mirror of
https://github.com/ArduPilot/ardupilot
synced 2025-01-09 17:38:32 -04:00
2282 lines
79 KiB
Plaintext
2282 lines
79 KiB
Plaintext
/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
|
||
|
||
#define THISFIRMWARE "ArduCopter V3.1-rc5"
|
||
/*
|
||
This program is free software: you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation, either version 3 of the License, or
|
||
(at your option) any later version.
|
||
|
||
This program is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||
*/
|
||
/*
|
||
* ArduCopter Version 3.0
|
||
* Creator: Jason Short
|
||
* Lead Developer: Randy Mackay
|
||
* Based on code and ideas from the Arducopter team: Pat Hickey, Jose Julio, Jani Hirvinen, Andrew Tridgell, Justin Beech, Adam Rivera, Jean-Louis Naudin, Roberto Navoni
|
||
* Thanks to: Chris Anderson, Mike Smith, Jordi Munoz, Doug Weibel, James Goppert, Benjamin Pelletier, Robert Lefebvre, Marco Robustini
|
||
*
|
||
* Special Thanks for Contributors (in alphabetical order by first name):
|
||
*
|
||
* Adam M Rivera :Auto Compass Declination
|
||
* Amilcar Lucas :Camera mount library
|
||
* Andrew Tridgell :General development, Mavlink Support
|
||
* Angel Fernandez :Alpha testing
|
||
* Doug Weibel :Libraries
|
||
* Christof Schmid :Alpha testing
|
||
* Dani Saez :V Octo Support
|
||
* Gregory Fletcher :Camera mount orientation math
|
||
* Guntars :Arming safety suggestion
|
||
* HappyKillmore :Mavlink GCS
|
||
* Hein Hollander :Octo Support
|
||
* Igor van Airde :Control Law optimization
|
||
* Leonard Hall :Flight Dynamics, Throttle, Loiter and Navigation Controllers
|
||
* Jonathan Challinger :Inertial Navigation
|
||
* Jean-Louis Naudin :Auto Landing
|
||
* Max Levine :Tri Support, Graphics
|
||
* Jack Dunkle :Alpha testing
|
||
* James Goppert :Mavlink Support
|
||
* Jani Hiriven :Testing feedback
|
||
* John Arne Birkeland :PPM Encoder
|
||
* Jose Julio :Stabilization Control laws
|
||
* Marco Robustini :Lead tester
|
||
* Michael Oborne :Mission Planner GCS
|
||
* Mike Smith :Libraries, Coding support
|
||
* Oliver :Piezo support
|
||
* Olivier Adler :PPM Encoder
|
||
* Robert Lefebvre :Heli Support & LEDs
|
||
* Sandro Benigno :Camera support
|
||
*
|
||
* And much more so PLEASE PM me on DIYDRONES to add your contribution to the List
|
||
*
|
||
* Requires modified "mrelax" version of Arduino, which can be found here:
|
||
* http://code.google.com/p/ardupilot-mega/downloads/list
|
||
*
|
||
*/
|
||
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
// Header includes
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
|
||
#include <math.h>
|
||
#include <stdio.h>
|
||
#include <stdarg.h>
|
||
|
||
// Common dependencies
|
||
#include <AP_Common.h>
|
||
#include <AP_Progmem.h>
|
||
#include <AP_Menu.h>
|
||
#include <AP_Param.h>
|
||
// AP_HAL
|
||
#include <AP_HAL.h>
|
||
#include <AP_HAL_AVR.h>
|
||
#include <AP_HAL_AVR_SITL.h>
|
||
#include <AP_HAL_PX4.h>
|
||
#include <AP_HAL_FLYMAPLE.h>
|
||
#include <AP_HAL_Linux.h>
|
||
#include <AP_HAL_Empty.h>
|
||
|
||
// Application dependencies
|
||
#include <GCS_MAVLink.h> // MAVLink GCS definitions
|
||
#include <AP_GPS.h> // ArduPilot GPS library
|
||
#include <AP_GPS_Glitch.h> // GPS glitch protection library
|
||
#include <DataFlash.h> // ArduPilot Mega Flash Memory Library
|
||
#include <AP_ADC.h> // ArduPilot Mega Analog to Digital Converter Library
|
||
#include <AP_ADC_AnalogSource.h>
|
||
#include <AP_Baro.h>
|
||
#include <AP_Compass.h> // ArduPilot Mega Magnetometer Library
|
||
#include <AP_Math.h> // ArduPilot Mega Vector/Matrix math Library
|
||
#include <AP_Curve.h> // Curve used to linearlise throttle pwm to thrust
|
||
#include <AP_InertialSensor.h> // ArduPilot Mega Inertial Sensor (accel & gyro) Library
|
||
#include <AP_AHRS.h>
|
||
#include <APM_PI.h> // PI library
|
||
#include <AC_PID.h> // PID library
|
||
#include <RC_Channel.h> // RC Channel Library
|
||
#include <AP_Motors.h> // AP Motors library
|
||
#include <AP_RangeFinder.h> // Range finder library
|
||
#include <AP_OpticalFlow.h> // Optical Flow library
|
||
#include <Filter.h> // Filter library
|
||
#include <AP_Buffer.h> // APM FIFO Buffer
|
||
#include <AP_Relay.h> // APM relay
|
||
#include <AP_Camera.h> // Photo or video camera
|
||
#include <AP_Mount.h> // Camera/Antenna mount
|
||
#include <AP_Airspeed.h> // needed for AHRS build
|
||
#include <AP_Vehicle.h> // needed for AHRS build
|
||
#include <AP_InertialNav.h> // ArduPilot Mega inertial navigation library
|
||
#include <AC_WPNav.h> // ArduCopter waypoint navigation library
|
||
#include <AP_Declination.h> // ArduPilot Mega Declination Helper Library
|
||
#include <AC_Fence.h> // Arducopter Fence library
|
||
#include <memcheck.h> // memory limit checker
|
||
#include <SITL.h> // software in the loop support
|
||
#include <AP_Scheduler.h> // main loop scheduler
|
||
#include <AP_RCMapper.h> // RC input mapping library
|
||
#include <AP_Notify.h> // Notify library
|
||
#include <AP_BattMonitor.h> // Battery monitor library
|
||
#if SPRAYER == ENABLED
|
||
#include <AC_Sprayer.h> // crop sprayer library
|
||
#endif
|
||
|
||
// AP_HAL to Arduino compatibility layer
|
||
#include "compat.h"
|
||
// Configuration
|
||
#include "defines.h"
|
||
#include "config.h"
|
||
#include "config_channels.h"
|
||
|
||
// Local modules
|
||
#include "Parameters.h"
|
||
#include "GCS.h"
|
||
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
// cliSerial
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
// cliSerial isn't strictly necessary - it is an alias for hal.console. It may
|
||
// be deprecated in favor of hal.console in later releases.
|
||
static AP_HAL::BetterStream* cliSerial;
|
||
|
||
// N.B. we need to keep a static declaration which isn't guarded by macros
|
||
// at the top to cooperate with the prototype mangler.
|
||
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
// AP_HAL instance
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
|
||
const AP_HAL::HAL& hal = AP_HAL_BOARD_DRIVER;
|
||
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
// Parameters
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
//
|
||
// Global parameters are all contained within the 'g' class.
|
||
//
|
||
static Parameters g;
|
||
|
||
// main loop scheduler
|
||
static AP_Scheduler scheduler;
|
||
|
||
// AP_Notify instance
|
||
static AP_Notify notify;
|
||
|
||
|
||
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
// prototypes
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
static void update_events(void);
|
||
static void print_flight_mode(AP_HAL::BetterStream *port, uint8_t mode);
|
||
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
// Dataflash
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
#if CONFIG_HAL_BOARD == HAL_BOARD_APM2
|
||
static DataFlash_APM2 DataFlash;
|
||
#elif CONFIG_HAL_BOARD == HAL_BOARD_APM1
|
||
static DataFlash_APM1 DataFlash;
|
||
#elif CONFIG_HAL_BOARD == HAL_BOARD_AVR_SITL
|
||
//static DataFlash_File DataFlash("/tmp/APMlogs");
|
||
static DataFlash_SITL DataFlash;
|
||
#elif CONFIG_HAL_BOARD == HAL_BOARD_PX4
|
||
static DataFlash_File DataFlash("/fs/microsd/APM/logs");
|
||
#elif CONFIG_HAL_BOARD == HAL_BOARD_LINUX
|
||
static DataFlash_File DataFlash("logs");
|
||
#else
|
||
static DataFlash_Empty DataFlash;
|
||
#endif
|
||
|
||
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
// the rate we run the main loop at
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
static const AP_InertialSensor::Sample_rate ins_sample_rate = AP_InertialSensor::RATE_100HZ;
|
||
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
// Sensors
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
//
|
||
// There are three basic options related to flight sensor selection.
|
||
//
|
||
// - Normal flight mode. Real sensors are used.
|
||
// - HIL Attitude mode. Most sensors are disabled, as the HIL
|
||
// protocol supplies attitude information directly.
|
||
// - HIL Sensors mode. Synthetic sensors are configured that
|
||
// supply data from the simulation.
|
||
//
|
||
|
||
// All GPS access should be through this pointer.
|
||
static GPS *g_gps;
|
||
static GPS_Glitch gps_glitch(g_gps);
|
||
|
||
// flight modes convenience array
|
||
static AP_Int8 *flight_modes = &g.flight_mode1;
|
||
|
||
#if HIL_MODE == HIL_MODE_DISABLED
|
||
|
||
#if CONFIG_ADC == ENABLED
|
||
static AP_ADC_ADS7844 adc;
|
||
#endif
|
||
|
||
#if CONFIG_IMU_TYPE == CONFIG_IMU_MPU6000
|
||
static AP_InertialSensor_MPU6000 ins;
|
||
#elif CONFIG_IMU_TYPE == CONFIG_IMU_OILPAN
|
||
static AP_InertialSensor_Oilpan ins(&adc);
|
||
#elif CONFIG_IMU_TYPE == CONFIG_IMU_SITL
|
||
static AP_InertialSensor_HIL ins;
|
||
#elif CONFIG_IMU_TYPE == CONFIG_IMU_PX4
|
||
static AP_InertialSensor_PX4 ins;
|
||
#elif CONFIG_IMU_TYPE == CONFIG_IMU_FLYMAPLE
|
||
AP_InertialSensor_Flymaple ins;
|
||
#elif CONFIG_IMU_TYPE == CONFIG_IMU_L3G4200D
|
||
AP_InertialSensor_L3G4200D ins;
|
||
#endif
|
||
|
||
#if CONFIG_HAL_BOARD == HAL_BOARD_AVR_SITL
|
||
// When building for SITL we use the HIL barometer and compass drivers
|
||
static AP_Baro_HIL barometer;
|
||
static AP_Compass_HIL compass;
|
||
static SITL sitl;
|
||
#else
|
||
// Otherwise, instantiate a real barometer and compass driver
|
||
#if CONFIG_BARO == AP_BARO_BMP085
|
||
static AP_Baro_BMP085 barometer;
|
||
#elif CONFIG_BARO == AP_BARO_PX4
|
||
static AP_Baro_PX4 barometer;
|
||
#elif CONFIG_BARO == AP_BARO_MS5611
|
||
#if CONFIG_MS5611_SERIAL == AP_BARO_MS5611_SPI
|
||
static AP_Baro_MS5611 barometer(&AP_Baro_MS5611::spi);
|
||
#elif CONFIG_MS5611_SERIAL == AP_BARO_MS5611_I2C
|
||
static AP_Baro_MS5611 barometer(&AP_Baro_MS5611::i2c);
|
||
#else
|
||
#error Unrecognized CONFIG_MS5611_SERIAL setting.
