ardupilot/ArduCopter/setup.pde

1168 lines
34 KiB
Plaintext

// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
#if CLI_ENABLED == ENABLED
// Functions called from the setup menu
static int8_t setup_radio (uint8_t argc, const Menu::arg *argv);
static int8_t setup_motors (uint8_t argc, const Menu::arg *argv);
static int8_t setup_accel (uint8_t argc, const Menu::arg *argv);
static int8_t setup_accel_scale (uint8_t argc, const Menu::arg *argv);
static int8_t setup_frame (uint8_t argc, const Menu::arg *argv);
static int8_t setup_factory (uint8_t argc, const Menu::arg *argv);
static int8_t setup_erase (uint8_t argc, const Menu::arg *argv);
static int8_t setup_flightmodes (uint8_t argc, const Menu::arg *argv);
static int8_t setup_batt_monitor (uint8_t argc, const Menu::arg *argv);
static int8_t setup_sonar (uint8_t argc, const Menu::arg *argv);
static int8_t setup_compass (uint8_t argc, const Menu::arg *argv);
static int8_t setup_tune (uint8_t argc, const Menu::arg *argv);
static int8_t setup_range (uint8_t argc, const Menu::arg *argv);
//static int8_t setup_mag_offset (uint8_t argc, const Menu::arg *argv);
static int8_t setup_declination (uint8_t argc, const Menu::arg *argv);
static int8_t setup_optflow (uint8_t argc, const Menu::arg *argv);
#if FRAME_CONFIG == HELI_FRAME
static int8_t setup_heli (uint8_t argc, const Menu::arg *argv);
static int8_t setup_gyro (uint8_t argc, const Menu::arg *argv);
#endif
// Command/function table for the setup menu
const struct Menu::command setup_menu_commands[] PROGMEM = {
// command function called
// ======= ===============
{"erase", setup_erase},
{"reset", setup_factory},
{"radio", setup_radio},
{"frame", setup_frame},
{"motors", setup_motors},
{"level", setup_accel},
{"accel", setup_accel_scale},
{"modes", setup_flightmodes},
{"battery", setup_batt_monitor},
{"sonar", setup_sonar},
{"compass", setup_compass},
{"tune", setup_tune},
{"range", setup_range},
// {"offsets", setup_mag_offset},
{"declination", setup_declination},
{"optflow", setup_optflow},
#if FRAME_CONFIG == HELI_FRAME
{"heli", setup_heli},
{"gyro", setup_gyro},
#endif
{"show", setup_show}
};
// Create the setup menu object.
MENU(setup_menu, "setup", setup_menu_commands);
// Called from the top-level menu to run the setup menu.
static int8_t
setup_mode(uint8_t argc, const Menu::arg *argv)
{
// Give the user some guidance
cliSerial->printf_P(PSTR("Setup Mode\n\n\n"));
//"\n"
//"IMPORTANT: if you have not previously set this system up, use the\n"
//"'reset' command to initialize the EEPROM to sensible default values\n"
//"and then the 'radio' command to configure for your radio.\n"
//"\n"));
if(g.rc_1.radio_min >= 1300) {
delay(1000);
cliSerial->printf_P(PSTR("\n!Warning, radio not configured!"));
delay(1000);
cliSerial->printf_P(PSTR("\n Type 'radio' now.\n\n"));
}
// Run the setup menu. When the menu exits, we will return to the main menu.
setup_menu.run();
return 0;
}
// Print the current configuration.
// Called by the setup menu 'show' command.
static int8_t
setup_show(uint8_t argc, const Menu::arg *argv)
{
// clear the area
print_blanks(8);
report_version();
report_radio();
report_frame();
report_batt_monitor();
report_sonar();
//report_gains();
//report_xtrack();
//report_throttle();
report_flight_modes();
report_ins();
report_compass();
report_optflow();
#if FRAME_CONFIG == HELI_FRAME
report_heli();
report_gyro();
#endif
AP_Param::show_all();
return(0);
}
// Initialise the EEPROM to 'factory' settings (mostly defined in APM_Config.h or via defaults).
// Called by the setup menu 'factoryreset' command.
static int8_t
setup_factory(uint8_t argc, const Menu::arg *argv)
{
int16_t c;
cliSerial->printf_P(PSTR("\n'Y' = factory reset, any other key to abort:\n"));
do {
c = cliSerial->read();
} while (-1 == c);
if (('y' != c) && ('Y' != c))
return(-1);
AP_Param::erase_all();
cliSerial->printf_P(PSTR("\nReboot APM"));
delay(1000);
//default_gains();
for (;; ) {
}
// note, cannot actually return here
return(0);
}
// Perform radio setup.
