mirror of
https://github.com/ArduPilot/ardupilot
synced 2025-01-21 16:18:29 -04:00
8f79a03c25
might as well use the memory
417 lines
9.5 KiB
C++
417 lines
9.5 KiB
C++
#include <AP_HAL.h>
|
|
|
|
#if CONFIG_HAL_BOARD == HAL_BOARD_LINUX
|
|
|
|
#include "UARTDriver.h"
|
|
|
|
#include <stdio.h>
|
|
#include <errno.h>
|
|
#include <termios.h>
|
|
#include <stdlib.h>
|
|
#include <sys/types.h>
|
|
#include <sys/stat.h>
|
|
#include <fcntl.h>
|
|
#include <unistd.h>
|
|
#include <poll.h>
|
|
#include <assert.h>
|
|
#include <sys/ioctl.h>
|
|
|
|
extern const AP_HAL::HAL& hal;
|
|
|
|
using namespace Linux;
|
|
|
|
LinuxUARTDriver::LinuxUARTDriver(bool default_console) :
|
|
device_path(NULL),
|
|
_rd_fd(-1),
|
|
_wr_fd(-1)
|
|
{
|
|
if (default_console) {
|
|
_rd_fd = 0;
|
|
_wr_fd = 1;
|
|
_console = true;
|
|
}
|
|
}
|
|
|
|
/*
|
|
set the tty device to use for this UART
|
|
*/
|
|
void LinuxUARTDriver::set_device_path(const char *path)
|
|
{
|
|
device_path = path;
|
|
}
|
|
|
|
/*
|
|
open the tty
|
|
*/
|
|
void LinuxUARTDriver::begin(uint32_t b)
|
|
{
|
|
begin(b, 0, 0);
|
|
}
|
|
|
|
void LinuxUARTDriver::begin(uint32_t b, uint16_t rxS, uint16_t txS)
|
|
{
|
|
if (device_path == NULL && _console) {
|
|
_rd_fd = 0;
|
|
_wr_fd = 1;
|
|
rxS = 512;
|
|
txS = 512;
|
|
fcntl(_rd_fd, F_SETFL, fcntl(_rd_fd, F_GETFL, 0) | O_NONBLOCK);
|
|
fcntl(_wr_fd, F_SETFL, fcntl(_wr_fd, F_GETFL, 0) | O_NONBLOCK);
|
|
} else if (!_initialised) {
|
|
if (device_path == NULL) {
|
|
return;
|
|
}
|
|
uint8_t retries = 0;
|
|
while (retries < 5) {
|
|
_rd_fd = open(device_path, O_RDWR);
|
|
if (_rd_fd != -1) {
|
|
break;
|
|
}
|
|
// sleep a bit and retry. There seems to be a NuttX bug
|
|
// that can cause ttyACM0 to not be available immediately,
|
|
// but a small delay can fix it
|
|
hal.scheduler->delay(100);
|
|
retries++;
|
|
}
|
|
_wr_fd = _rd_fd;
|
|
if (_rd_fd == -1) {
|
|
fprintf(stdout, "Failed to open UART device %s - %s\n",
|
|
device_path, strerror(errno));
|
|
return;
|
|
}
|
|
if (retries != 0) {
|
|
fprintf(stdout, "WARNING: took %u retries to open UART %s\n",
|
|
(unsigned)retries, device_path);
|
|
return;
|
|
}
|
|
|
|
// always run the file descriptor non-blocking, and deal with
|
|
// blocking IO in the higher level calls
|
|
fcntl(_rd_fd, F_SETFL, fcntl(_rd_fd, F_GETFL, 0) | O_NONBLOCK);
|
|
|
|
if (rxS < 1024) {
|
|
rxS = 1024;
|
|
}
|
|
|
|
// we have enough memory to have a larger transmit buffer for
|
|
// all ports. This means we don't get delays while waiting to
|
|
// write GPS config packets
|
|
if (txS < 1024) {
|
|
txS = 1024;
|
|
}
|
|
}
|
|
|
|
_initialised = false;
|
|
while (_in_timer) hal.scheduler->delay(1);
|
|
|
|
if (b != 0 && _rd_fd == _wr_fd) {
|
|
// set the baud rate