|
||
#endif
|
||
#endif
|
||
|
||
#if CONFIG_HAL_BOARD == HAL_BOARD_PX4
|
||
static AP_Compass_PX4 compass;
|
||
#else
|
||
static AP_Compass_HMC5843 compass;
|
||
#endif
|
||
#endif
|
||
|
||
// real GPS selection
|
||
#if GPS_PROTOCOL == GPS_PROTOCOL_AUTO
|
||
AP_GPS_Auto g_gps_driver(&g_gps);
|
||
|
||
#elif GPS_PROTOCOL == GPS_PROTOCOL_NMEA
|
||
AP_GPS_NMEA g_gps_driver;
|
||
|
||
#elif GPS_PROTOCOL == GPS_PROTOCOL_SIRF
|
||
AP_GPS_SIRF g_gps_driver;
|
||
|
||
#elif GPS_PROTOCOL == GPS_PROTOCOL_UBLOX
|
||
AP_GPS_UBLOX g_gps_driver;
|
||
|
||
#elif GPS_PROTOCOL == GPS_PROTOCOL_MTK
|
||
AP_GPS_MTK g_gps_driver;
|
||
|
||
#elif GPS_PROTOCOL == GPS_PROTOCOL_MTK19
|
||
AP_GPS_MTK19 g_gps_driver;
|
||
|
||
#elif GPS_PROTOCOL == GPS_PROTOCOL_NONE
|
||
AP_GPS_None g_gps_driver;
|
||
|
||
#else
|
||
#error Unrecognised GPS_PROTOCOL setting.
|
||
#endif // GPS PROTOCOL
|
||
|
||
static AP_AHRS_DCM ahrs(&ins, g_gps);
|
||
|
||
#elif HIL_MODE == HIL_MODE_SENSORS
|
||
// sensor emulators
|
||
static AP_ADC_HIL adc;
|
||
static AP_Baro_HIL barometer;
|
||
static AP_Compass_HIL compass;
|
||
static AP_GPS_HIL g_gps_driver;
|
||
static AP_InertialSensor_HIL ins;
|
||
static AP_AHRS_DCM ahrs(&ins, g_gps);
|
||
|
||
|
||
#if CONFIG_HAL_BOARD == HAL_BOARD_AVR_SITL
|
||
// When building for SITL we use the HIL barometer and compass drivers
|
||
static SITL sitl;
|
||
#endif
|
||
|
||
#elif HIL_MODE == HIL_MODE_ATTITUDE
|
||
static AP_ADC_HIL adc;
|
||
static AP_InertialSensor_HIL ins;
|
||
static AP_AHRS_HIL ahrs(&ins, g_gps);
|
||
static AP_GPS_HIL g_gps_driver;
|
||
static AP_Compass_HIL compass; // never used
|
||
static AP_Baro_HIL barometer;
|
||
|
||
#if CONFIG_HAL_BOARD == HAL_BOARD_AVR_SITL
|
||
// When building for SITL we use the HIL barometer and compass drivers
|
||
static SITL sitl;
|
||
#endif
|
||
|
||
#else
|
||
#error Unrecognised HIL_MODE setting.
|
||
#endif // HIL MODE
|
||
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
// Optical flow sensor
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
#if OPTFLOW == ENABLED
|
||
static AP_OpticalFlow_ADNS3080 optflow;
|
||
#else
|
||
static AP_OpticalFlow optflow;
|
||
#endif
|
||
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
// GCS selection
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
static GCS_MAVLINK gcs0;
|
||
static GCS_MAVLINK gcs3;
|
||
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
// SONAR selection
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
//
|
||
ModeFilterInt16_Size3 sonar_mode_filter(1);
|
||
#if CONFIG_SONAR == ENABLED
|
||
static AP_HAL::AnalogSource *sonar_analog_source;
|
||
static AP_RangeFinder_MaxsonarXL *sonar;
|
||
#endif
|
||
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
// User variables
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
#ifdef USERHOOK_VARIABLES
|
||
#include USERHOOK_VARIABLES
|
||
#endif
|
||
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
// Global variables
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
|
||
/* Radio values
|
||
* Channel assignments
|
||
* 1 Ailerons (rudder if no ailerons)
|
||
* 2 Elevator
|
||
* 3 Throttle
|
||
* 4 Rudder (if we have ailerons)
|
||
* 5 Mode - 3 position switch
|
||
* 6 User assignable
|
||
* 7 trainer switch - sets throttle nominal (toggle switch), sets accels to Level (hold > 1 second)
|
||
* 8 TBD
|
||
* Each Aux channel can be configured to have any of the available auxiliary functions assigned to it.
|
||
* See libraries/RC_Channel/RC_Channel_aux.h for more information
|
||
*/
|
||
|
||
//Documentation of GLobals:
|
||
static union {
|
||
struct {
|
||
uint8_t home_is_set : 1; // 0
|
||
uint8_t simple_mode : 2; // 1,2 // This is the state of simple mode : 0 = disabled ; 1 = SIMPLE ; 2 = SUPERSIMPLE
|
||
|
||
uint8_t pre_arm_rc_check : 1; // 3 // true if rc input pre-arm checks have been completed successfully
|
||
uint8_t pre_arm_check : 1; // 4 // true if all pre-arm checks (rc, accel calibration, gps lock) have been performed
|
||
uint8_t auto_armed : 1; // 5 // stops auto missions from beginning until throttle is raised
|
||
uint8_t logging_started : 1; // 6 // true if dataflash logging has started
|
||
|
||
uint8_t do_flip : 1; // 7 // Used to enable flip code
|
||
uint8_t takeoff_complete : 1; // 8
|
||
uint8_t land_complete : 1; // 9 // true if we have detected a landing
|
||
|
||
uint8_t new_radio_frame : 1; // 10 // Set true if we have new PWM data to act on from the Radio
|
||
uint8_t CH7_flag : 2; // 11,12 // ch7 aux switch : 0 is low or false, 1 is center or true, 2 is high
|
||
uint8_t CH8_flag : 2; // 13,14 // ch8 aux switch : 0 is low or false, 1 is center or true, 2 is high
|
||
uint8_t usb_connected : 1; // 15 // true if APM is powered from USB connection
|
||
uint8_t yaw_stopped : 1; // 16 // Used to manage the Yaw hold capabilities
|
||
|
||
uint8_t disable_stab_rate_limit : 1; // 17 // disables limits rate request from the stability controller
|
||
|
||
uint8_t rc_receiver_present : 1; // 18 // true if we have an rc receiver present (i.e. if we've ever received an update
|
||
};
|
||
uint32_t value;
|
||
} ap;
|
||
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
// Radio
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
// This is the state of the flight control system
|
||
// There are multiple states defined such as STABILIZE, ACRO,
|
||
static int8_t control_mode = STABILIZE;
|
||
// Used to maintain the state of the previous control switch position
|
||
// This is set to -1 when we need to re-read the switch
|
||
static uint8_t oldSwitchPosition;
|
||
static RCMapper rcmap;
|
||
|
||
// receiver RSSI
|
||
static uint8_t receiver_rssi;
|
||
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
// Failsafe
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
static struct {
|
||
uint8_t rc_override_active : 1; // 0 // true if rc control are overwritten by ground station
|
||
uint8_t radio : 1; // 1 // A status flag for the radio failsafe
|
||
uint8_t battery : 1; // 2 // A status flag for the battery failsafe
|
||
uint8_t gps : 1; // 3 // A status flag for the gps failsafe
|
||
uint8_t gcs : 1; // 4 // A status flag for the ground station failsafe
|
||
|
||
int8_t radio_counter; // number of iterations with throttle below throttle_fs_value
|
||
|
||
uint32_t last_heartbeat_ms; // the time when the last HEARTBEAT message arrived from a GCS - used for triggering gcs failsafe
|
||
} failsafe;
|
||
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
// Motor Output
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
#if FRAME_CONFIG == QUAD_FRAME
|
||
#define MOTOR_CLASS AP_MotorsQuad
|
||
#elif FRAME_CONFIG == TRI_FRAME
|
||
#define MOTOR_CLASS AP_MotorsTri
|
||
#elif FRAME_CONFIG == HEXA_FRAME
|
||
#define MOTOR_CLASS AP_MotorsHexa
|
||
#elif FRAME_CONFIG == Y6_FRAME
|
||
#define MOTOR_CLASS AP_MotorsY6
|
||
#elif FRAME_CONFIG == OCTA_FRAME
|
||
#define MOTOR_CLASS AP_MotorsOcta
|
||
#elif FRAME_CONFIG == OCTA_QUAD_FRAME
|
||
#define MOTOR_CLASS AP_MotorsOctaQuad
|
||
#elif FRAME_CONFIG == HELI_FRAME
|
||
#define MOTOR_CLASS AP_MotorsHeli
|
||
#else
|
||
#error Unrecognised frame type
|
||
#endif
|
||
|
||
#if FRAME_CONFIG == HELI_FRAME // helicopter constructor requires more arguments
|
||
static MOTOR_CLASS motors(&g.rc_1, &g.rc_2, &g.rc_3, &g.rc_4, &g.rc_8, &g.heli_servo_1, &g.heli_servo_2, &g.heli_servo_3, &g.heli_servo_4);
|
||
#elif FRAME_CONFIG == TRI_FRAME // tri constructor requires additional rc_7 argument to allow tail servo reversing
|
||
static MOTOR_CLASS motors(&g.rc_1, &g.rc_2, &g.rc_3, &g.rc_4, &g.rc_7);
|
||
#else
|
||
static MOTOR_CLASS motors(&g.rc_1, &g.rc_2, &g.rc_3, &g.rc_4);
|
||
#endif
|
||
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
// PIDs
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
// This is a convienience accessor for the IMU roll rates. It's currently the raw IMU rates
|
||
// and not the adjusted omega rates, but the name is stuck
|
||
static Vector3f omega;
|
||
// This is used to hold radio tuning values for in-flight CH6 tuning
|
||
float tuning_value;
|
||
// used to limit the rate that the pid controller output is logged so that it doesn't negatively affect performance
|
||
static uint8_t pid_log_counter;
|
||
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
// LED output
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
// Blinking indicates GPS status
|
||
static uint8_t copter_leds_GPS_blink;
|
||
// Blinking indicates battery status
|
||
static uint8_t copter_leds_motor_blink;
|
||
// Navigation confirmation blinks
|
||
static int8_t copter_leds_nav_blink;
|
||
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
// GPS variables
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
// This is used to scale GPS values for EEPROM storage
|
||
// 10^7 times Decimal GPS means 1 == 1cm
|
||
// This approximation makes calculations integer and it's easy to read
|
||
static const float t7 = 10000000.0;
|
||
// We use atan2 and other trig techniques to calaculate angles
|
||
// We need to scale the longitude up to make these calcs work
|
||
// to account for decreasing distance between lines of longitude away from the equator
|
||
static float scaleLongUp = 1;
|
||
// Sometimes we need to remove the scaling for distance calcs
|
||
static float scaleLongDown = 1;
|
||
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
// Location & Navigation
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
// This is the angle from the copter to the next waypoint in centi-degrees
|
||
static int32_t wp_bearing;
|
||
// The original bearing to the next waypoint. used to point the nose of the copter at the next waypoint
|
||
static int32_t original_wp_bearing;
|
||
// The location of home in relation to the copter in centi-degrees
|
||
static int32_t home_bearing;
|
||
// distance between plane and home in cm
|
||
static int32_t home_distance;
|
||
// distance between plane and next waypoint in cm.
|
||
static uint32_t wp_distance;
|
||
// navigation mode - options include NAV_NONE, NAV_LOITER, NAV_CIRCLE, NAV_WP
|
||
static uint8_t nav_mode;
|
||
// Register containing the index of the current navigation command in the mission script
|
||
static int16_t command_nav_index;
|
||
// Register containing the index of the previous navigation command in the mission script
|
||
// Used to manage the execution of conditional commands
|
||
static uint8_t prev_nav_index;
|
||
// Register containing the index of the current conditional command in the mission script
|
||
static uint8_t command_cond_index;
|
||
// Used to track the required WP navigation information
|
||
// options include
|
||
// NAV_ALTITUDE - have we reached the desired altitude?