// Called by the setup menu 'radio' command.
static int8_t
setup_radio(uint8_t argc, const Menu::arg *argv)
{
cliSerial->println_P(PSTR("\n\nRadio Setup:"));
uint8_t i;
for(i = 0; i < 100; i++) {
delay(20);
read_radio();
}
if(g.rc_1.radio_in < 500) {
while(1) {
//cliSerial->printf_P(PSTR("\nNo radio; Check connectors."));
delay(1000);
// stop here
}
}
g.rc_1.radio_min = g.rc_1.radio_in;
g.rc_2.radio_min = g.rc_2.radio_in;
g.rc_3.radio_min = g.rc_3.radio_in;
g.rc_4.radio_min = g.rc_4.radio_in;
g.rc_5.radio_min = g.rc_5.radio_in;
g.rc_6.radio_min = g.rc_6.radio_in;
g.rc_7.radio_min = g.rc_7.radio_in;
g.rc_8.radio_min = g.rc_8.radio_in;
g.rc_1.radio_max = g.rc_1.radio_in;
g.rc_2.radio_max = g.rc_2.radio_in;
g.rc_3.radio_max = g.rc_3.radio_in;
g.rc_4.radio_max = g.rc_4.radio_in;
g.rc_5.radio_max = g.rc_5.radio_in;
g.rc_6.radio_max = g.rc_6.radio_in;
g.rc_7.radio_max = g.rc_7.radio_in;
g.rc_8.radio_max = g.rc_8.radio_in;
g.rc_1.radio_trim = g.rc_1.radio_in;
g.rc_2.radio_trim = g.rc_2.radio_in;
g.rc_4.radio_trim = g.rc_4.radio_in;
// 3 is not trimed
g.rc_5.radio_trim = 1500;
g.rc_6.radio_trim = 1500;
g.rc_7.radio_trim = 1500;
g.rc_8.radio_trim = 1500;
cliSerial->printf_P(PSTR("\nMove all controls to extremes. Enter to save: "));
while(1) {
delay(20);
// Filters radio input - adjust filters in the radio.pde file
// ----------------------------------------------------------
read_radio();
g.rc_1.update_min_max();
g.rc_2.update_min_max();
g.rc_3.update_min_max();
g.rc_4.update_min_max();
g.rc_5.update_min_max();
g.rc_6.update_min_max();
g.rc_7.update_min_max();
g.rc_8.update_min_max();
if(cliSerial->available() > 0) {
delay(20);
while (cliSerial->read() != -1); /* flush */
g.rc_1.save_eeprom();
g.rc_2.save_eeprom();
g.rc_3.save_eeprom();
g.rc_4.save_eeprom();
g.rc_5.save_eeprom();
g.rc_6.save_eeprom();
g.rc_7.save_eeprom();
g.rc_8.save_eeprom();
print_done();
break;
}
}
report_radio();
return(0);
}
static int8_t
setup_motors(uint8_t argc, const Menu::arg *argv)
{
cliSerial->printf_P(PSTR(
"Now connect the main lipo and follow the instruction on the wiki for your frame setup.\n"
"For security remember to disconnect the main lipo after the test, then hit any key to exit.\n"
"Any key to exit.\n"));
while(1) {
delay(20);
read_radio();
motors.output_test();
if(cliSerial->available() > 0) {
g.esc_calibrate.set_and_save(0);
return(0);
}
}
}
static int8_t
setup_accel(uint8_t argc, const Menu::arg *argv)
{
ins.init(AP_InertialSensor::COLD_START,
ins_sample_rate,
flash_leds);
ins.init_accel(flash_leds);
ahrs.set_trim(Vector3f(0,0,0)); // clear out saved trim
report_ins();
return(0);
}
/*
handle full accelerometer calibration via user dialog
*/
static void setup_printf_P(const prog_char_t *fmt, ...)
