ardupilot/libraries/AP_Math/vector3.cpp
Andrew Tridgell a072afa223 AP_Math: expand some macros into functions
this saves some flash
2012-12-20 14:52:38 +11:00

138 lines
3.5 KiB
C++

/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
/*
* vector3.cpp
* Copyright (C) Andrew Tridgell 2012
*
* This file is free software: you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This file is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
* See the GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "AP_Math.h"
#define HALF_SQRT_2 0.70710678118654757
// rotate a vector by a standard rotation, attempting
// to use the minimum number of floating point operations
template <typename T>
void Vector3<T>::rotate(enum Rotation rotation)
{
T tmp;
switch (rotation) {
case ROTATION_NONE:
case ROTATION_MAX:
return;
case ROTATION_YAW_45: {
tmp = HALF_SQRT_2*(x - y);
y = HALF_SQRT_2*(x + y);
x = tmp;
return;
}
case ROTATION_YAW_90: {
tmp = x; x = -y; y = tmp;
return;
}
case ROTATION_YAW_135: {
tmp = -HALF_SQRT_2*(x + y);
y = HALF_SQRT_2*(x - y);
x = tmp;
return;
}
case ROTATION_YAW_180:
x = -x; y = -y;
return;
case ROTATION_YAW_225: {
tmp = HALF_SQRT_2*(y - x);
y = -HALF_SQRT_2*(x + y);
x = tmp;
return;
}
case ROTATION_YAW_270: {
tmp = x; x = y; y = -tmp;
return;
}
case ROTATION_YAW_315: {
tmp = HALF_SQRT_2*(x + y);
y = HALF_SQRT_2*(y - x);
x = tmp;
return;
}
case ROTATION_ROLL_180: {
y = -y; z = -z;
return;
}
case ROTATION_ROLL_180_YAW_45: {
tmp = HALF_SQRT_2*(x + y);
y = HALF_SQRT_2*(x - y);
x = tmp; z = -z;
return;
}
case ROTATION_ROLL_180_YAW_90: {
tmp = x; x = y; y = tmp; z = -z;
return;
}
case ROTATION_ROLL_180_YAW_135: {
tmp = HALF_SQRT_2*(y - x);
y = HALF_SQRT_2*(y + x);
x = tmp; z = -z;
return;
}
case ROTATION_PITCH_180: {
x = -x; z = -z;
return;
}
case ROTATION_ROLL_180_YAW_225: {
tmp = -HALF_SQRT_2*(x + y);
y = HALF_SQRT_2*(y - x);
x = tmp; z = -z;
return;
}
case ROTATION_ROLL_180_YAW_270: {
tmp = x; x = -y; y = -tmp; z = -z;
return;
}
case ROTATION_ROLL_180_YAW_315: {
tmp = HALF_SQRT_2*(x - y);
y = -HALF_SQRT_2*(x + y);
x = tmp; z = -z;
return;
}
}
}
// vector cross product
template <typename T>
Vector3<T> Vector3<T>::operator %(const Vector3<T> &v) const
{
Vector3<T> temp(y*v.z - z*v.y, z*v.x - x*v.z, x*v.y - y*v.x);
return temp;
}
// dot product
template <typename T>
T Vector3<T>::operator *(const Vector3<T> &v) const
{
return x*v.x + y*v.y + z*v.z;
}
template <typename T>
float Vector3<T>::length(void) const
{
return pythagorous3(x, y, z);
}
// only define for signed numbers
template void Vector3<float>::rotate(enum Rotation);
template float Vector3<float>::length(void) const;
template Vector3<float> Vector3<float>::operator %(const Vector3<float> &v) const;
template float Vector3<float>::operator *(const Vector3<float> &v) const;