|
||
// NAV_LOCATION - have we reached the desired location?
|
||
// NAV_DELAY - have we waited at the waypoint the desired time?
|
||
static float lon_error, lat_error; // Used to report how many cm we are from the next waypoint or loiter target position
|
||
static int16_t control_roll;
|
||
static int16_t control_pitch;
|
||
static uint8_t rtl_state; // records state of rtl (initial climb, returning home, etc)
|
||
static uint8_t land_state; // records state of land (flying to location, descending)
|
||
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
// Orientation
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
// Convienience accessors for commonly used trig functions. These values are generated
|
||
// by the DCM through a few simple equations. They are used throughout the code where cos and sin
|
||
// would normally be used.
|
||
// The cos values are defaulted to 1 to get a decent initial value for a level state
|
||
static float cos_roll_x = 1.0;
|
||
static float cos_pitch_x = 1.0;
|
||
static float cos_yaw = 1.0;
|
||
static float sin_yaw;
|
||
static float sin_roll;
|
||
static float sin_pitch;
|
||
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
// SIMPLE Mode
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
// Used to track the orientation of the copter for Simple mode. This value is reset at each arming
|
||
// or in SuperSimple mode when the copter leaves a 20m radius from home.
|
||
static float simple_cos_yaw = 1.0;
|
||
static float simple_sin_yaw;
|
||
static int32_t super_simple_last_bearing;
|
||
static float super_simple_cos_yaw = 1.0;
|
||
static float super_simple_sin_yaw;
|
||
|
||
|
||
// Stores initial bearing when armed - initial simple bearing is modified in super simple mode so not suitable
|
||
static int32_t initial_armed_bearing;
|
||
|
||
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
// Rate contoller targets
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
static uint8_t rate_targets_frame = EARTH_FRAME; // indicates whether rate targets provided in earth or body frame
|
||
static int32_t roll_rate_target_ef;
|
||
static int32_t pitch_rate_target_ef;
|
||
static int32_t yaw_rate_target_ef;
|
||
static int32_t roll_rate_target_bf; // body frame roll rate target
|
||
static int32_t pitch_rate_target_bf; // body frame pitch rate target
|
||
static int32_t yaw_rate_target_bf; // body frame yaw rate target
|
||
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
// Throttle variables
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
static int16_t throttle_accel_target_ef; // earth frame throttle acceleration target
|
||
static bool throttle_accel_controller_active; // true when accel based throttle controller is active, false when higher level throttle controllers are providing throttle output directly
|
||
static float throttle_avg; // g.throttle_cruise as a float
|
||
static int16_t desired_climb_rate; // pilot desired climb rate - for logging purposes only
|
||
static float target_alt_for_reporting; // target altitude in cm for reporting (logs and ground station)
|
||
|
||
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
// ACRO Mode
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
// Used to control Axis lock
|
||
static int32_t acro_roll; // desired roll angle while sport mode
|
||
static int32_t acro_roll_rate; // desired roll rate while in acro mode
|
||
static int32_t acro_pitch; // desired pitch angle while sport mode
|
||
static int32_t acro_pitch_rate; // desired pitch rate while acro mode
|
||
static int32_t acro_yaw_rate; // desired yaw rate while acro mode
|
||
static float acro_level_mix; // scales back roll, pitch and yaw inversely proportional to input from pilot
|
||
|
||
// Filters
|
||
#if FRAME_CONFIG == HELI_FRAME
|
||
//static LowPassFilterFloat rate_roll_filter; // Rate Roll filter
|
||
//static LowPassFilterFloat rate_pitch_filter; // Rate Pitch filter
|
||
#endif // HELI_FRAME
|
||
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
// Circle Mode / Loiter control
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
Vector3f circle_center; // circle position expressed in cm from home location. x = lat, y = lon
|
||
// angle from the circle center to the copter's desired location. Incremented at circle_rate / second
|
||
static float circle_angle;
|
||
// the total angle (in radians) travelled
|
||
static float circle_angle_total;
|
||
// deg : how many times to circle as specified by mission command
|
||
static uint8_t circle_desired_rotations;
|
||
static float circle_angular_acceleration; // circle mode's angular acceleration
|
||
static float circle_angular_velocity; // circle mode's angular velocity
|
||
static float circle_angular_velocity_max; // circle mode's max angular velocity
|
||
// How long we should stay in Loiter Mode for mission scripting (time in seconds)
|
||
static uint16_t loiter_time_max;
|
||
// How long have we been loitering - The start time in millis
|
||
static uint32_t loiter_time;
|
||
|
||
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
// CH7 and CH8 save waypoint control
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
// This register tracks the current Mission Command index when writing
|
||
// a mission using Ch7 or Ch8 aux switches in flight
|
||
static int8_t aux_switch_wp_index;
|
||
|
||
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
// Battery Sensors
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
static AP_BattMonitor battery;
|
||
|
||
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
// Altitude
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
// The (throttle) controller desired altitude in cm
|
||
static float controller_desired_alt;
|
||
// The cm we are off in altitude from next_WP.alt – Positive value means we are below the WP
|
||
static int32_t altitude_error;
|
||
// The cm/s we are moving up or down based on filtered data - Positive = UP
|
||
static int16_t climb_rate;
|
||
// The altitude as reported by Sonar in cm – Values are 20 to 700 generally.
|
||
static int16_t sonar_alt;
|
||
static uint8_t sonar_alt_health; // true if we can trust the altitude from the sonar
|
||
static float target_sonar_alt; // desired altitude in cm above the ground
|
||
// The altitude as reported by Baro in cm – Values can be quite high
|
||
static int32_t baro_alt;
|
||
|
||
static int16_t saved_toy_throttle;
|
||
|
||
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
// flight modes
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
// Flight modes are combinations of Roll/Pitch, Yaw and Throttle control modes
|
||
// Each Flight mode is a unique combination of these modes
|
||
//
|
||
// The current desired control scheme for Yaw
|
||
static uint8_t yaw_mode;
|
||
// The current desired control scheme for roll and pitch / navigation
|
||
static uint8_t roll_pitch_mode;
|
||
// The current desired control scheme for altitude hold
|
||
static uint8_t throttle_mode;
|
||
|
||
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
// flight specific
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
// An additional throttle added to keep the copter at the same altitude when banking
|
||
static int16_t angle_boost;
|
||
// counter to verify landings
|
||
static uint16_t land_detector;
|
||
|
||
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
// 3D Location vectors
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
// home location is stored when we have a good GPS lock and arm the copter
|
||
// Can be reset each the copter is re-armed
|
||
static struct Location home;
|
||
// Current location of the copter
|
||
static struct Location current_loc;
|
||
// Holds the current loaded command from the EEPROM for navigation
|
||
static struct Location command_nav_queue;
|
||
// Holds the current loaded command from the EEPROM for conditional scripts
|
||
static struct Location command_cond_queue;
|
||
|
||
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
// Navigation Roll/Pitch functions
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
// all angles are deg * 100 : target yaw angle
|
||
// The Commanded ROll from the autopilot.
|
||
static int32_t nav_roll;
|
||
// The Commanded pitch from the autopilot. negative Pitch means go forward.
|
||
static int32_t nav_pitch;
|
||
|
||
// The Commanded ROll from the autopilot based on optical flow sensor.
|
||
static int32_t of_roll;
|
||
// The Commanded pitch from the autopilot based on optical flow sensor. negative Pitch means go forward.
|
||
static int32_t of_pitch;
|
||
|
||
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
// Navigation Throttle control
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
// The Commanded Throttle from the autopilot.
|
||
static int16_t nav_throttle; // 0-1000 for throttle control
|
||
// This is a simple counter to track the amount of throttle used during flight
|
||
// This could be useful later in determining and debuging current usage and predicting battery life
|
||
static uint32_t throttle_integrator;
|
||
|
||
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
// Navigation Yaw control
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
// The Commanded Yaw from the autopilot.
|
||
static int32_t nav_yaw;
|
||
static uint8_t yaw_timer;
|
||
// Yaw will point at this location if yaw_mode is set to YAW_LOOK_AT_LOCATION
|
||
static Vector3f yaw_look_at_WP;
|
||
// bearing from current location to the yaw_look_at_WP
|
||
static int32_t yaw_look_at_WP_bearing;
|
||
// yaw used for YAW_LOOK_AT_HEADING yaw_mode
|
||
static int32_t yaw_look_at_heading;
|
||
// Deg/s we should turn
|
||
static int16_t yaw_look_at_heading_slew;
|
||
|
||
|
||
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
// Repeat Mission Scripting Command
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
// The type of repeating event - Toggle a servo channel, Toggle the APM1 relay, etc
|
||
static uint8_t event_id;
|
||
// Used to manage the timimng of repeating events
|
||
static uint32_t event_timer;
|
||
// How long to delay the next firing of event in millis
|
||
static uint16_t event_delay;
|
||
// how many times to fire : 0 = forever, 1 = do once, 2 = do twice
|
||
static int16_t event_repeat;
|
||
// per command value, such as PWM for servos
|
||
static int16_t event_value;
|
||
// the stored value used to undo commands - such as original PWM command
|
||
static int16_t event_undo_value;
|
||
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
// Delay Mission Scripting Command
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
static int32_t condition_value; // used in condition commands (eg delay, change alt, etc.)
|
||
static uint32_t condition_start;
|
||
|
||
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
// IMU variables
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
// Integration time (in seconds) for the gyros (DCM algorithm)
|
||
// Updated with the fast loop
|
||
static float G_Dt = 0.02;
|
||
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
// Inertial Navigation
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
static AP_InertialNav inertial_nav(&ahrs, &ins, &barometer, g_gps, gps_glitch);
|
||
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
// Waypoint navigation object
|
||
// To-Do: move inertial nav up or other navigation variables down here
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
static AC_WPNav wp_nav(&inertial_nav, &ahrs, &g.pi_loiter_lat, &g.pi_loiter_lon, &g.pid_loiter_rate_lat, &g.pid_loiter_rate_lon);
|
||
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
// Performance monitoring
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
// The number of GPS fixes we have had
|
||
static uint8_t gps_fix_count;
|
||
static int16_t pmTest1;
|
||
|
||
// System Timers
|
||
// --------------
|
||
// Time in microseconds of main control loop
|
||
static uint32_t fast_loopTimer;
|
||
// Counter of main loop executions. Used for performance monitoring and failsafe processing
|
||
static uint16_t mainLoop_count;
|
||
// Loiter timer - Records how long we have been in loiter
|
||
static uint32_t rtl_loiter_start_time;
|
||
// prevents duplicate GPS messages from entering system
|
||
static uint32_t last_gps_time;
|
||
|
||
// Used to exit the roll and pitch auto trim function
|
||
static uint8_t auto_trim_counter;
|
||
|
||
// Reference to the relay object (APM1 -> PORTL 2) (APM2 -> PORTB 7)
|
||
static AP_Relay relay;
|
||
|
||
//Reference to the camera object (it uses the relay object inside it)
|
||
#if CAMERA == ENABLED
|
||
static AP_Camera camera(&relay);
|
||
#endif
|
||
|
||
// a pin for reading the receiver RSSI voltage.
|
||
static AP_HAL::AnalogSource* rssi_analog_source;
|
||
|
||
|
||
// Input sources for battery voltage, battery current, board vcc
|
||
static AP_HAL::AnalogSource* board_vcc_analog_source;
|
||
|
||
|
||
#if CLI_ENABLED == ENABLED
|
||
static int8_t setup_show (uint8_t argc, const Menu::arg *argv);
|
||
#endif
|
||
|
||
// Camera/Antenna mount tracking and stabilisation stuff
|
||
// --------------------------------------
|
||
#if MOUNT == ENABLED
|
||
// current_loc uses the baro/gps soloution for altitude rather than gps only.
|
||
// mabe one could use current_loc for lat/lon too and eliminate g_gps alltogether?
|
||
static AP_Mount camera_mount(¤t_loc, g_gps, ahrs, 0);
|
||
#endif
|
||
|
||
#if MOUNT2 == ENABLED
|
||
// current_loc uses the baro/gps soloution for altitude rather than gps only.
