ardupilot/libraries/AC_PrecLand/AC_PrecLand.h

158 lines
6.8 KiB
C++

#pragma once
#include <AP_Math/AP_Math.h>
#include <GCS_MAVLink/GCS_MAVLink.h>
#include <stdint.h>
#include "PosVelEKF.h"
#include <AP_HAL/utility/RingBuffer.h>
// declare backend classes
class AC_PrecLand_Backend;
class AC_PrecLand_Companion;
class AC_PrecLand_IRLock;
class AC_PrecLand_SITL_Gazebo;
class AC_PrecLand_SITL;
class AC_PrecLand
{
// declare backends as friends
friend class AC_PrecLand_Backend;
friend class AC_PrecLand_Companion;
friend class AC_PrecLand_IRLock;
friend class AC_PrecLand_SITL_Gazebo;
friend class AC_PrecLand_SITL;
public:
AC_PrecLand();
/* Do not allow copies */
AC_PrecLand(const AC_PrecLand &other) = delete;
AC_PrecLand &operator=(const AC_PrecLand&) = delete;
// perform any required initialisation of landing controllers
// update_rate_hz should be the rate at which the update method will be called in hz
void init(uint16_t update_rate_hz);
// returns true if precision landing is healthy
bool healthy() const { return _backend_state.healthy; }
// returns true if precision landing is enabled (used only for logging)
bool enabled() const { return _enabled.get(); }
// returns time of last update
uint32_t last_update_ms() const { return _last_update_ms; }
// returns time of last time target was seen
uint32_t last_backend_los_meas_ms() const { return _last_backend_los_meas_ms; }
// returns ekf outlier count
uint32_t ekf_outlier_count() const { return _outlier_reject_count; }
// give chance to driver to get updates from sensor, should be called at 400hz
void update(float rangefinder_alt_cm, bool rangefinder_alt_valid);
// returns target position relative to the EKF origin
bool get_target_position_cm(Vector2f& ret);
// returns target relative position as 3D vector
void get_target_position_measurement_cm(Vector3f& ret);
// returns target position relative to vehicle
bool get_target_position_relative_cm(Vector2f& ret);
// returns target velocity relative to vehicle
bool get_target_velocity_relative_cms(Vector2f& ret);
// returns true when the landing target has been detected
bool target_acquired();
// process a LANDING_TARGET mavlink message
void handle_msg(const mavlink_landing_target_t &packet, uint32_t timestamp_ms);
// parameter var table
static const struct AP_Param::GroupInfo var_info[];
private:
enum class EstimatorType : uint8_t {
RAW_SENSOR = 0,
KALMAN_FILTER = 1,
};
// types of precision landing (used for PRECLAND_TYPE parameter)
enum class Type : uint8_t {
NONE = 0,
COMPANION = 1,
IRLOCK = 2,
SITL_GAZEBO = 3,
SITL = 4,
};
// check if EKF got the time to initialize when the landing target was first detected
// Expects sensor to update within EKF_INIT_SENSOR_MIN_UPDATE_MS milliseconds till EKF_INIT_TIME_MS milliseconds have passed
// after this period landing target estimates can be used by vehicle
void check_ekf_init_timeout();
// run target position estimator
void run_estimator(float rangefinder_alt_m, bool rangefinder_alt_valid);
// If a new measurement was retrieved, sets _target_pos_rel_meas_NED and returns true
bool construct_pos_meas_using_rangefinder(float rangefinder_alt_m, bool rangefinder_alt_valid);
// get vehicle body frame 3D vector from vehicle to target. returns true on success, false on failure
bool retrieve_los_meas(Vector3f& target_vec_unit_body);
// calculate target's position and velocity relative to the vehicle (used as input to position controller)
// results are stored in_target_pos_rel_out_NE, _target_vel_rel_out_NE
void run_output_prediction();
// parameters
AP_Int8 _enabled; // enabled/disabled
AP_Enum<Type> _type; // precision landing sensor type
AP_Int8 _bus; // which sensor bus
AP_Enum<EstimatorType> _estimator_type; // precision landing estimator type
AP_Float _lag; // sensor lag in seconds
AP_Float _yaw_align; // Yaw angle from body x-axis to sensor x-axis.
AP_Float _land_ofs_cm_x; // Desired landing position of the camera forward of the target in vehicle body frame
AP_Float _land_ofs_cm_y; // Desired landing position of the camera right of the target in vehicle body frame
AP_Float _accel_noise; // accelerometer process noise
AP_Vector3f _cam_offset; // Position of the camera relative to the CG
uint32_t _last_update_ms; // system time in millisecond when update was last called
bool _target_acquired; // true if target has been seen recently after estimator is initialized
bool _estimator_initialized; // true if estimator has been initialized after few seconds of the target being detected by sensor
uint32_t _estimator_init_ms; // system time in millisecond when EKF was init
uint32_t _last_backend_los_meas_ms; // system time target was last seen
PosVelEKF _ekf_x, _ekf_y; // Kalman Filter for x and y axis
uint32_t _outlier_reject_count; // mini-EKF's outlier counter (3 consecutive outliers lead to EKF accepting updates)
Vector3f _target_pos_rel_meas_NED; // target's relative position as 3D vector
Vector2f _target_pos_rel_est_NE; // target's position relative to the IMU, not compensated for lag
Vector2f _target_vel_rel_est_NE; // target's velocity relative to the IMU, not compensated for lag
Vector2f _target_pos_rel_out_NE; // target's position relative to the camera, fed into position controller
Vector2f _target_vel_rel_out_NE; // target's velocity relative to the CG, fed into position controller
// structure and buffer to hold a history of vehicle velocity
struct inertial_data_frame_s {
Matrix3f Tbn; // dcm rotation matrix to rotate body frame to north
Vector3f correctedVehicleDeltaVelocityNED;
Vector3f inertialNavVelocity;
bool inertialNavVelocityValid;
float dt;
uint64_t time_usec;
};
ObjectArray<inertial_data_frame_s> *_inertial_history;
// backend state
struct precland_state {
bool healthy;
} _backend_state;
AC_PrecLand_Backend *_backend; // pointers to backend precision landing driver
// write out PREC message to log:
void Write_Precland();
uint32_t last_log_ms; // last time we logged
};