{
va_list arg_list;
va_start(arg_list, fmt);
cliSerial->printf_P(fmt, arg_list);
va_end(arg_list);
}
static void setup_wait_key(void)
{
// wait for user input
while (!cliSerial->available()) {
delay(20);
}
// clear input buffer
while( cliSerial->available() ) {
cliSerial->read();
}
}
static int8_t
setup_accel_scale(uint8_t argc, const Menu::arg *argv)
{
cliSerial->println_P(PSTR("Initialising gyros"));
ins.init(AP_InertialSensor::COLD_START,
ins_sample_rate,
flash_leds);
AP_InertialSensor_UserInteractStream interact(hal.console);
ins.calibrate_accel(flash_leds, &interact);
report_ins();
return(0);
}
static int8_t
setup_frame(uint8_t argc, const Menu::arg *argv)
{
if (!strcmp_P(argv[1].str, PSTR("x"))) {
g.frame_orientation.set_and_save(X_FRAME);
} else if (!strcmp_P(argv[1].str, PSTR("p"))) {
g.frame_orientation.set_and_save(PLUS_FRAME);
} else if (!strcmp_P(argv[1].str, PSTR("+"))) {
g.frame_orientation.set_and_save(PLUS_FRAME);
} else if (!strcmp_P(argv[1].str, PSTR("v"))) {
g.frame_orientation.set_and_save(V_FRAME);
}else{
cliSerial->printf_P(PSTR("\nOp:[x,+,v]\n"));
report_frame();
return 0;
}
report_frame();
return 0;
}
static int8_t
setup_flightmodes(uint8_t argc, const Menu::arg *argv)
{
uint8_t _switchPosition = 0;
uint8_t _oldSwitchPosition = 0;
int8_t mode = 0;
cliSerial->printf_P(PSTR("\nMode switch to edit, aileron: select modes, rudder: Simple on/off\n"));
print_hit_enter();
while(1) {
delay(20);
read_radio();
_switchPosition = readSwitch();
// look for control switch change
if (_oldSwitchPosition != _switchPosition) {
mode = flight_modes[_switchPosition];
mode = constrain(mode, 0, NUM_MODES-1);
// update the user
print_switch(_switchPosition, mode, (g.simple_modes & (1<<_switchPosition)));
// Remember switch position
_oldSwitchPosition = _switchPosition;
}
// look for stick input
if (abs(g.rc_1.control_in) > 3000) {
mode++;
if(mode >= NUM_MODES)
mode = 0;
// save new mode
flight_modes[_switchPosition] = mode;
// print new mode
print_switch(_switchPosition, mode, (g.simple_modes & (1<<_switchPosition)));
delay(500);
}
// look for stick input
if (g.rc_4.control_in > 3000) {
g.simple_modes |= (1<<_switchPosition);
// print new mode
print_switch(_switchPosition, mode, (g.simple_modes & (1<<_switchPosition)));
delay(500);
}
// look for stick input
if (g.rc_4.control_in < -3000) {
g.simple_modes &= ~(1<<_switchPosition);
// print new mode
print_switch(_switchPosition, mode, (g.simple_modes & (1<<_switchPosition)));
delay(500);
}
// escape hatch
if(cliSerial->available() > 0) {
for (mode = 0; mode < 6; mode++)
flight_modes[mode].save();
g.simple_modes.save();
print_done();
report_flight_modes();
return (0);
}
}
}
static int8_t
setup_declination(uint8_t argc, const Menu::arg *argv)
{
compass.set_declination(radians(argv[1].f));
report_compass();
return 0;
}
static int8_t
setup_tune(uint8_t argc, const Menu::arg *argv)
{
g.radio_tuning.set_and_save(argv[1].i);
//g.radio_tuning_high.set_and_save(1000);
//g.radio_tuning_low.set_and_save(0);
report_tuning();
return 0;
}
static int8_t
setup_range(uint8_t argc, const Menu::arg *argv)
{
cliSerial->printf_P(PSTR("\nCH 6 Ranges are divided by 1000: [low, high]\n"));
g.radio_tuning_low.set_and_save(argv[1].i);
g.radio_tuning_high.set_and_save(argv[2].i);
report_tuning();
return 0;
}
static int8_t
setup_erase(uint8_t argc, const Menu::arg *argv)
{
zero_eeprom();
return 0;
}
static int8_t
setup_compass(uint8_t argc, const Menu::arg *argv)
{
if (!strcmp_P(argv[1].str, PSTR("on"))) {
g.compass_enabled.set_and_save(true);
init_compass();
} else if (!strcmp_P(argv[1].str, PSTR("off"))) {
clear_offsets();
g.compass_enabled.set_and_save(false);
}else{
cliSerial->printf_P(PSTR("\nOp:[on,off]\n"));
report_compass();
return 0;
}
g.compass_enabled.save();
report_compass();
return 0;
}
static int8_t
setup_batt_monitor(uint8_t argc, const Menu::arg *argv)
{
if (!strcmp_P(argv[1].str, PSTR("off"))) {
g.battery_monitoring.set_and_save(0);
} else if(argv[1].i > 0 && argv[1].i <= 4) {
g.battery_monitoring.set_and_save(argv[1].i);
} else {
cliSerial->printf_P(PSTR("\nOp: off, 3-4"));
}
report_batt_monitor();
return 0;
}
static int8_t
setup_sonar(uint8_t argc, const Menu::arg *argv)
{
if (!strcmp_P(argv[1].str, PSTR("on"))) {
g.sonar_enabled.set_and_save(true);
} else if (!strcmp_P(argv[1].str, PSTR("off"))) {
g.sonar_enabled.set_and_save(false);
} else if (argc > 1 && (argv[1].i >= 0 && argv[1].i <= 3)) {
g.sonar_enabled.set_and_save(true); // if you set the sonar type, surely you want it on
g.sonar_type.set_and_save(argv[1].i);
}else{
cliSerial->printf_P(PSTR("\nOp:[on, off, 0-3]\n"));
report_sonar();
return 0;
}
report_sonar();
return 0;
}
#if FRAME_CONFIG == HELI_FRAME
// Perform heli setup.