|
||
// mabe one could use current_loc for lat/lon too and eliminate g_gps alltogether?
|
||
static AP_Mount camera_mount2(¤t_loc, g_gps, ahrs, 1);
|
||
#endif
|
||
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
// AC_Fence library to reduce fly-aways
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
#if AC_FENCE == ENABLED
|
||
AC_Fence fence(&inertial_nav);
|
||
#endif
|
||
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
// Crop Sprayer
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
#if SPRAYER == ENABLED
|
||
static AC_Sprayer sprayer(&inertial_nav);
|
||
#endif
|
||
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
// function definitions to keep compiler from complaining about undeclared functions
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
void get_throttle_althold(int32_t target_alt, int16_t min_climb_rate, int16_t max_climb_rate);
|
||
static void pre_arm_checks(bool display_failure);
|
||
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
// Top-level logic
|
||
////////////////////////////////////////////////////////////////////////////////
|
||
|
||
// setup the var_info table
|
||
AP_Param param_loader(var_info, WP_START_BYTE);
|
||
|
||
/*
|
||
scheduler table - all regular tasks apart from the fast_loop()
|
||
should be listed here, along with how often they should be called
|
||
(in 10ms units) and the maximum time they are expected to take (in
|
||
microseconds)
|
||
*/
|
||
static const AP_Scheduler::Task scheduler_tasks[] PROGMEM = {
|
||
{ throttle_loop, 2, 450 },
|
||
{ update_GPS, 2, 900 },
|
||
{ update_nav_mode, 1, 400 },
|
||
{ update_batt_compass, 10, 720 },
|
||
{ read_aux_switches, 10, 50 },
|
||
{ arm_motors_check, 10, 10 },
|
||
{ auto_trim, 10, 140 },
|
||
{ update_toy_throttle, 10, 50 },
|
||
{ update_altitude, 10, 1000 },
|
||
{ run_nav_updates, 10, 800 },
|
||
{ three_hz_loop, 33, 90 },
|
||
{ compass_accumulate, 2, 420 },
|
||
{ barometer_accumulate, 2, 250 },
|
||
{ update_notify, 2, 100 },
|
||
{ one_hz_loop, 100, 420 },
|
||
{ gcs_check_input, 2, 550 },
|
||
{ gcs_send_heartbeat, 100, 150 },
|
||
{ gcs_send_deferred, 2, 720 },
|
||
{ gcs_data_stream_send, 2, 950 },
|
||
#if COPTER_LEDS == ENABLED
|
||
{ update_copter_leds, 10, 55 },
|
||
#endif
|
||
{ update_mount, 2, 450 },
|
||
{ ten_hz_logging_loop, 10, 260 },
|
||
{ fifty_hz_logging_loop, 2, 220 },
|
||
{ perf_update, 1000, 200 },
|
||
{ read_receiver_rssi, 10, 50 },
|
||
#ifdef USERHOOK_FASTLOOP
|
||
{ userhook_FastLoop, 1, 100 },
|
||
#endif
|
||
#ifdef USERHOOK_50HZLOOP
|
||
{ userhook_50Hz, 2, 100 },
|
||
#endif
|
||
#ifdef USERHOOK_MEDIUMLOOP
|
||
{ userhook_MediumLoop, 10, 100 },
|
||
#endif
|
||
#ifdef USERHOOK_SLOWLOOP
|
||
{ userhook_SlowLoop, 30, 100 },
|
||
#endif
|
||
#ifdef USERHOOK_SUPERSLOWLOOP
|
||
{ userhook_SuperSlowLoop,100, 100 },
|
||
#endif
|
||
};
|
||
|
||
|
||
void setup() {
|
||
// this needs to be the first call, as it fills memory with
|
||
// sentinel values
|
||
memcheck_init();
|
||
cliSerial = hal.console;
|
||
|
||
// Load the default values of variables listed in var_info[]s
|
||
AP_Param::setup_sketch_defaults();
|
||
|
||
// initialise notify system
|
||
notify.init();
|
||
|
||
// initialise battery monitor
|
||
battery.init();
|
||
|
||
#if CONFIG_SONAR == ENABLED
|
||
#if CONFIG_SONAR_SOURCE == SONAR_SOURCE_ADC
|
||
sonar_analog_source = new AP_ADC_AnalogSource(
|
||
&adc, CONFIG_SONAR_SOURCE_ADC_CHANNEL, 0.25);
|
||
#elif CONFIG_SONAR_SOURCE == SONAR_SOURCE_ANALOG_PIN
|
||
sonar_analog_source = hal.analogin->channel(
|
||
CONFIG_SONAR_SOURCE_ANALOG_PIN);
|
||
#else
|
||
#warning "Invalid CONFIG_SONAR_SOURCE"
|
||
#endif
|
||
sonar = new AP_RangeFinder_MaxsonarXL(sonar_analog_source,
|
||
&sonar_mode_filter);
|
||
#endif
|
||
|
||
rssi_analog_source = hal.analogin->channel(g.rssi_pin);
|
||
board_vcc_analog_source = hal.analogin->channel(ANALOG_INPUT_BOARD_VCC);
|
||
|
||
init_ardupilot();
|
||
|
||
// initialise the main loop scheduler
|
||
scheduler.init(&scheduler_tasks[0], sizeof(scheduler_tasks)/sizeof(scheduler_tasks[0]));
|
||
}
|
||
|
||
/*
|
||
if the compass is enabled then try to accumulate a reading
|
||
*/
|
||
static void compass_accumulate(void)
|
||
{
|
||
if (g.compass_enabled) {
|
||
compass.accumulate();
|
||
}
|
||
}
|
||
|
||
/*
|
||
try to accumulate a baro reading
|
||
*/
|
||
static void barometer_accumulate(void)
|
||
{
|
||
barometer.accumulate();
|
||
}
|
||
|
||
static void perf_update(void)
|
||
{
|
||
if (g.log_bitmask & MASK_LOG_PM)
|
||
Log_Write_Performance();
|
||
if (scheduler.debug()) {
|
||
cliSerial->printf_P(PSTR("PERF: %u/%u %lu\n"),
|
||
(unsigned)perf_info_get_num_long_running(),
|
||
(unsigned)perf_info_get_num_loops(),
|
||
(unsigned long)perf_info_get_max_time());
|
||
}
|
||
perf_info_reset();
|
||
gps_fix_count = 0;
|
||
pmTest1 = 0;
|
||
}
|
||
|
||
void loop()
|
||
{
|
||
// wait for an INS sample
|
||
if (!ins.wait_for_sample(1000)) {
|
||
Log_Write_Error(ERROR_SUBSYSTEM_MAIN, ERROR_CODE_INS_DELAY);
|
||
return;
|
||
}
|
||
uint32_t timer = micros();
|
||
|
||
// check loop time
|
||
perf_info_check_loop_time(timer - fast_loopTimer);
|
||
|
||
// used by PI Loops
|
||
G_Dt = (float)(timer - fast_loopTimer) / 1000000.f;
|
||
fast_loopTimer = timer;
|
||
|
||
// for mainloop failure monitoring
|
||
mainLoop_count++;
|
||
|
||
// Execute the fast loop
|
||
// ---------------------
|
||
fast_loop();
|
||
|
||
// tell the scheduler one tick has passed
|
||
scheduler.tick();
|
||
|
||
// run all the tasks that are due to run. Note that we only
|
||
// have to call this once per loop, as the tasks are scheduled
|
||
// in multiples of the main loop tick. So if they don't run on
|
||
// the first call to the scheduler they won't run on a later
|
||
// call until scheduler.tick() is called again
|
||
uint32_t time_available = (timer + 10000) - micros();
|
||
scheduler.run(time_available - 300);
|
||
}
|
||
|
||
|
||
// Main loop - 100hz
|
||
static void fast_loop()
|
||
{
|
||
// IMU DCM Algorithm
|
||
// --------------------
|
||
read_AHRS();
|
||
|
||
// reads all of the necessary trig functions for cameras, throttle, etc.
|
||
// --------------------------------------------------------------------
|
||
update_trig();
|
||
|
||
// Acrobatic control
|
||
if (ap.do_flip) {
|
||
if(abs(g.rc_1.control_in) < 4000) {
|
||
// calling roll_flip will override the desired roll rate and throttle output
|
||
roll_flip();
|
||
}else{
|
||
// force an exit from the loop if we are not hands off sticks.
