ardupilot/libraries/AP_Motors/AP_MotorsHeli.h
Gustavo Jose de Sousa 1e619c6c59 AP_Motors: standardize inclusion of libaries headers
This commit changes the way libraries headers are included in source files:

 - If the header is in the same directory the source belongs to, so the
 notation '#include ""' is used with the path relative to the directory
 containing the source.

 - If the header is outside the directory containing the source, then we use
 the notation '#include <>' with the path relative to libraries folder.

Some of the advantages of such approach:

 - Only one search path for libraries headers.

 - OSs like Windows may have a better lookup time.
2015-08-11 16:38:19 +10:00

337 lines
17 KiB
C++

// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
/// @file AP_MotorsHeli.h
/// @brief Motor control class for Traditional Heli
#ifndef __AP_MOTORS_HELI_H__
#define __AP_MOTORS_HELI_H__
#include <inttypes.h>
#include <AP_Common/AP_Common.h>
#include <AP_Math/AP_Math.h> // ArduPilot Mega Vector/Matrix math Library
#include <RC_Channel/RC_Channel.h> // RC Channel Library
#include "AP_Motors.h"
// maximum number of swashplate servos
#define AP_MOTORS_HELI_NUM_SWASHPLATE_SERVOS 3
// servo output rates
#define AP_MOTORS_HELI_SPEED_DEFAULT 125 // default servo update rate for helicopters
#define AP_MOTORS_HELI_SPEED_DIGITAL_SERVOS 125 // update rate for digital servos
#define AP_MOTORS_HELI_SPEED_ANALOG_SERVOS 125 // update rate for analog servos
// TradHeli Aux Function Output Channels
#define AP_MOTORS_HELI_AUX CH_7
#define AP_MOTORS_HELI_RSC CH_8
// servo position defaults
#define AP_MOTORS_HELI_SERVO1_POS -60
#define AP_MOTORS_HELI_SERVO2_POS 60
#define AP_MOTORS_HELI_SERVO3_POS 180
// swash type definitions
#define AP_MOTORS_HELI_SWASH_CCPM 0
#define AP_MOTORS_HELI_SWASH_H1 1
// default swash min and max angles and positions
#define AP_MOTORS_HELI_SWASH_ROLL_MAX 2500
#define AP_MOTORS_HELI_SWASH_PITCH_MAX 2500
#define AP_MOTORS_HELI_COLLECTIVE_MIN 1250
#define AP_MOTORS_HELI_COLLECTIVE_MAX 1750
#define AP_MOTORS_HELI_COLLECTIVE_MID 1500
// swash min and max position while in stabilize mode (as a number from 0 ~ 100)
#define AP_MOTORS_HELI_MANUAL_COLLECTIVE_MIN 0
#define AP_MOTORS_HELI_MANUAL_COLLECTIVE_MAX 100
// swash min while landed or landing (as a number from 0 ~ 1000
#define AP_MOTORS_HELI_LAND_COLLECTIVE_MIN 0
// tail types
#define AP_MOTORS_HELI_TAILTYPE_SERVO 0
#define AP_MOTORS_HELI_TAILTYPE_SERVO_EXTGYRO 1
#define AP_MOTORS_HELI_TAILTYPE_DIRECTDRIVE_VARPITCH 2
#define AP_MOTORS_HELI_TAILTYPE_DIRECTDRIVE_FIXEDPITCH 3
// default external gyro gain (ch7 out)
#define AP_MOTORS_HELI_EXT_GYRO_GAIN 350
// minimum outputs for direct drive motors
#define AP_MOTOR_HELI_DDTAIL_DEFAULT 500
// COLYAW parameter min and max values
#define AP_MOTOR_HELI_COLYAW_RANGE 10.0f
// main rotor speed control types (ch8 out)
#define AP_MOTORS_HELI_RSC_MODE_NONE 0 // main rotor ESC is directly connected to receiver, pilot controls ESC speed through transmitter directly
#define AP_MOTORS_HELI_RSC_MODE_CH8_PASSTHROUGH 1 // main rotor ESC is connected to RC8 (out), pilot desired rotor speed provided by CH8 input
#define AP_MOTORS_HELI_RSC_MODE_SETPOINT 2 // main rotor ESC is connected to RC8 (out), desired speed is held in RSC_SETPOINT parameter
// default main rotor speed (ch8 out) as a number from 0 ~ 1000
#define AP_MOTORS_HELI_RSC_SETPOINT 700
// default main rotor critical speed
#define AP_MOTORS_HELI_RSC_CRITICAL 500
// default main rotor ramp up time in seconds
#define AP_MOTORS_HELI_RSC_RAMP_TIME 1 // 1 second to ramp output to main rotor ESC to full power (most people use exterrnal govenors so we can ramp up quickly)
#define AP_MOTORS_HELI_RSC_RUNUP_TIME 10 // 10 seconds for rotor to reach full speed
#define AP_MOTORS_HELI_TAIL_RAMP_INCREMENT 5 // 5 is 2 seconds for direct drive tail rotor to reach to full speed (5 = (2sec*100hz)/1000)
// flybar types
#define AP_MOTORS_HELI_NOFLYBAR 0
#define AP_MOTORS_HELI_FLYBAR 1
class AP_HeliControls;
/// @class AP_MotorsHeli
class AP_MotorsHeli : public AP_Motors {
public:
/// Constructor
AP_MotorsHeli( RC_Channel& servo_aux,
RC_Channel& servo_rotor,
RC_Channel& swash_servo_1,
RC_Channel& swash_servo_2,
RC_Channel& swash_servo_3,
RC_Channel& yaw_servo,
uint16_t loop_rate,
uint16_t speed_hz = AP_MOTORS_HELI_SPEED_DEFAULT) :
AP_Motors(loop_rate, speed_hz),
_servo_aux(servo_aux),
_servo_rsc(servo_rotor),
_servo_1(swash_servo_1),
_servo_2(swash_servo_2),
_servo_3(swash_servo_3),
_servo_4(yaw_servo),
_roll_scaler(1),
_pitch_scaler(1),
_collective_scalar(1),
_collective_scalar_manual(1),
_collective_out(0),
_collective_mid_pwm(0),
_desired_rotor_speed(0),
_rotor_out(0),
_rsc_ramp_increment(0.0f),
_rsc_runup_increment(0.0f),
