
|
||
// wrap values
|
||
if (loiter_delta > 180) loiter_delta -= 360;
|
||
if (loiter_delta < -180) loiter_delta += 360;
|
||
|
||
// sum the angle around the WP
|
||
loiter_sum += loiter_delta;
|
||
|
||
// create a virtual waypoint that circles the next_WP
|
||
// Count the degrees we have circulated the WP
|
||
//int16_t circle_angle = wrap_360(target_bearing + 3000 + 18000) / 100;
|
||
|
||
circle_angle += (circle_rate * dTnav);
|
||
//1° = 0.0174532925 radians
|
||
|
||
// wrap
|
||
if (circle_angle > 6.28318531)
|
||
circle_angle -= 6.28318531;
|
||
|
||
next_WP.lng = circle_WP.lng + (g.loiter_radius * 100 * cos(1.57 - circle_angle) * scaleLongUp);
|
||
next_WP.lat = circle_WP.lat + (g.loiter_radius * 100 * sin(1.57 - circle_angle));
|
||
|
||
// use error as the desired rate towards the target
|
||
// nav_lon, nav_lat is calculated
|
||
|
||
if(wp_distance > 400) {
|
||
calc_nav_rate(get_desired_speed(g.waypoint_speed_max, true));
|
||
}else{
|
||
// calc the lat and long error to the target
|
||
calc_location_error(&next_WP);
|
||
|
||
calc_loiter(long_error, lat_error);
|
||
}
|
||
|
||
//CIRCLE: angle:29, dist:0, lat:400, lon:242
|
||
|
||
// debug
|
||
//int16_t angleTest = degrees(circle_angle);
|
||
//int16_t nroll = nav_roll;
|
||
//int16_t npitch = nav_pitch;
|
||
//Serial.printf("CIRCLE: angle:%d, dist:%d, X:%d, Y:%d, P:%d, R:%d \n", angleTest, (int)wp_distance , (int)long_error, (int)lat_error, npitch, nroll);
|
||
|
||
}else if(wp_control == WP_MODE) {
|
||
// calc error to target
|
||
calc_location_error(&next_WP);
|
||
|
||
int16_t speed = get_desired_speed(g.waypoint_speed_max, slow_wp);
|
||
// use error as the desired rate towards the target
|
||
calc_nav_rate(speed);
|
||
|
||
}else if(wp_control == NO_NAV_MODE) {
|
||
// clear out our nav so we can do things like land straight down
|
||
// or change Loiter position
|
||
|
||
// We bring copy over our Iterms for wind control, but we don't navigate
|
||
nav_lon = g.pid_loiter_rate_lon.get_integrator();
|
||
nav_lat = g.pid_loiter_rate_lon.get_integrator();
|
||
|
||
nav_lon = constrain(nav_lon, -2000, 2000); // 20°
|
||
nav_lat = constrain(nav_lat, -2000, 2000); // 20°
|
||
}
|
||
}
|
||
|
||
static void update_auto_yaw()
|
||
{
|
||
if(wp_control == CIRCLE_MODE) {
|
||
auto_yaw = get_bearing_cd(¤t_loc, &circle_WP);
|
||
|
||
}else if(wp_control == LOITER_MODE) {
|
||
// just hold nav_yaw
|
||
|
||
}else if(yaw_tracking == MAV_ROI_LOCATION) {
|
||
auto_yaw = get_bearing_cd(¤t_loc, &target_WP);
|
||
|
||
}else if(yaw_tracking == MAV_ROI_WPNEXT) {
|
||
// Point towards next WP
|
||
auto_yaw = original_target_bearing;
|
||
}
|
||
}
|
||
/*
|
||
* MAV_ROI_NONE=0, No region of interest. |
|
||
* MAV_ROI_WPNEXT=1, Point toward next MISSION. |
|
||
* MAV_ROI_WPINDEX=2, Point toward given MISSION. |
|
||
* MAV_ROI_LOCATION=3, Point toward fixed location. |
|
||
* MAV_ROI_TARGET=4, Point toward of given id.
|
||
* MAV_ROI_ENUM_END=5,
|
||
*/
|