|
||
ap.do_flip = false;
|
||
Log_Write_Event(DATA_EXIT_FLIP);
|
||
}
|
||
}
|
||
|
||
// run low level rate controllers that only require IMU data
|
||
run_rate_controllers();
|
||
|
||
// write out the servo PWM values
|
||
// ------------------------------
|
||
set_servos_4();
|
||
|
||
// Inertial Nav
|
||
// --------------------
|
||
read_inertia();
|
||
|
||
// optical flow
|
||
// --------------------
|
||
#if OPTFLOW == ENABLED
|
||
if(g.optflow_enabled) {
|
||
update_optical_flow();
|
||
}
|
||
#endif // OPTFLOW == ENABLED
|
||
|
||
// Read radio and 3-position switch on radio
|
||
// -----------------------------------------
|
||
read_radio();
|
||
read_control_switch();
|
||
|
||
// custom code/exceptions for flight modes
|
||
// ---------------------------------------
|
||
update_yaw_mode();
|
||
update_roll_pitch_mode();
|
||
|
||
// update targets to rate controllers
|
||
update_rate_contoller_targets();
|
||
}
|
||
|
||
// throttle_loop - should be run at 50 hz
|
||
// ---------------------------
|
||
static void throttle_loop()
|
||
{
|
||
// get altitude and climb rate from inertial lib
|
||
read_inertial_altitude();
|
||
|
||
// Update the throttle ouput
|
||
// -------------------------
|
||
update_throttle_mode();
|
||
|
||
// check if we've landed
|
||
update_land_detector();
|
||
|
||
#if TOY_EDF == ENABLED
|
||
edf_toy();
|
||
#endif
|
||
|
||
// check auto_armed status
|
||
update_auto_armed();
|
||
}
|
||
|
||
// update_mount - update camera mount position
|
||
// should be run at 50hz
|
||
static void update_mount()
|
||
{
|
||
#if MOUNT == ENABLED
|
||
// update camera mount's position
|
||
camera_mount.update_mount_position();
|
||
#endif
|
||
|
||
#if MOUNT2 == ENABLED
|
||
// update camera mount's position
|
||
camera_mount2.update_mount_position();
|
||
#endif
|
||
|
||
#if CAMERA == ENABLED
|
||
camera.trigger_pic_cleanup();
|
||
#endif
|
||
}
|
||
|
||
// update_batt_compass - read battery and compass
|
||
// should be called at 10hz
|
||
static void update_batt_compass(void)
|
||
{
|
||
// read battery before compass because it may be used for motor interference compensation
|
||
read_battery();
|
||
|
||
#if HIL_MODE != HIL_MODE_ATTITUDE // don't execute in HIL mode
|
||
if(g.compass_enabled) {
|
||
if (compass.read()) {
|
||
compass.null_offsets();
|
||
}
|
||
// log compass information
|
||
if (motors.armed() && (g.log_bitmask & MASK_LOG_COMPASS)) {
|
||
Log_Write_Compass();
|
||
}
|
||
}
|
||
#endif
|
||
|
||
// record throttle output
|
||
throttle_integrator += g.rc_3.servo_out;
|
||
}
|
||
|
||
// ten_hz_logging_loop
|
||
// should be run at 10hz
|
||
static void ten_hz_logging_loop()
|
||
{
|
||
if(motors.armed()) {
|
||
if (g.log_bitmask & MASK_LOG_ATTITUDE_MED) {
|
||
Log_Write_Attitude();
|
||
}
|
||
if (g.log_bitmask & MASK_LOG_MOTORS) {
|
||
Log_Write_Motors();
|
||
}
|
||
}
|
||
}
|
||
|
||
// fifty_hz_logging_loop
|
||
// should be run at 50hz
|
||
static void fifty_hz_logging_loop()
|
||
{
|
||
#if HIL_MODE != HIL_MODE_DISABLED
|
||
// HIL for a copter needs very fast update of the servo values
|
||
gcs_send_message(MSG_RADIO_OUT);
|
||
#endif
|
||
|
||
# if HIL_MODE == HIL_MODE_DISABLED
|
||
if (g.log_bitmask & MASK_LOG_ATTITUDE_FAST && motors.armed()) {
|
||
Log_Write_Attitude();
|
||
}
|
||
|
||
if (g.log_bitmask & MASK_LOG_IMU && motors.armed()) {
|
||
DataFlash.Log_Write_IMU(&ins);
|
||
}
|
||
#endif
|
||
}
|
||
|
||
// three_hz_loop - 3.3hz loop
|
||
static void three_hz_loop()
|
||
{
|
||
// check if we've lost contact with the ground station
|
||
failsafe_gcs_check();
|
||
|
||
#if AC_FENCE == ENABLED
|
||
// check if we have breached a fence
|
||
fence_check();
|
||
#endif // AC_FENCE_ENABLED
|
||
|
||
#if SPRAYER == ENABLED
|
||
sprayer.update();
|
||
#endif
|
||
|
||
update_events();
|
||
|
||
if(g.radio_tuning > 0)
|
||
tuning();
|
||
}
|
||
|
||
// one_hz_loop - runs at 1Hz
|
||
static void one_hz_loop()
|
||
{
|
||
if (g.log_bitmask != 0) {
|
||
Log_Write_Data(DATA_AP_STATE, ap.value);
|
||
}
|
||
|
||
// pass latest alt hold kP value to navigation controller
|
||
wp_nav.set_althold_kP(g.pi_alt_hold.kP());
|
||
|
||
// update latest lean angle to navigation controller
|
||
wp_nav.set_lean_angle_max(g.angle_max);
|
||
|
||
// log battery info to the dataflash
|
||
if ((g.log_bitmask & MASK_LOG_CURRENT) && motors.armed())
|
||
Log_Write_Current();
|
||
|
||
// perform pre-arm checks
|
||
pre_arm_checks(false);
|
||
|
||
// auto disarm checks
|
||
auto_disarm_check();
|
||
|
||
if (!motors.armed()) {
|
||
// make it possible to change ahrs orientation at runtime during initial config
|
||
ahrs.set_orientation();
|
||
|
||
// check the user hasn't updated the frame orientation
|
||
motors.set_frame_orientation(g.frame_orientation);
|
||
}
|
||
|
||
#if CONFIG_HAL_BOARD == HAL_BOARD_PX4
|
||
update_aux_servo_function(&g.rc_5, &g.rc_6, &g.rc_7, &g.rc_8, &g.rc_9, &g.rc_10, &g.rc_11, &g.rc_12);
|
||
#elif MOUNT == ENABLED
|
||
update_aux_servo_function(&g.rc_5, &g.rc_6, &g.rc_7, &g.rc_8, &g.rc_10, &g.rc_11);
|
||
#endif
|
||
|
||
enable_aux_servos();
|
||
|
||
#if MOUNT == ENABLED
|
||
camera_mount.update_mount_type();
|
||
#endif
|
||
|
||
#if MOUNT2 == ENABLED
|
||
camera_mount2.update_mount_type();
|
||
#endif
|
||
|
||
check_usb_mux();
|
||
}
|
||
|
||
// called at 100hz but data from sensor only arrives at 20 Hz
|
||
#if OPTFLOW == ENABLED
|
||
static void update_optical_flow(void)
|
||
{
|
||
static uint32_t last_of_update = 0;
|
||
static uint8_t of_log_counter = 0;
|
||
|
||
// if new data has arrived, process it
|
||
if( optflow.last_update != last_of_update ) {
|
||
last_of_update = optflow.last_update;
|
||
optflow.update_position(ahrs.roll, ahrs.pitch, sin_yaw, cos_yaw, current_loc.alt); // updates internal lon and lat with estimation based on optical flow
|
||
|
||
// write to log at 5hz
|
||
of_log_counter++;
|
||
if( of_log_counter >= 4 ) {
|
||
of_log_counter = 0;
|
||
if (g.log_bitmask & MASK_LOG_OPTFLOW) {
|
||
Log_Write_Optflow();
|
||
}
|
||
}
|
||
}
|
||
}
|
||
#endif // OPTFLOW == ENABLED
|
||
|
||
// called at 50hz
|
||
static void update_GPS(void)
|
||
{
|
||
// A counter that is used to grab at least 10 reads before commiting the Home location
|
||
static uint8_t ground_start_count = 10;
|
||
|
||
g_gps->update();
|
||
|
||
if (g_gps->new_data && last_gps_time != g_gps->last_fix_time && g_gps->status() >= GPS::GPS_OK_FIX_2D) {
|
||
// clear new data flag
|
||
g_gps->new_data = false;
|
||
|
||
// save GPS time so we don't get duplicate reads
|
||
last_gps_time = g_gps->last_fix_time;
|
||
|
||
// log location if we have at least a 2D fix
|
||
if (g.log_bitmask & MASK_LOG_GPS && motors.armed()) {
|
||
DataFlash.Log_Write_GPS(g_gps, current_loc.alt);
|
||
}
|
||
|
||
// for performance monitoring
|
||
gps_fix_count++;
|
||
|
||
// run glitch protection and update AP_Notify
|
||
gps_glitch.check_position();
|
||
if (AP_Notify::flags.gps_glitching != gps_glitch.glitching()) {
|
||
if (gps_glitch.glitching()) {
|
||
Log_Write_Error(ERROR_SUBSYSTEM_GPS, ERROR_CODE_GPS_GLITCH);
|
||
}else{
|
||
Log_Write_Error(ERROR_SUBSYSTEM_GPS, ERROR_CODE_ERROR_RESOLVED);
|
||
}
|
||
AP_Notify::flags.gps_glitching = gps_glitch.glitching();
|
||
}
|
||
|
||
// check if we can initialise home yet
|
||
if (!ap.home_is_set) {
|
||
// if we have a 3d lock and valid location
|
||
if(g_gps->status() >= GPS::GPS_OK_FIX_3D && g_gps->latitude != 0) {
|
||
if( ground_start_count > 0 ) {
|
||
ground_start_count--;
|
||
}else{
|
||
// after 10 successful reads store home location
|
||
// ap.home_is_set will be true so this will only happen once
|
||
ground_start_count = 0;
|
||
init_home();
|
||
|
||
// set system clock for log timestamps
|
||
hal.util->set_system_clock(g_gps->time_epoch_usec());
|
||
|
||
if (g.compass_enabled) {
|
||
// Set compass declination automatically
|
||
compass.set_initial_location(g_gps->latitude, g_gps->longitude);
|
||
}
|
||
}
|
||
}else{
|
||
// start again if we lose 3d lock
|
||
ground_start_count = 10;
|
||
}
|
||
}
|
||
|
||
#if CAMERA == ENABLED
|
||
if (camera.update_location(current_loc) == true) {
|
||
do_take_picture();
|
||
}
|
||
#endif
|
||
}
|
||
|
||
// check for loss of gps
|
||
failsafe_gps_check();
|
||
}
|
||
|
||
// set_yaw_mode - update yaw mode and initialise any variables required
|
||
bool set_yaw_mode(uint8_t new_yaw_mode)
|
||
{
|
||
// boolean to ensure proper initialisation of throttle modes
|
||
bool yaw_initialised = false;
|
||
|
||
// return immediately if no change
|
||
if( new_yaw_mode == yaw_mode ) {
|
||
return true;
|
||
}
|
||
|
||
switch( new_yaw_mode ) {
|
||
case YAW_HOLD:
|
||
yaw_initialised = true;
|
||
break;
|
||
case YAW_ACRO:
|
||
yaw_initialised = true;
|
||
acro_yaw_rate = 0;
|
||
break;
|
||
case YAW_LOOK_AT_NEXT_WP:
|
||
if( ap.home_is_set ) {
|
||
yaw_initialised = true;
|
||
}
|
||
break;
|
||
case YAW_LOOK_AT_LOCATION:
|
||
if( ap.home_is_set ) {
|
||
// update bearing - assumes yaw_look_at_WP has been intialised before set_yaw_mode was called
|
||
yaw_look_at_WP_bearing = pv_get_bearing_cd(inertial_nav.get_position(), yaw_look_at_WP);
|
||
yaw_initialised = true;
|
||
}
|
||
break;
|
||
case YAW_CIRCLE:
|
||
if( ap.home_is_set ) {
|
||
// set yaw to point to center of circle
|
||
yaw_look_at_WP = circle_center;
|
||
// initialise bearing to current heading
|
||
yaw_look_at_WP_bearing = ahrs.yaw_sensor;
|
||
yaw_initialised = true;
|
||
}
|
||
break;
|
||
case YAW_LOOK_AT_HEADING:
|
||
yaw_initialised = true;
|
||
break;
|
||
case YAW_LOOK_AT_HOME:
|
||
if( ap.home_is_set ) {
|
||
yaw_initialised = true;
|
||
}
|
||
break;
|
||
case YAW_LOOK_AHEAD:
|
||
if( ap.home_is_set ) {
|
||
yaw_initialised = true;
|
||
}
|
||
break;
|
||
case YAW_TOY:
|
||
yaw_initialised = true;
|
||
break;
|
||
case YAW_RESETTOARMEDYAW:
|
||
nav_yaw = ahrs.yaw_sensor; // store current yaw so we can start rotating back to correct one
|
||
yaw_initialised = true;
|
||
break;
|
||
}
|
||
|
||
// if initialisation has been successful update the yaw mode
|
||
if( yaw_initialised ) {
|
||
yaw_mode = new_yaw_mode;
|
||
}
|
||
|
||
// return success or failure
|
||
return yaw_initialised;
|
||
}
|
||
|
||
// update_yaw_mode - run high level yaw controllers
|
||
// 100hz update rate
|
||
void update_yaw_mode(void)
|
||
{
|
||
switch(yaw_mode) {
|
||
|
||
case YAW_HOLD:
|
||
// if we are landed reset yaw target to current heading
|
||
if (ap.land_complete) {
|
||
nav_yaw = ahrs.yaw_sensor;
|
||
}
|
||
// heading hold at heading held in nav_yaw but allow input from pilot
|
||
get_yaw_rate_stabilized_ef(g.rc_4.control_in);
|
||
break;
|
||
|
||
case YAW_ACRO:
|
||
// pilot controlled yaw using rate controller
|
||
get_yaw_rate_stabilized_bf(g.rc_4.control_in);
|
||
break;
|
||
|
||
case YAW_LOOK_AT_NEXT_WP:
|
||
// if we are landed reset yaw target to current heading
|
||
if (ap.land_complete) {
|
||
nav_yaw = ahrs.yaw_sensor;
|
||
}else{
|
||
// point towards next waypoint (no pilot input accepted)
|
||
// we don't use wp_bearing because we don't want the copter to turn too much during flight
|
||
nav_yaw = get_yaw_slew(nav_yaw, original_wp_bearing, AUTO_YAW_SLEW_RATE);
|
||
}
|
||
get_stabilize_yaw(nav_yaw);
|
||
|
||
// if there is any pilot input, switch to YAW_HOLD mode for the next iteration
|
||
if( g.rc_4.control_in != 0 ) {
|
||
set_yaw_mode(YAW_HOLD);
|
||
}
|
||
break;
|
||
|
||
case YAW_LOOK_AT_LOCATION:
|
||
// if we are landed reset yaw target to current heading
|
||
if (ap.land_complete) {
|
||
nav_yaw = ahrs.yaw_sensor;
|
||
}
|
||
// point towards a location held in yaw_look_at_WP
|
||
get_look_at_yaw();
|
||
|
||
// if there is any pilot input, switch to YAW_HOLD mode for the next iteration
|
||
if( g.rc_4.control_in != 0 ) {
|
||
set_yaw_mode(YAW_HOLD);
|
||
}
|
||
break;
|
||
|
||
case YAW_CIRCLE:
|
||
// if we are landed reset yaw target to current heading
|
||
if (ap.land_complete) {
|
||
nav_yaw = ahrs.yaw_sensor;
|
||
}
|
||
// points toward the center of the circle or does a panorama
|
||
get_circle_yaw();
|
||
|
||
// if there is any pilot input, switch to YAW_HOLD mode for the next iteration
|
||
if( g.rc_4.control_in != 0 ) {
|
||
set_yaw_mode(YAW_HOLD);
|
||
}
|
||
break;
|
||
|
||
case YAW_LOOK_AT_HOME:
|
||
// if we are landed reset yaw target to current heading
|
||
if (ap.land_complete) {
|
||
nav_yaw = ahrs.yaw_sensor;
|
||
}else{
|
||
// keep heading always pointing at home with no pilot input allowed
|
||
nav_yaw = get_yaw_slew(nav_yaw, home_bearing, AUTO_YAW_SLEW_RATE);
|
||
}
|
||
get_stabilize_yaw(nav_yaw);
|
||
|
||
// if there is any pilot input, switch to YAW_HOLD mode for the next iteration
|
||
if( g.rc_4.control_in != 0 ) {
|
||
set_yaw_mode(YAW_HOLD);
|
||
}
|
||
break;
|
||
|
||
case YAW_LOOK_AT_HEADING:
|
||
// if we are landed reset yaw target to current heading
|
||
if (ap.land_complete) {
|
||
nav_yaw = ahrs.yaw_sensor;
|
||
}else{
|
||
// keep heading pointing in the direction held in yaw_look_at_heading with no pilot input allowed
|
||
nav_yaw = get_yaw_slew(nav_yaw, yaw_look_at_heading, yaw_look_at_heading_slew);
|
||
}
|
||
get_stabilize_yaw(nav_yaw);
|
||
break;
|
||
|
||
case YAW_LOOK_AHEAD:
|
||
// if we are landed reset yaw target to current heading
|
||
if (ap.land_complete) {
|
||
nav_yaw = ahrs.yaw_sensor;
|
||
}
|
||
// Commanded Yaw to automatically look ahead.