// Called by the setup menu 'radio' command.
static int8_t
setup_heli(uint8_t argc, const Menu::arg *argv)
{
uint8_t active_servo = 0;
int16_t value = 0;
int16_t temp;
int16_t state = 0; // 0 = set rev+pos, 1 = capture min/max
int16_t max_roll=0, max_pitch=0, min_collective=0, max_collective=0, min_tail=0, max_tail=0;
// initialise swash plate
motors.init_swash();
// source swash plate movements directly from radio
motors.servo_manual = true;
// display initial settings
report_heli();
// display help
cliSerial->printf_P(PSTR("Instructions:"));
print_divider();
cliSerial->printf_P(PSTR("\td\t\tdisplay settings\n"));
cliSerial->printf_P(PSTR("\t1~4\t\tselect servo\n"));
cliSerial->printf_P(PSTR("\ta or z\t\tmove mid up/down\n"));
cliSerial->printf_P(PSTR("\tc\t\tset coll when blade pitch zero\n"));
cliSerial->printf_P(PSTR("\tm\t\tset roll, pitch, coll min/max\n"));
cliSerial->printf_P(PSTR("\tp<angle>\tset pos (i.e. p0 = front, p90 = right)\n"));
cliSerial->printf_P(PSTR("\tr\t\treverse servo\n"));
cliSerial->printf_P(PSTR("\tu a|d\t\tupdate rate (a=analog servo, d=digital)\n"));
cliSerial->printf_P(PSTR("\tt<angle>\tset trim (-500 ~ 500)\n"));
cliSerial->printf_P(PSTR("\tx\t\texit & save\n"));
// start capturing
while( value != 'x' ) {
// read radio although we don't use it yet
read_radio();
// allow swash plate to move
motors.output_armed();
// record min/max
if( state == 1 ) {
if( abs(g.rc_1.control_in) > max_roll )
max_roll = abs(g.rc_1.control_in);
if( abs(g.rc_2.control_in) > max_pitch )
max_pitch = abs(g.rc_2.control_in);
if( g.rc_3.radio_out < min_collective )
min_collective = g.rc_3.radio_out;
if( g.rc_3.radio_out > max_collective )
max_collective = g.rc_3.radio_out;
min_tail = min(g.rc_4.radio_out, min_tail);
max_tail = max(g.rc_4.radio_out, max_tail);
}
if( cliSerial->available() ) {
value = cliSerial->read();
// process the user's input
switch( value ) {
case '1':
active_servo = CH_1;
break;
case '2':
active_servo = CH_2;
break;
case '3':
active_servo = CH_3;
break;
case '4':
active_servo = CH_4;
break;
case 'a':
case 'A':
heli_get_servo(active_servo)->radio_trim += 10;
break;
case 'c':
case 'C':
if( g.rc_3.radio_out >= 900 && g.rc_3.radio_out <= 2100 ) {
motors.collective_mid = g.rc_3.radio_out;
cliSerial->printf_P(PSTR("Collective when blade pitch at zero: %d\n"),(int)motors.collective_mid);
}
break;
case 'd':
case 'D':
// display settings
report_heli();
break;
case 'm':
case 'M':
if( state == 0 ) {
state = 1; // switch to capture min/max mode
cliSerial->printf_P(PSTR("Move coll, roll, pitch and tail to extremes, press 'm' when done\n"));
// reset servo ranges
motors.roll_max = motors.pitch_max = 4500;
motors.collective_min = 1000;
motors.collective_max = 2000;
motors._servo_4->radio_min = 1000;
motors._servo_4->radio_max = 2000;
// set sensible values in temp variables
max_roll = abs(g.rc_1.control_in);
max_pitch = abs(g.rc_2.control_in);
min_collective = 2000;
max_collective = 1000;
min_tail = max_tail = abs(g.rc_4.radio_out);
}else{
state = 0; // switch back to normal mode
// double check values aren't totally terrible
if( max_roll <= 1000 || max_pitch <= 1000 || (max_collective - min_collective < 200) || (max_tail - min_tail < 200) || min_tail < 1000 || max_tail > 2000 )