|
|
struct termios t;
|
|
tcgetattr(_rd_fd, &t);
|
|
cfsetspeed(&t, b);
|
|
// disable LF -> CR/LF
|
|
t.c_oflag &= ~ONLCR;
|
|
tcsetattr(_rd_fd, TCSANOW, &t);
|
|
}
|
|
|
|
/*
|
|
allocate the read buffer
|
|
*/
|
|
if (rxS != 0 && rxS != _readbuf_size) {
|
|
_readbuf_size = rxS;
|
|
if (_readbuf != NULL) {
|
|
free(_readbuf);
|
|
}
|
|
_readbuf = (uint8_t *)malloc(_readbuf_size);
|
|
_readbuf_head = 0;
|
|
_readbuf_tail = 0;
|
|
}
|
|
|
|
/*
|
|
allocate the write buffer
|
|
*/
|
|
if (txS != 0 && txS != _writebuf_size) {
|
|
_writebuf_size = txS;
|
|
if (_writebuf != NULL) {
|
|
free(_writebuf);
|
|
}
|
|
_writebuf = (uint8_t *)malloc(_writebuf_size+16);
|
|
_writebuf_head = 0;
|
|
_writebuf_tail = 0;
|
|
}
|
|
|
|
if (_writebuf_size != 0 && _readbuf_size != 0) {
|
|
_initialised = true;
|
|
}
|
|
}
|
|
|
|
/*
|
|
shutdown a UART
|
|
*/
|
|
void LinuxUARTDriver::end()
|
|
{
|
|
_initialised = false;
|
|
while (_in_timer) hal.scheduler->delay(1);
|
|
if (_rd_fd == _wr_fd && _rd_fd != -1) {
|
|
close(_rd_fd);
|
|
}
|
|
_rd_fd = -1;
|
|
_wr_fd = -1;
|
|
if (_readbuf) {
|
|
free(_readbuf);
|
|
_readbuf = NULL;
|
|
}
|
|
if (_writebuf) {
|
|
free(_writebuf);
|
|
_writebuf = NULL;
|
|
}
|
|
_readbuf_size = _writebuf_size = 0;
|
|
_writebuf_head = 0;
|
|
_writebuf_tail = 0;
|
|
_readbuf_head = 0;
|
|
_readbuf_tail = 0;
|
|
}
|
|
|
|
|
|
void LinuxUARTDriver::flush()
|
|
{
|
|
// we are not doing any buffering, so flush is a no-op
|
|
}
|
|
|
|
|
|
/*
|
|
return true if the UART is initialised
|
|
*/
|
|
bool LinuxUARTDriver::is_initialized()
|
|
{
|
|
return _initialised;
|
|
}
|
|
|
|
|
|
/*
|
|
enable or disable blocking writes
|
|
*/
|
|
void LinuxUARTDriver::set_blocking_writes(bool blocking)
|
|
{
|
|
_nonblocking_writes = !blocking;
|
|
}
|
|
|
|
|
|
/*
|
|
buffer handling macros
|
|
*/
|
|
#define BUF_AVAILABLE(buf) ((buf##_head > (_tail=buf##_tail))? (buf##_size - buf##_head) + _tail: _tail - buf##_head)
|
|
#define BUF_SPACE(buf) (((_head=buf##_head) > buf##_tail)?(_head - buf##_tail) - 1:((buf##_size - buf##_tail) + _head) - 1)
|
|
#define BUF_EMPTY(buf) (buf##_head == buf##_tail)
|
|
#define BUF_ADVANCETAIL(buf, n) buf##_tail = (buf##_tail + n) % buf##_size
|
|
#define BUF_ADVANCEHEAD(buf, n) buf##_head = (buf##_head + n) % buf##_size
|
|
|
|
/*
|
|
do we have any bytes pending transmission?
|
|
*/
|
|
bool LinuxUARTDriver::tx_pending()
|
|
{
|
|
return !BUF_EMPTY(_writebuf);
|
|
}
|
|
|
|
/*
|
|
return the number of bytes available to be read
|
|
*/
|
|
int16_t LinuxUARTDriver::available()
|
|
{
|
|
if (!_initialised) {
|
|
return 0;
|
|
}
|
|
uint16_t _tail;
|
|
return BUF_AVAILABLE(_readbuf);
|
|
}
|
|
|
|
/*
|
|
how many bytes are available in the output buffer?