|
||
get_look_ahead_yaw(g.rc_4.control_in);
|
||
break;
|
||
|
||
#if TOY_LOOKUP == TOY_EXTERNAL_MIXER
|
||
case YAW_TOY:
|
||
// if we are landed reset yaw target to current heading
|
||
if (ap.land_complete) {
|
||
nav_yaw = ahrs.yaw_sensor;
|
||
}else{
|
||
// update to allow external roll/yaw mixing
|
||
// keep heading always pointing at home with no pilot input allowed
|
||
nav_yaw = get_yaw_slew(nav_yaw, home_bearing, AUTO_YAW_SLEW_RATE);
|
||
}
|
||
get_stabilize_yaw(nav_yaw);
|
||
break;
|
||
#endif
|
||
|
||
case YAW_RESETTOARMEDYAW:
|
||
// if we are landed reset yaw target to current heading
|
||
if (ap.land_complete) {
|
||
nav_yaw = ahrs.yaw_sensor;
|
||
}else{
|
||
// changes yaw to be same as when quad was armed
|
||
nav_yaw = get_yaw_slew(nav_yaw, initial_armed_bearing, AUTO_YAW_SLEW_RATE);
|
||
}
|
||
get_stabilize_yaw(nav_yaw);
|
||
|
||
// if there is any pilot input, switch to YAW_HOLD mode for the next iteration
|
||
if( g.rc_4.control_in != 0 ) {
|
||
set_yaw_mode(YAW_HOLD);
|
||
}
|
||
|
||
break;
|
||
}
|
||
}
|
||
|
||
// get yaw mode based on WP_YAW_BEHAVIOR parameter
|
||
// set rtl parameter to true if this is during an RTL
|
||
uint8_t get_wp_yaw_mode(bool rtl)
|
||
{
|
||
switch (g.wp_yaw_behavior) {
|
||
case WP_YAW_BEHAVIOR_LOOK_AT_NEXT_WP:
|
||
return YAW_LOOK_AT_NEXT_WP;
|
||
break;
|
||
|
||
case WP_YAW_BEHAVIOR_LOOK_AT_NEXT_WP_EXCEPT_RTL:
|
||
if( rtl ) {
|
||
return YAW_HOLD;
|
||
}else{
|
||
return YAW_LOOK_AT_NEXT_WP;
|
||
}
|
||
break;
|
||
|
||
case WP_YAW_BEHAVIOR_LOOK_AHEAD:
|
||
return YAW_LOOK_AHEAD;
|
||
break;
|
||
|
||
default:
|
||
return YAW_HOLD;
|
||
break;
|
||
}
|
||
}
|
||
|
||
// set_roll_pitch_mode - update roll/pitch mode and initialise any variables as required
|
||
bool set_roll_pitch_mode(uint8_t new_roll_pitch_mode)
|
||
{
|
||
// boolean to ensure proper initialisation of throttle modes
|
||
bool roll_pitch_initialised = false;
|
||
|
||
// return immediately if no change
|
||
if( new_roll_pitch_mode == roll_pitch_mode ) {
|
||
return true;
|
||
}
|
||
|
||
switch( new_roll_pitch_mode ) {
|
||
case ROLL_PITCH_STABLE:
|
||
roll_pitch_initialised = true;
|
||
break;
|
||
case ROLL_PITCH_ACRO:
|
||
// reset acro level rates
|
||
acro_roll_rate = 0;
|
||
acro_pitch_rate = 0;
|
||
roll_pitch_initialised = true;
|
||
break;
|
||
case ROLL_PITCH_AUTO:
|
||
case ROLL_PITCH_STABLE_OF:
|
||
case ROLL_PITCH_TOY:
|
||
case ROLL_PITCH_SPORT:
|
||
roll_pitch_initialised = true;
|
||
break;
|
||
|
||
case ROLL_PITCH_LOITER:
|
||
// require gps lock
|
||
if( ap.home_is_set ) {
|
||
roll_pitch_initialised = true;
|
||
}
|
||
break;
|
||
|
||
#if AUTOTUNE == ENABLED
|
||
case ROLL_PITCH_AUTOTUNE:
|
||
// only enter autotune mode from stabilized roll-pitch mode when armed and flying
|
||
if (roll_pitch_mode == ROLL_PITCH_STABLE && motors.armed() && !ap.land_complete) {
|
||
// auto_tune_start returns true if it wants the roll-pitch mode changed to autotune
|
||
roll_pitch_initialised = auto_tune_start();
|
||
}
|
||
break;
|
||
#endif
|
||
}
|
||
|
||
// if initialisation has been successful update the yaw mode
|
||
if( roll_pitch_initialised ) {
|
||
exit_roll_pitch_mode(roll_pitch_mode);
|
||
roll_pitch_mode = new_roll_pitch_mode;
|
||
}
|
||
|
||
// return success or failure
|
||
return roll_pitch_initialised;
|
||
}
|
||
|
||
// exit_roll_pitch_mode - peforms any code required when exiting the current roll-pitch mode
|
||
void exit_roll_pitch_mode(uint8_t old_roll_pitch_mode)
|
||
{
|
||
#if AUTOTUNE == ENABLED
|
||
if (old_roll_pitch_mode == ROLL_PITCH_AUTOTUNE) {
|
||
auto_tune_stop();
|
||
}
|
||
#endif
|
||
}
|
||
|
||
|
||
// update_roll_pitch_mode - run high level roll and pitch controllers
|
||
// 100hz update rate
|
||
void update_roll_pitch_mode(void)
|
||
{
|
||
switch(roll_pitch_mode) {
|
||
case ROLL_PITCH_ACRO:
|
||
// copy user input for reporting purposes
|
||
control_roll = g.rc_1.control_in;
|
||
control_pitch = g.rc_2.control_in;
|
||
|
||
#if FRAME_CONFIG == HELI_FRAME
|
||
// ACRO does not get SIMPLE mode ability
|
||
if (motors.flybar_mode == 1) {
|
||
g.rc_1.servo_out = g.rc_1.control_in;
|
||
g.rc_2.servo_out = g.rc_2.control_in;
|
||
}else{
|
||
acro_level_mix = constrain_float(1-max(max(abs(g.rc_1.control_in), abs(g.rc_2.control_in)), abs(g.rc_4.control_in))/4500.0, 0, 1)*cos_pitch_x;
|
||
get_roll_rate_stabilized_bf(g.rc_1.control_in);
|
||
get_pitch_rate_stabilized_bf(g.rc_2.control_in);
|
||
get_acro_level_rates();
|
||
}
|
||
#else // !HELI_FRAME
|
||
acro_level_mix = constrain_float(1-max(max(abs(g.rc_1.control_in), abs(g.rc_2.control_in)), abs(g.rc_4.control_in))/4500.0, 0, 1)*cos_pitch_x;
|
||
get_roll_rate_stabilized_bf(g.rc_1.control_in);
|
||
get_pitch_rate_stabilized_bf(g.rc_2.control_in);
|
||
get_acro_level_rates();
|
||
#endif // HELI_FRAME
|
||
break;
|
||
|
||
case ROLL_PITCH_STABLE:
|
||
// apply SIMPLE mode transform
|
||
update_simple_mode();
|
||
|
||
// convert pilot input to lean angles
|
||
get_pilot_desired_lean_angles(g.rc_1.control_in, g.rc_2.control_in, control_roll, control_pitch);
|
||
|
||
// pass desired roll, pitch to stabilize attitude controllers
|
||
get_stabilize_roll(control_roll);
|
||
get_stabilize_pitch(control_pitch);
|
||
|
||
break;
|
||
|
||
case ROLL_PITCH_AUTO:
|
||
// copy latest output from nav controller to stabilize controller
|
||
nav_roll = wp_nav.get_desired_roll();
|
||
nav_pitch = wp_nav.get_desired_pitch();
|
||
get_stabilize_roll(nav_roll);
|
||
get_stabilize_pitch(nav_pitch);
|
||
|
||
// user input, although ignored is put into control_roll and pitch for reporting purposes
|
||
control_roll = g.rc_1.control_in;
|
||
control_pitch = g.rc_2.control_in;
|
||
break;
|
||
|
||
case ROLL_PITCH_STABLE_OF:
|
||
// apply SIMPLE mode transform
|
||
update_simple_mode();
|
||
|
||
// convert pilot input to lean angles
|
||
get_pilot_desired_lean_angles(g.rc_1.control_in, g.rc_2.control_in, control_roll, control_pitch);
|
||
|
||
// mix in user control with optical flow
|
||
get_stabilize_roll(get_of_roll(control_roll));
|
||
get_stabilize_pitch(get_of_pitch(control_pitch));
|
||
break;
|
||
|
||
// THOR
|
||
// a call out to the main toy logic
|
||
case ROLL_PITCH_TOY:
|
||
roll_pitch_toy();
|
||
break;
|
||
|
||
case ROLL_PITCH_LOITER:
|
||
// apply SIMPLE mode transform
|
||
update_simple_mode();
|
||
|
||
// copy user input for reporting purposes
|
||
control_roll = g.rc_1.control_in;
|
||
control_pitch = g.rc_2.control_in;
|
||
|
||
// update loiter target from user controls
|
||
wp_nav.move_loiter_target(control_roll, control_pitch,0.01f);
|
||
|
||
// copy latest output from nav controller to stabilize controller
|
||
nav_roll = wp_nav.get_desired_roll();
|
||
nav_pitch = wp_nav.get_desired_pitch();
|
||
|
||
get_stabilize_roll(nav_roll);
|
||
get_stabilize_pitch(nav_pitch);
|
||
break;
|
||
|
||
case ROLL_PITCH_SPORT:
|
||
// apply SIMPLE mode transform
|
||
update_simple_mode();
|
||
|
||
// copy user input for reporting purposes
|
||
control_roll = g.rc_1.control_in;
|
||
control_pitch = g.rc_2.control_in;
|
||
get_roll_rate_stabilized_ef(g.rc_1.control_in);
|
||
get_pitch_rate_stabilized_ef(g.rc_2.control_in);
|
||
break;
|
||
|
||
#if AUTOTUNE == ENABLED
|
||
case ROLL_PITCH_AUTOTUNE:
|
||
// apply SIMPLE mode transform
|
||
if(ap.simple_mode && ap.new_radio_frame) {
|
||
update_simple_mode();
|
||
}
|
||
|
||
// convert pilot input to lean angles
|
||
get_pilot_desired_lean_angles(g.rc_1.control_in, g.rc_2.control_in, control_roll, control_pitch);
|
||
|
||
// pass desired roll, pitch to stabilize attitude controllers
|
||
get_stabilize_roll(control_roll);
|
||
get_stabilize_pitch(control_pitch);
|
||
|
||
// copy user input for reporting purposes
|
||
get_autotune_roll_pitch_controller(g.rc_1.control_in, g.rc_2.control_in);
|
||
break;
|
||
#endif
|
||
}
|
||
|
||
#if FRAME_CONFIG != HELI_FRAME
|
||
if(g.rc_3.control_in == 0 && control_mode <= ACRO) {
|
||
reset_rate_I();
|
||
}
|
||
#endif //HELI_FRAME
|
||
|
||
if(ap.new_radio_frame) {
|
||
// clear new radio frame info
|
||
ap.new_radio_frame = false;
|
||
}
|
||
}
|
||
|
||
static void
|
||
init_simple_bearing()
|
||
{
|
||
// capture current cos_yaw and sin_yaw values
|
||
simple_cos_yaw = cos_yaw;
|
||
simple_sin_yaw = sin_yaw;
|
||
|
||
// initialise super simple heading (i.e. heading towards home) to be 180 deg from simple mode heading
|
||
super_simple_last_bearing = wrap_360_cd(ahrs.yaw_sensor+18000);
|
||
super_simple_cos_yaw = simple_cos_yaw;
|
||