cliSerial->printf_P(PSTR("Invalid min/max captured roll:%d, pitch:%d, collective min: %d max: %d, tail min:%d max:%d\n"),max_roll,max_pitch,min_collective,max_collective,min_tail,max_tail);
else{
motors.roll_max = max_roll;
motors.pitch_max = max_pitch;
motors.collective_min = min_collective;
motors.collective_max = max_collective;
motors._servo_4->radio_min = min_tail;
motors._servo_4->radio_max = max_tail;
// reinitialise swash
motors.init_swash();
// display settings
report_heli();
}
}
break;
case 'p':
case 'P':
temp = read_num_from_serial();
if( temp >= -360 && temp <= 360 ) {
if( active_servo == CH_1 )
motors.servo1_pos = temp;
if( active_servo == CH_2 )
motors.servo2_pos = temp;
if( active_servo == CH_3 )
motors.servo3_pos = temp;
motors.init_swash();
cliSerial->printf_P(PSTR("Servo %d\t\tpos:%d\n"),active_servo+1, temp);
}
break;
case 'r':
case 'R':
heli_get_servo(active_servo)->set_reverse(!heli_get_servo(active_servo)->get_reverse());
break;
case 't':
case 'T':
temp = read_num_from_serial();
if( temp > 1000 )
temp -= 1500;
if( temp > -500 && temp < 500 ) {
heli_get_servo(active_servo)->radio_trim = 1500 + temp;
motors.init_swash();
cliSerial->printf_P(PSTR("Servo %d\t\ttrim:%d\n"),active_servo+1, 1500 + temp);
}
break;
case 'u':
case 'U':
temp = 0;
// delay up to 2 seconds for servo type from user
while( !cliSerial->available() && temp < 20 ) {
temp++;
delay(100);
}
if( cliSerial->available() ) {
value = cliSerial->read();
if( value == 'a' || value == 'A' ) {
g.rc_speed.set_and_save(AP_MOTORS_HELI_SPEED_ANALOG_SERVOS);
//motors._speed_hz = AP_MOTORS_HELI_SPEED_ANALOG_SERVOS; // need to force this update to take effect immediately
cliSerial->printf_P(PSTR("Analog Servo %dhz\n"),(int)g.rc_speed);
}
if( value == 'd' || value == 'D' ) {
g.rc_speed.set_and_save(AP_MOTORS_HELI_SPEED_ANALOG_SERVOS);
//motors._speed_hz = AP_MOTORS_HELI_SPEED_ANALOG_SERVOS; // need to force this update to take effect immediately
cliSerial->printf_P(PSTR("Digital Servo %dhz\n"),(int)g.rc_speed);
}
}
break;
case 'z':
case 'Z':
heli_get_servo(active_servo)->radio_trim -= 10;
break;
}
}
delay(20);
}
// display final settings
report_heli();
// save to eeprom
motors._servo_1->save_eeprom();
motors._servo_2->save_eeprom();
motors._servo_3->save_eeprom();
motors._servo_4->save_eeprom();
motors.servo1_pos.save();
motors.servo2_pos.save();
motors.servo3_pos.save();
motors.roll_max.save();
motors.pitch_max.save();
motors.collective_min.save();
motors.collective_max.save();
motors.collective_mid.save();
// return swash plate movements to attitude controller
motors.servo_manual = false;
return(0);
}
// setup for external tail gyro (for heli only)
static int8_t
setup_gyro(uint8_t argc, const Menu::arg *argv)
{
if (!strcmp_P(argv[1].str, PSTR("on"))) {
motors.ext_gyro_enabled.set_and_save(true);
// optionally capture the gain
if( argc >= 2 && argv[2].i >= 1000 && argv[2].i <= 2000 ) {
motors.ext_gyro_gain = argv[2].i;
motors.ext_gyro_gain.save();
}
} else if (!strcmp_P(argv[1].str, PSTR("off"))) {
motors.ext_gyro_enabled.set_and_save(false);
// capture gain if user simply provides a number
} else if( argv[1].i >= 1000 && argv[1].i <= 2000 ) {
motors.ext_gyro_enabled.set_and_save(true);
motors.ext_gyro_gain = argv[1].i;
motors.ext_gyro_gain.save();
}else{