|
|
*/
|
|
int16_t LinuxUARTDriver::txspace()
|
|
{
|
|
if (!_initialised) {
|
|
return 0;
|
|
}
|
|
uint16_t _head;
|
|
return BUF_SPACE(_writebuf);
|
|
}
|
|
|
|
int16_t LinuxUARTDriver::read()
|
|
{
|
|
uint8_t c;
|
|
if (!_initialised || _readbuf == NULL) {
|
|
return -1;
|
|
}
|
|
if (BUF_EMPTY(_readbuf)) {
|
|
return -1;
|
|
}
|
|
c = _readbuf[_readbuf_head];
|
|
BUF_ADVANCEHEAD(_readbuf, 1);
|
|
return c;
|
|
}
|
|
|
|
/* Linux implementations of Print virtual methods */
|
|
size_t LinuxUARTDriver::write(uint8_t c)
|
|
{
|
|
if (!_initialised) {
|
|
return 0;
|
|
}
|
|
uint16_t _head;
|
|
|
|
while (BUF_SPACE(_writebuf) == 0) {
|
|
if (_nonblocking_writes) {
|
|
return 0;
|
|
}
|
|
hal.scheduler->delay(1);
|
|
}
|
|
_writebuf[_writebuf_tail] = c;
|
|
BUF_ADVANCETAIL(_writebuf, 1);
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
write size bytes to the write buffer
|
|
*/
|
|
size_t LinuxUARTDriver::write(const uint8_t *buffer, size_t size)
|
|
{
|
|
if (!_initialised) {
|
|
return 0;
|
|
}
|
|
if (!_nonblocking_writes) {
|
|
/*
|
|
use the per-byte delay loop in write() above for blocking writes
|
|
*/
|
|
size_t ret = 0;
|
|
while (size--) {
|
|
if (write(*buffer++) != 1) break;
|
|
ret++;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
uint16_t _head, space;
|
|
space = BUF_SPACE(_writebuf);
|
|
if (space == 0) {
|
|
return 0;
|
|
}
|
|
if (size > space) {
|
|
size = space;
|
|
}
|
|
if (_writebuf_tail < _head) {
|
|
// perform as single memcpy
|
|
assert(_writebuf_tail+size <= _writebuf_size);
|
|
memcpy(&_writebuf[_writebuf_tail], buffer, size);
|
|
BUF_ADVANCETAIL(_writebuf, size);
|
|
return size;
|
|
}
|
|
|
|
// perform as two memcpy calls
|
|
uint16_t n = _writebuf_size - _writebuf_tail;
|
|
if (n > size) n = size;
|
|
assert(_writebuf_tail+n <= _writebuf_size);
|
|
memcpy(&_writebuf[_writebuf_tail], buffer, n);
|
|
BUF_ADVANCETAIL(_writebuf, n);
|
|
buffer += n;
|
|
n = size - n;
|
|
if (n > 0) {
|
|
assert(_writebuf_tail+n <= _writebuf_size);
|
|
memcpy(&_writebuf[_writebuf_tail], buffer, n);
|
|
BUF_ADVANCETAIL(_writebuf, n);
|
|
}
|
|
return size;
|
|
}
|
|
|
|
/*
|
|
try writing n bytes, handling an unresponsive port
|
|
*/
|
|
int LinuxUARTDriver::_write_fd(const uint8_t *buf, uint16_t n)
|
|
{
|
|
int ret = 0;
|
|
|
|
struct pollfd fds;
|
|
fds.fd = _wr_fd;
|
|
fds.events = POLLOUT;
|
|
fds.revents = 0;
|
|
|
|
if (poll(&fds, 1, 0) == 1) {
|
|
ret = ::write(_wr_fd, buf, n);
|
|
}
|
|
|
|
if (ret > 0) {
|
|
BUF_ADVANCEHEAD(_writebuf, ret);
|
|
return ret;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
try reading n bytes, handling an unresponsive port
|
|
*/
|
|
int LinuxUARTDriver::_read_fd(uint8_t *buf, uint16_t n)
|
|
{
|
|
int ret;
|
|
ret = ::read(_rd_fd, buf, n);
|
|
if (ret > 0) {
|
|
BUF_ADVANCETAIL(_readbuf, ret);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
|
|
/*
|
|
push any pending bytes to/from the serial port. This is called at
|
|
1kHz in the timer thread. Doing it this way reduces the system call
|
|
overhead in the main task enormously.
|
|
*/
|
|
void LinuxUARTDriver::_timer_tick(void)
|
|
{
|
|
uint16_t n;
|
|
|
|
if (!_initialised) return;
|
|
|
|
_in_timer = true;
|
|
|
|
// write any pending bytes
|
|
uint16_t _tail;
|
|
n = BUF_AVAILABLE(_writebuf);
|
|
if (n > 0) {
|
|
if (_tail > _writebuf_head) {
|
|
// do as a single write
|
|
_write_fd(&_writebuf[_writebuf_head], n);
|
|
} else {
|
|
// split into two writes
|
|
uint16_t n1 = _writebuf_size - _writebuf_head;
|
|
int ret = _write_fd(&_writebuf[_writebuf_head], n1);
|
|
if (ret == n1 && n != n1) {
|
|
_write_fd(&_writebuf[_writebuf_head], n - n1);
|
|
}
|
|
}
|
|
}
|
|
|
|
// try to fill the read buffer
|
|
uint16_t _head;
|
|
n = BUF_SPACE(_readbuf);
|
|
if (n > 0) {
|
|
if (_readbuf_tail < _head) {
|
|
// one read will do
|
|
assert(_readbuf_tail+n <= _readbuf_size);
|
|
_read_fd(&_readbuf[_readbuf_tail], n);
|
|
} else {
|
|
uint16_t n1 = _readbuf_size - _readbuf_tail;
|
|
assert(_readbuf_tail+n1 <= _readbuf_size);
|
|
int ret = _read_fd(&_readbuf[_readbuf_tail], n1);
|
|
if (ret == n1 && n != n1) {
|
|
assert(_readbuf_tail+(n-n1) <= _readbuf_size);
|
|
_read_fd(&_readbuf[_readbuf_tail], n - n1);
|
|
}
|
|
}
|
|
}
|
|
|
|
_in_timer = false;
|
|
}
|
|
|
|
#endif // CONFIG_HAL_BOARD
|