super_simple_sin_yaw = simple_sin_yaw;
|
||
|
||
// log the simple bearing to dataflash
|
||
if (g.log_bitmask != 0) {
|
||
Log_Write_Data(DATA_INIT_SIMPLE_BEARING, ahrs.yaw_sensor);
|
||
}
|
||
}
|
||
|
||
// update_simple_mode - rotates pilot input if we are in simple mode
|
||
void update_simple_mode(void)
|
||
{
|
||
float rollx, pitchx;
|
||
|
||
// exit immediately if no new radio frame or not in simple mode
|
||
if (ap.simple_mode == 0 || !ap.new_radio_frame) {
|
||
return;
|
||
}
|
||
|
||
if (ap.simple_mode == 1) {
|
||
// rotate roll, pitch input by -initial simple heading (i.e. north facing)
|
||
rollx = g.rc_1.control_in*simple_cos_yaw - g.rc_2.control_in*simple_sin_yaw;
|
||
pitchx = g.rc_1.control_in*simple_sin_yaw + g.rc_2.control_in*simple_cos_yaw;
|
||
}else{
|
||
// rotate roll, pitch input by -super simple heading (reverse of heading to home)
|
||
rollx = g.rc_1.control_in*super_simple_cos_yaw - g.rc_2.control_in*super_simple_sin_yaw;
|
||
pitchx = g.rc_1.control_in*super_simple_sin_yaw + g.rc_2.control_in*super_simple_cos_yaw;
|
||
}
|
||
|
||
// rotate roll, pitch input from north facing to vehicle's perspective
|
||
g.rc_1.control_in = rollx*cos_yaw + pitchx*sin_yaw;
|
||
g.rc_2.control_in = -rollx*sin_yaw + pitchx*cos_yaw;
|
||
}
|
||
|
||
// update_super_simple_bearing - adjusts simple bearing based on location
|
||
// should be called after home_bearing has been updated
|
||
void update_super_simple_bearing(bool force_update)
|
||
{
|
||
// check if we are in super simple mode and at least 10m from home
|
||
if(force_update || (ap.simple_mode == 2 && home_distance > SUPER_SIMPLE_RADIUS)) {
|
||
// check the bearing to home has changed by at least 5 degrees
|
||
if (labs(super_simple_last_bearing - home_bearing) > 500) {
|
||
super_simple_last_bearing = home_bearing;
|
||
float angle_rad = radians((super_simple_last_bearing+18000)/100);
|
||
super_simple_cos_yaw = cosf(angle_rad);
|
||
super_simple_sin_yaw = sinf(angle_rad);
|
||
}
|
||
}
|
||
}
|
||
|
||
// set_throttle_mode - sets the throttle mode and initialises any variables as required
|
||
bool set_throttle_mode( uint8_t new_throttle_mode )
|
||
{
|
||
// boolean to ensure proper initialisation of throttle modes
|
||
bool throttle_initialised = false;
|
||
|
||
// return immediately if no change
|
||
if( new_throttle_mode == throttle_mode ) {
|
||
return true;
|
||
}
|
||
|
||
// initialise any variables required for the new throttle mode
|
||
switch(new_throttle_mode) {
|
||
case THROTTLE_MANUAL:
|
||
case THROTTLE_MANUAL_TILT_COMPENSATED:
|
||
throttle_accel_deactivate(); // this controller does not use accel based throttle controller
|
||
altitude_error = 0; // clear altitude error reported to GCS
|
||
throttle_initialised = true;
|
||
break;
|
||
|
||
case THROTTLE_HOLD:
|
||
case THROTTLE_AUTO:
|
||
controller_desired_alt = get_initial_alt_hold(current_loc.alt, climb_rate); // reset controller desired altitude to current altitude
|
||
wp_nav.set_desired_alt(controller_desired_alt); // same as above but for loiter controller
|
||
if ( throttle_mode <= THROTTLE_MANUAL_TILT_COMPENSATED ) { // reset the alt hold I terms if previous throttle mode was manual
|
||
reset_throttle_I();
|
||
set_accel_throttle_I_from_pilot_throttle(get_pilot_desired_throttle(g.rc_3.control_in));
|
||
}
|
||
throttle_initialised = true;
|
||
break;
|
||
|
||
case THROTTLE_LAND:
|
||
reset_land_detector(); // initialise land detector
|
||
controller_desired_alt = get_initial_alt_hold(current_loc.alt, climb_rate); // reset controller desired altitude to current altitude
|
||
throttle_initialised = true;
|
||
break;
|
||
}
|
||
|
||
// update the throttle mode
|
||
if( throttle_initialised ) {
|
||
throttle_mode = new_throttle_mode;
|
||
|
||
// reset some variables used for logging
|
||
desired_climb_rate = 0;
|
||
nav_throttle = 0;
|
||
}
|
||
|
||
// return success or failure
|
||
return throttle_initialised;
|
||
}
|
||
|
||
// update_throttle_mode - run high level throttle controllers
|
||
// 50 hz update rate
|
||
void update_throttle_mode(void)
|
||
{
|
||
int16_t pilot_climb_rate;
|
||
int16_t pilot_throttle_scaled;
|
||
|
||
if(ap.do_flip) // this is pretty bad but needed to flip in AP modes.
|
||
return;
|
||
|
||
#if FRAME_CONFIG == HELI_FRAME
|
||
|
||
if (control_mode == STABILIZE){
|
||
motors.stab_throttle = true;
|
||
} else {
|
||
motors.stab_throttle = false;
|
||
}
|
||
|
||
// allow swash collective to move if we are in manual throttle modes, even if disarmed
|
||
if( !motors.armed() ) {
|
||
if ( !(throttle_mode == THROTTLE_MANUAL) && !(throttle_mode == THROTTLE_MANUAL_TILT_COMPENSATED)){
|
||
throttle_accel_deactivate(); // do not allow the accel based throttle to override our command
|
||
return;
|
||
}
|
||
}
|
||
|
||
#else // HELI_FRAME
|
||
|
||
// do not run throttle controllers if motors disarmed
|
||
if( !motors.armed() ) {
|
||
set_throttle_out(0, false);
|
||
throttle_accel_deactivate(); // do not allow the accel based throttle to override our command
|
||
set_target_alt_for_reporting(0);
|
||
return;
|
||
}
|
||
|
||
#endif // HELI_FRAME
|
||
|
||
switch(throttle_mode) {
|
||
|
||
case THROTTLE_MANUAL:
|
||
// completely manual throttle
|
||
if(g.rc_3.control_in <= 0){
|
||
set_throttle_out(0, false);
|
||
}else{
|
||
// send pilot's output directly to motors
|
||
pilot_throttle_scaled = get_pilot_desired_throttle(g.rc_3.control_in);
|
||
set_throttle_out(pilot_throttle_scaled, false);
|
||
|
||
// update estimate of throttle cruise
|
||
#if FRAME_CONFIG == HELI_FRAME
|
||
update_throttle_cruise(motors.coll_out);
|
||
#else
|
||
update_throttle_cruise(pilot_throttle_scaled);
|
||
#endif //HELI_FRAME
|
||
|
||
|
||
// check if we've taken off yet
|
||
if (!ap.takeoff_complete && motors.armed()) {
|
||
if (pilot_throttle_scaled > g.throttle_cruise) {
|
||
// we must be in the air by now
|
||
set_takeoff_complete(true);
|
||
}
|
||
}
|
||
}
|
||
set_target_alt_for_reporting(0);
|
||
break;
|
||
|
||
case THROTTLE_MANUAL_TILT_COMPENSATED:
|
||
// manual throttle but with angle boost
|
||
if (g.rc_3.control_in <= 0) {
|
||
set_throttle_out(0, false); // no need for angle boost with zero throttle
|
||
}else{
|
||
pilot_throttle_scaled = get_pilot_desired_throttle(g.rc_3.control_in);
|
||
set_throttle_out(pilot_throttle_scaled, true);
|
||
|
||
// update estimate of throttle cruise
|
||
#if FRAME_CONFIG == HELI_FRAME
|
||
update_throttle_cruise(motors.coll_out);
|
||
#else
|
||
update_throttle_cruise(pilot_throttle_scaled);
|
||
#endif //HELI_FRAME
|
||
|
||
if (!ap.takeoff_complete && motors.armed()) {
|
||
if (pilot_throttle_scaled > g.throttle_cruise) {
|
||
// we must be in the air by now
|
||
set_takeoff_complete(true);
|
||
}
|
||
}
|
||
}
|
||
set_target_alt_for_reporting(0);
|
||
break;
|
||
|
||
case THROTTLE_HOLD:
|
||
if(ap.auto_armed) {
|
||
// alt hold plus pilot input of climb rate
|
||
pilot_climb_rate = get_pilot_desired_climb_rate(g.rc_3.control_in);
|
||
|
||
// special handling if we have landed
|
||
if (ap.land_complete) {
|
||
if (pilot_climb_rate > 0) {
|
||
// indicate we are taking off
|
||
set_land_complete(false);
|
||
// clear i term when we're taking off
|
||
set_throttle_takeoff();
|
||
}else{
|
||
// move throttle to minimum to keep us on the ground
|
||
set_throttle_out(0, false);
|
||
// deactivate accel based throttle controller (it will be automatically re-enabled when alt-hold controller next runs)
|
||
throttle_accel_deactivate();
|
||
}
|
||
}
|
||
// check land_complete flag again in case it was changed above
|
||
if (!ap.land_complete) {
|
||
if( sonar_alt_health >= SONAR_ALT_HEALTH_MAX ) {
|
||
// if sonar is ok, use surface tracking
|
||
get_throttle_surface_tracking(pilot_climb_rate); // this function calls set_target_alt_for_reporting for us
|
||
}else{
|
||
// if no sonar fall back stabilize rate controller
|
||
get_throttle_rate_stabilized(pilot_climb_rate); // this function calls set_target_alt_for_reporting for us
|
||
}
|
||
}
|
||
}else{
|
||
// pilot's throttle must be at zero so keep motors off
|
||
set_throttle_out(0, false);
|
||
// deactivate accel based throttle controller
|
||
throttle_accel_deactivate();
|
||
set_target_alt_for_reporting(0);
|
||
}
|
||
break;
|
||
|
||
case THROTTLE_AUTO:
|
||
// auto pilot altitude controller with target altitude held in wp_nav.get_desired_alt()
|
||
if(ap.auto_armed) {
|
||
// special handling if we are just taking off
|
||
if (ap.land_complete) {
|
||
// tell motors to do a slow start.