cliSerial->printf_P(PSTR("\nOp:[on, off] gain\n"));
}
report_gyro();
return 0;
}
#endif // FRAME_CONFIG == HELI
static void clear_offsets()
{
Vector3f _offsets(0.0,0.0,0.0);
compass.set_offsets(_offsets);
compass.save_offsets();
}
static int8_t
setup_optflow(uint8_t argc, const Menu::arg *argv)
{
#if OPTFLOW == ENABLED
if (!strcmp_P(argv[1].str, PSTR("on"))) {
g.optflow_enabled = true;
init_optflow();
} else if (!strcmp_P(argv[1].str, PSTR("off"))) {
g.optflow_enabled = false;
}else{
cliSerial->printf_P(PSTR("\nOp:[on, off]\n"));
report_optflow();
return 0;
}
g.optflow_enabled.save();
report_optflow();
#endif // OPTFLOW == ENABLED
return 0;
}
/***************************************************************************/
// CLI reports
/***************************************************************************/
static void report_batt_monitor()
{
cliSerial->printf_P(PSTR("\nBatt Mon:\n"));
print_divider();
if(g.battery_monitoring == 0) print_enabled(false);
if(g.battery_monitoring == 3) cliSerial->printf_P(PSTR("volts"));
if(g.battery_monitoring == 4) cliSerial->printf_P(PSTR("volts and cur"));
print_blanks(2);
}
static void report_wp(uint8_t index = 255)
{
if(index == 255) {
for(uint8_t i = 0; i < g.command_total; i++) {
struct Location temp = get_cmd_with_index(i);
print_wp(&temp, i);
}
}else{
struct Location temp = get_cmd_with_index(index);
print_wp(&temp, index);
}
}
static void report_sonar()
{
cliSerial->printf_P(PSTR("Sonar\n"));
print_divider();
print_enabled(g.sonar_enabled.get());
cliSerial->printf_P(PSTR("Type: %d (0=XL, 1=LV, 2=XLL, 3=HRLV)"), (int)g.sonar_type);
print_blanks(2);
}
static void report_frame()
{
cliSerial->printf_P(PSTR("Frame\n"));
print_divider();
#if FRAME_CONFIG == QUAD_FRAME
cliSerial->printf_P(PSTR("Quad frame\n"));
#elif FRAME_CONFIG == TRI_FRAME
cliSerial->printf_P(PSTR("TRI frame\n"));
#elif FRAME_CONFIG == HEXA_FRAME
cliSerial->printf_P(PSTR("Hexa frame\n"));
#elif FRAME_CONFIG == Y6_FRAME
cliSerial->printf_P(PSTR("Y6 frame\n"));
#elif FRAME_CONFIG == OCTA_FRAME
cliSerial->printf_P(PSTR("Octa frame\n"));
#elif FRAME_CONFIG == HELI_FRAME
cliSerial->printf_P(PSTR("Heli frame\n"));
#endif
#if FRAME_CONFIG != HELI_FRAME
if(g.frame_orientation == X_FRAME)
cliSerial->printf_P(PSTR("X mode\n"));
else if(g.frame_orientation == PLUS_FRAME)
cliSerial->printf_P(PSTR("+ mode\n"));
else if(g.frame_orientation == V_FRAME)
cliSerial->printf_P(PSTR("V mode\n"));
#endif
print_blanks(2);
}
static void report_radio()
{
cliSerial->printf_P(PSTR("Radio\n"));
print_divider();
// radio
print_radio_values();
print_blanks(2);
}
static void report_ins()
{
cliSerial->printf_P(PSTR("INS\n"));
print_divider();
print_gyro_offsets();
print_accel_offsets_and_scaling();
print_blanks(2);
}
static void report_compass()
{
cliSerial->printf_P(PSTR("Compass\n"));
print_divider();
print_enabled(g.compass_enabled);
// mag declination
cliSerial->printf_P(PSTR("Mag Dec: %4.4f\n"),
degrees(compass.get_declination()));
Vector3f offsets = compass.get_offsets();
// mag offsets
cliSerial->printf_P(PSTR("Mag off: %4.4f, %4.4f, %4.4f"),
offsets.x,
offsets.y,
offsets.z);
print_blanks(2);
}
static void report_flight_modes()
{
cliSerial->printf_P(PSTR("Flight modes\n"));
print_divider();
for(int16_t i = 0; i < 6; i++ ) {