|
||
motors.slow_start(true);
|
||
}
|
||
get_throttle_althold_with_slew(wp_nav.get_desired_alt(), -wp_nav.get_descent_velocity(), wp_nav.get_climb_velocity());
|
||
set_target_alt_for_reporting(wp_nav.get_desired_alt()); // To-Do: return get_destination_alt if we are flying to a waypoint
|
||
}else{
|
||
// pilot's throttle must be at zero so keep motors off
|
||
set_throttle_out(0, false);
|
||
// deactivate accel based throttle controller
|
||
throttle_accel_deactivate();
|
||
set_target_alt_for_reporting(0);
|
||
}
|
||
break;
|
||
|
||
case THROTTLE_LAND:
|
||
// landing throttle controller
|
||
get_throttle_land();
|
||
set_target_alt_for_reporting(0);
|
||
break;
|
||
}
|
||
}
|
||
|
||
// set_target_alt_for_reporting - set target altitude in cm for reporting purposes (logs and gcs)
|
||
static void set_target_alt_for_reporting(float alt_cm)
|
||
{
|
||
target_alt_for_reporting = alt_cm;
|
||
}
|
||
|
||
// get_target_alt_for_reporting - returns target altitude in cm for reporting purposes (logs and gcs)
|
||
static float get_target_alt_for_reporting()
|
||
{
|
||
return target_alt_for_reporting;
|
||
}
|
||
|
||
static void read_AHRS(void)
|
||
{
|
||
// Perform IMU calculations and get attitude info
|
||
//-----------------------------------------------
|
||
#if HIL_MODE != HIL_MODE_DISABLED
|
||
// update hil before ahrs update
|
||
gcs_check_input();
|
||
#endif
|
||
|
||
ahrs.update();
|
||
omega = ins.get_gyro();
|
||
}
|
||
|
||
static void update_trig(void){
|
||
Vector2f yawvector;
|
||
const Matrix3f &temp = ahrs.get_dcm_matrix();
|
||
|
||
yawvector.x = temp.a.x; // sin
|
||
yawvector.y = temp.b.x; // cos
|
||
yawvector.normalize();
|
||
|
||
cos_pitch_x = safe_sqrt(1 - (temp.c.x * temp.c.x)); // level = 1
|
||
cos_roll_x = temp.c.z / cos_pitch_x; // level = 1
|
||
|
||
cos_pitch_x = constrain_float(cos_pitch_x, 0, 1.0);
|
||
// this relies on constrain_float() of infinity doing the right thing,
|
||
// which it does do in avr-libc
|
||
cos_roll_x = constrain_float(cos_roll_x, -1.0, 1.0);
|
||
|
||
sin_yaw = constrain_float(yawvector.y, -1.0, 1.0);
|
||
cos_yaw = constrain_float(yawvector.x, -1.0, 1.0);
|
||
|
||
// added to convert earth frame to body frame for rate controllers
|
||
sin_pitch = -temp.c.x;
|
||
sin_roll = temp.c.y / cos_pitch_x;
|
||
|
||
// update wp_nav controller with trig values
|
||
wp_nav.set_cos_sin_yaw(cos_yaw, sin_yaw, cos_pitch_x);
|
||
|
||
//flat:
|
||
// 0 ° = cos_yaw: 1.00, sin_yaw: 0.00,
|
||
// 90° = cos_yaw: 0.00, sin_yaw: 1.00,
|
||
// 180 = cos_yaw: -1.00, sin_yaw: 0.00,
|
||
// 270 = cos_yaw: 0.00, sin_yaw: -1.00,
|
||
}
|
||
|
||
// read baro and sonar altitude at 20hz
|
||
static void update_altitude()
|
||
{
|
||
#if HIL_MODE == HIL_MODE_ATTITUDE
|
||
// we are in the SIM, fake out the baro and Sonar
|
||
baro_alt = g_gps->altitude_cm;
|
||
|
||
if(g.sonar_enabled) {
|
||
sonar_alt = baro_alt;
|
||
}
|
||
#else
|
||
// read in baro altitude
|
||
baro_alt = read_barometer();
|
||
|
||
// read in sonar altitude
|
||
sonar_alt = read_sonar();
|
||
#endif // HIL_MODE == HIL_MODE_ATTITUDE
|
||
|
||
// write altitude info to dataflash logs
|
||
if ((g.log_bitmask & MASK_LOG_CTUN) && motors.armed()) {
|
||
Log_Write_Control_Tuning();
|
||
}
|
||
}
|
||
|
||
static void tuning(){
|
||
|
||
// exit immediately when radio failsafe is invoked so tuning values are not set to zero
|
||
if (failsafe.radio || failsafe.radio_counter != 0) {
|
||
return;
|
||
}
|
||
|
||
tuning_value = (float)g.rc_6.control_in / 1000.0f;
|
||
g.rc_6.set_range(g.radio_tuning_low,g.radio_tuning_high); // 0 to 1
|
||
|
||
switch(g.radio_tuning) {
|
||
|
||
// Roll, Pitch tuning
|
||
case CH6_STABILIZE_ROLL_PITCH_KP:
|
||
g.pi_stabilize_roll.kP(tuning_value);
|
||
g.pi_stabilize_pitch.kP(tuning_value);
|
||
break;
|
||
|
||
case CH6_RATE_ROLL_PITCH_KP:
|
||
g.pid_rate_roll.kP(tuning_value);
|
||
g.pid_rate_pitch.kP(tuning_value);
|
||
break;
|
||
|
||
case CH6_RATE_ROLL_PITCH_KI:
|
||
g.pid_rate_roll.kI(tuning_value);
|
||
g.pid_rate_pitch.kI(tuning_value);
|
||
break;
|
||
|
||
case CH6_RATE_ROLL_PITCH_KD:
|
||
g.pid_rate_roll.kD(tuning_value);
|
||
g.pid_rate_pitch.kD(tuning_value);
|
||
break;
|
||
|
||
// Yaw tuning
|
||
case CH6_STABILIZE_YAW_KP:
|
||
g.pi_stabilize_yaw.kP(tuning_value);
|
||
break;
|
||
|
||
case CH6_YAW_RATE_KP:
|
||
g.pid_rate_yaw.kP(tuning_value);
|
||
break;
|
||
|
||
case CH6_YAW_RATE_KD:
|
||
g.pid_rate_yaw.kD(tuning_value);
|
||
break;
|
||
|
||
// Altitude and throttle tuning
|
||
case CH6_ALTITUDE_HOLD_KP:
|
||
g.pi_alt_hold.kP(tuning_value);
|
||
break;
|
||
|
||
case CH6_THROTTLE_RATE_KP:
|
||
g.pid_throttle_rate.kP(tuning_value);
|
||
break;
|
||
|
||
case CH6_THROTTLE_RATE_KD:
|
||
g.pid_throttle_rate.kD(tuning_value);
|
||
break;
|
||
|
||
case CH6_THROTTLE_ACCEL_KP:
|
||
g.pid_throttle_accel.kP(tuning_value);
|
||
break;
|
||
|
||
case CH6_THROTTLE_ACCEL_KI:
|
||
g.pid_throttle_accel.kI(tuning_value);
|
||
break;
|
||
|
||
case CH6_THROTTLE_ACCEL_KD:
|
||
g.pid_throttle_accel.kD(tuning_value);
|
||
break;
|
||
|
||
// Loiter and navigation tuning
|
||
case CH6_LOITER_POSITION_KP:
|
||
g.pi_loiter_lat.kP(tuning_value);
|
||
g.pi_loiter_lon.kP(tuning_value);
|
||
break;
|
||
|
||
case CH6_LOITER_RATE_KP:
|
||
g.pid_loiter_rate_lon.kP(tuning_value);
|
||
g.pid_loiter_rate_lat.kP(tuning_value);
|
||
break;
|
||
|
||
case CH6_LOITER_RATE_KI:
|
||
g.pid_loiter_rate_lon.kI(tuning_value);
|
||
g.pid_loiter_rate_lat.kI(tuning_value);
|
||
break;
|
||
|
||
case CH6_LOITER_RATE_KD:
|
||
g.pid_loiter_rate_lon.kD(tuning_value);
|
||
g.pid_loiter_rate_lat.kD(tuning_value);
|
||
break;
|
||
|
||
case CH6_WP_SPEED:
|
||
// set waypoint navigation horizontal speed to 0 ~ 1000 cm/s
|
||
wp_nav.set_horizontal_velocity(g.rc_6.control_in);
|
||
break;
|
||
|
||
// Acro roll pitch gain
|
||
case CH6_ACRO_RP_KP:
|
||
g.acro_rp_p = tuning_value;
|
||
break;
|
||
|
||
// Acro yaw gain
|
||
case CH6_ACRO_YAW_KP:
|
||
g.acro_yaw_p = tuning_value;
|
||
break;
|
||
|
||
case CH6_RELAY:
|
||
if (g.rc_6.control_in > 525) relay.on();
|
||
if (g.rc_6.control_in < 475) relay.off();
|
||
break;
|
||
|
||
#if FRAME_CONFIG == HELI_FRAME
|
||
case CH6_HELI_EXTERNAL_GYRO:
|
||
motors.ext_gyro_gain = tuning_value;
|
||
break;
|
||
#endif
|
||
|
||
case CH6_OPTFLOW_KP:
|
||
g.pid_optflow_roll.kP(tuning_value);
|
||
g.pid_optflow_pitch.kP(tuning_value);
|
||
break;
|
||
|
||
case CH6_OPTFLOW_KI:
|
||
g.pid_optflow_roll.kI(tuning_value);
|
||
g.pid_optflow_pitch.kI(tuning_value);
|
||
break;
|
||
|
||
case CH6_OPTFLOW_KD:
|
||
g.pid_optflow_roll.kD(tuning_value);
|
||
g.pid_optflow_pitch.kD(tuning_value);
|
||
break;
|
||
|
||
#if HIL_MODE != HIL_MODE_ATTITUDE // do not allow modifying _kp or _kp_yaw gains in HIL mode
|
||
case CH6_AHRS_YAW_KP:
|
||
ahrs._kp_yaw.set(tuning_value);
|
||
break;
|
||
|
||
case CH6_AHRS_KP:
|
||
ahrs._kp.set(tuning_value);
|
||
break;
|
||
#endif
|
||
|
||
case CH6_INAV_TC:
|
||
// To-Do: allowing tuning TC for xy and z separately
|
||
inertial_nav.set_time_constant_xy(tuning_value);
|
||
inertial_nav.set_time_constant_z(tuning_value);
|
||
break;
|
||
|
||
case CH6_DECLINATION:
|
||
// set declination to +-20degrees
|
||
compass.set_declination(ToRad((2.0f * g.rc_6.control_in - g.radio_tuning_high)/100.0f), false); // 2nd parameter is false because we do not want to save to eeprom because this would have a performance impact
|
||
break;
|
||
|
||
case CH6_CIRCLE_RATE:
|
||
// set circle rate
|
||
g.circle_rate.set(g.rc_6.control_in/25-20); // allow approximately 45 degree turn rate in either direction
|
||
break;
|
||
|
||
case CH6_SONAR_GAIN:
|
||
// set sonar gain
|
||
g.sonar_gain.set(tuning_value);
|
||
break;
|
||
}
|
||
}
|
||
|
||
AP_HAL_MAIN();
|
||
|