print_switch(i, flight_modes[i], (g.simple_modes & (1<<i)));
}
print_blanks(2);
}
void report_optflow()
{
#if OPTFLOW == ENABLED
cliSerial->printf_P(PSTR("OptFlow\n"));
print_divider();
print_enabled(g.optflow_enabled);
// field of view
//cliSerial->printf_P(PSTR("FOV: %4.0f\n"),
// degrees(g.optflow_fov));
print_blanks(2);
#endif // OPTFLOW == ENABLED
}
#if FRAME_CONFIG == HELI_FRAME
static void report_heli()
{
cliSerial->printf_P(PSTR("Heli\n"));
print_divider();
// main servo settings
cliSerial->printf_P(PSTR("Servo \tpos \tmin \tmax \trev\n"));
cliSerial->printf_P(PSTR("1:\t%d \t%d \t%d \t%d\n"),(int)motors.servo1_pos, (int)motors._servo_1->radio_min, (int)motors._servo_1->radio_max, (int)motors._servo_1->get_reverse());
cliSerial->printf_P(PSTR("2:\t%d \t%d \t%d \t%d\n"),(int)motors.servo2_pos, (int)motors._servo_2->radio_min, (int)motors._servo_2->radio_max, (int)motors._servo_2->get_reverse());
cliSerial->printf_P(PSTR("3:\t%d \t%d \t%d \t%d\n"),(int)motors.servo3_pos, (int)motors._servo_3->radio_min, (int)motors._servo_3->radio_max, (int)motors._servo_3->get_reverse());
cliSerial->printf_P(PSTR("tail:\t\t%d \t%d \t%d\n"), (int)motors._servo_4->radio_min, (int)motors._servo_4->radio_max, (int)motors._servo_4->get_reverse());
cliSerial->printf_P(PSTR("roll max: \t%d\n"), (int)motors.roll_max);
cliSerial->printf_P(PSTR("pitch max: \t%d\n"), (int)motors.pitch_max);
cliSerial->printf_P(PSTR("coll min:\t%d\t mid:%d\t max:%d\n"),(int)motors.collective_min, (int)motors.collective_mid, (int)motors.collective_max);
// calculate and print servo rate
cliSerial->printf_P(PSTR("servo rate:\t%d hz\n"),(int)g.rc_speed);
print_blanks(2);
}
static void report_gyro()
{
cliSerial->printf_P(PSTR("Gyro:\n"));
print_divider();
print_enabled( motors.ext_gyro_enabled );
if( motors.ext_gyro_enabled )
cliSerial->printf_P(PSTR("gain: %d"),(int)motors.ext_gyro_gain);
print_blanks(2);
}
#endif // FRAME_CONFIG == HELI_FRAME
/***************************************************************************/
// CLI utilities
/***************************************************************************/
/*static void
* print_PID(PI * pid)
* {
* cliSerial->printf_P(PSTR("P: %4.2f, I:%4.2f, IMAX:%ld\n"),
* pid->kP(),
* pid->kI(),
* (long)pid->imax());
* }
*/
static void
print_radio_values()
{
cliSerial->printf_P(PSTR("CH1: %d | %d\n"), (int)g.rc_1.radio_min, (int)g.rc_1.radio_max);
cliSerial->printf_P(PSTR("CH2: %d | %d\n"), (int)g.rc_2.radio_min, (int)g.rc_2.radio_max);
cliSerial->printf_P(PSTR("CH3: %d | %d\n"), (int)g.rc_3.radio_min, (int)g.rc_3.radio_max);
cliSerial->printf_P(PSTR("CH4: %d | %d\n"), (int)g.rc_4.radio_min, (int)g.rc_4.radio_max);
cliSerial->printf_P(PSTR("CH5: %d | %d\n"), (int)g.rc_5.radio_min, (int)g.rc_5.radio_max);
cliSerial->printf_P(PSTR("CH6: %d | %d\n"), (int)g.rc_6.radio_min, (int)g.rc_6.radio_max);
cliSerial->printf_P(PSTR("CH7: %d | %d\n"), (int)g.rc_7.radio_min, (int)g.rc_7.radio_max);
//cliSerial->printf_P(PSTR("CH8: %d | %d\n"), (int)g.rc_8.radio_min, (int)g.rc_8.radio_max);
}
static void
print_switch(uint8_t p, uint8_t m, bool b)
{
cliSerial->printf_P(PSTR("Pos %d:\t"),p);
print_flight_mode(m);
cliSerial->printf_P(PSTR(",\t\tSimple: "));
if(b)
cliSerial->printf_P(PSTR("ON\n"));
else
cliSerial->printf_P(PSTR("OFF\n"));
}
static void
print_done()
{
cliSerial->printf_P(PSTR("\nSaved\n"));
}
static void zero_eeprom(void)
{
cliSerial->printf_P(PSTR("\nErasing EEPROM\n"));
for (uint16_t i = 0; i < EEPROM_MAX_ADDR; i++) {
hal.storage->write_byte(i, 0);
}
cliSerial->printf_P(PSTR("done\n"));
}
static void
print_accel_offsets_and_scaling(void)
{
Vector3f accel_offsets = ins.get_accel_offsets();
Vector3f accel_scale = ins.get_accel_scale();
cliSerial->printf_P(PSTR("A_off: %4.2f, %4.2f, %4.2f\tA_scale: %4.2f, %4.2f, %4.2f\n"),
(float)accel_offsets.x, // Pitch
(float)accel_offsets.y, // Roll
(float)accel_offsets.z, // YAW
(float)accel_scale.x, // Pitch
(float)accel_scale.y, // Roll
(float)accel_scale.z); // YAW
}
static void
print_gyro_offsets(void)
{
Vector3f gyro_offsets = ins.get_gyro_offsets();
cliSerial->printf_P(PSTR("G_off: %4.2f, %4.2f, %4.2f\n"),
(float)gyro_offsets.x,
(float)gyro_offsets.y,
(float)gyro_offsets.z);
}
#if FRAME_CONFIG == HELI_FRAME
static RC_Channel *
heli_get_servo(int16_t servo_num){
if( servo_num == CH_1 )
return motors._servo_1;
if( servo_num == CH_2 )
return motors._servo_2;
if( servo_num == CH_3 )
return motors._servo_3;
if( servo_num == CH_4 )
return motors._servo_4;
return NULL;
}
// Used to read integer values from the serial port
static int16_t read_num_from_serial() {
uint8_t index = 0;
uint8_t timeout = 0;
char data[5] = "";
do {
if (cliSerial->available() == 0) {
delay(10);
timeout++;
}else{
data[index] = cliSerial->read();
timeout = 0;
index++;
}
} while (timeout < 5 && index < 5);
return atoi(data);
}
#endif
#endif // CLI_ENABLED
static void
print_blanks(int16_t num)
{
while(num > 0) {
num--;
cliSerial->println("");
}
}
static bool
wait_for_yes()
{
int c;
while (cliSerial->read() != -1); /* flush */
cliSerial->printf_P(PSTR("Y to save\n"));
do {
c = cliSerial->read();
} while (-1 == c);
if (('y' == c) || ('Y' == c))
return true;
else
return false;
}
static void
print_divider(void)
{
for (int i = 0; i < 40; i++) {
cliSerial->print_P(PSTR("-"));
}
cliSerial->println();
}
static void print_enabled(bool b)
{
if(b)
cliSerial->print_P(PSTR("en"));
else
cliSerial->print_P(PSTR("dis"));
cliSerial->print_P(PSTR("abled\n"));
}
static void
init_esc()
{
motors.enable();
motors.armed(true);
while(1) {
read_radio();
delay(100);
dancing_light();
motors.throttle_pass_through();
}
}
static void print_wp(struct Location *cmd, uint8_t index)
{
//float t1 = (float)cmd->lat / t7;
//float t2 = (float)cmd->lng / t7;
cliSerial->printf_P(PSTR("cmd#: %d | %d, %d, %d, %ld, %ld, %ld\n"),
index,
cmd->id,
cmd->options,
cmd->p1,
cmd->alt,
cmd->lat,
cmd->lng);
/*
cliSerial->printf_P(PSTR("cmd#: %d id:%d op:%d p1:%d p2:%ld p3:%4.7f p4:%4.7f \n"),
(int)index,
(int)cmd->id,
(int)cmd->options,
(int)cmd->p1,
(long)cmd->alt,
t1,
t2);
*/
}
static void report_version()
{
cliSerial->printf_P(PSTR("FW Ver: %d\n"),(int)g.k_format_version);
print_divider();
print_blanks(2);
}
static void report_tuning()
{
cliSerial->printf_P(PSTR("\nTUNE:\n"));
print_divider();
if (g.radio_tuning == 0) {
print_enabled(g.radio_tuning.get());
}else{
float low = (float)g.radio_tuning_low.get() / 1000;
float high = (float)g.radio_tuning_high.get() / 1000;
cliSerial->printf_P(PSTR(" %d, Low:%1.4f, High:%1.4f\n"),(int)g.radio_tuning.get(), low, high);
}
print_blanks(2);
}