_rotor_speed_estimate(0.0f),
_tail_direct_drive_out(0),
_delta_phase_angle(0),
_roll_radio_passthrough(0),
_pitch_radio_passthrough(0),
_throttle_radio_passthrough(0),
_yaw_radio_passthrough(0)
{
AP_Param::setup_object_defaults(this, var_info);
// initialise flags
_heliflags.swash_initialised = 0;
_heliflags.landing_collective = 0;
_heliflags.rotor_runup_complete = 0;
};
// init
void Init();
// set update rate to motors - a value in hertz
// you must have setup_motors before calling this
void set_update_rate( uint16_t speed_hz );
// enable - starts allowing signals to be sent to motors
void enable();
// output_min - sets servos to neutral point
void output_min();
// output_test - spin a motor at the pwm value specified
// motor_seq is the motor's sequence number from 1 to the number of motors on the frame
// pwm value is an actual pwm value that will be output, normally in the range of 1000 ~ 2000
virtual void output_test(uint8_t motor_seq, int16_t pwm);
// slow_start - ignored by helicopters
void slow_start(bool true_false) {};
//
// heli specific methods
//
// allow_arming - returns true if main rotor is spinning and it is ok to arm
bool allow_arming() const;
// parameter_check - returns true if helicopter specific parameters are sensible, used for pre-arm check
bool parameter_check() const;
// _tail_type - returns the tail type (servo, servo with ext gyro, direct drive var pitch, direct drive fixed pitch)
int16_t tail_type() const { return _tail_type; }
// ext_gyro_gain - gets and sets external gyro gain as a pwm (1000~2000)
int16_t ext_gyro_gain() const { return _ext_gyro_gain; }
void ext_gyro_gain(int16_t pwm) { _ext_gyro_gain = pwm; }
// has_flybar - returns true if we have a mechical flybar
bool has_flybar() const { return _flybar_mode; }
// get_collective_mid - returns collective mid position as a number from 0 ~ 1000
int16_t get_collective_mid() const { return _collective_mid; }
// get_collective_out - returns collective position from last output as a number from 0 ~ 1000
int16_t get_collective_out() const { return _collective_out; }
// set_collective_for_landing - limits collective from going too low if we know we are landed
void set_collective_for_landing(bool landing) { _heliflags.landing_collective = landing; }
// get_rsc_mode - gets the rotor speed control method (AP_MOTORS_HELI_RSC_MODE_NONE, AP_MOTORS_HELI_RSC_MODE_CH8_PASSTHROUGH or AP_MOTORS_HELI_RSC_MODE_SETPOINT)
uint8_t get_rsc_mode() const { return _rsc_mode; }
// get_rsc_setpoint - gets contents of _rsc_setpoint parameter (0~1000)
int16_t get_rsc_setpoint() const { return _rsc_setpoint; }
// set_desired_rotor_speed - sets target rotor speed as a number from 0 ~ 1000
void set_desired_rotor_speed(int16_t desired_speed) { _desired_rotor_speed = desired_speed; }
// get_desired_rotor_speed - gets target rotor speed as a number from 0 ~ 1000
int16_t get_desired_rotor_speed() const { return _desired_rotor_speed; }
// get_estimated_rotor_speed - gets estimated rotor speed as a number from 0 ~ 1000
int16_t get_estimated_rotor_speed() { return _rotor_speed_estimate; }
// return true if the main rotor is up to speed
bool rotor_runup_complete() const;
// rotor_speed_above_critical - return true if rotor speed is above that critical for flight
bool rotor_speed_above_critical() const { return _rotor_speed_estimate > _rsc_critical; }
// recalc_scalers - recalculates various scalers used. Should be called at about 1hz to allow users to see effect of changing parameters
void recalc_scalers();
// get_phase_angle - returns phase angle
int16_t get_phase_angle() const { return _phase_angle; }
// var_info for holding Parameter information
static const struct AP_Param::GroupInfo var_info[];
// set_delta_phase_angle for setting variable phase angle compensation and force
// recalculation of collective factors
void set_delta_phase_angle(int16_t angle);
// get_motor_mask - returns a bitmask of which outputs are being used for motors or servos (1 means being used)
// this can be used to ensure other pwm outputs (i.e. for servos) do not conflict
virtual uint16_t get_motor_mask();
// set_radio_passthrough used to pass radio inputs directly to outputs
void set_radio_passthrough(int16_t radio_roll_input, int16_t radio_pitch_input, int16_t radio_throttle_input, int16_t radio_yaw_input);
// reset_radio_passthrough used to reset all radio inputs to center
void reset_radio_passthrough();
// output - sends commands to the motors
void output();
protected:
// output - sends commands to the motors
void output_armed_stabilizing();
void output_armed_not_stabilizing();
void output_armed_zero_throttle();
void output_disarmed();
// update the throttle input filter
void update_throttle_filter();
private:
// heli_move_swash - moves swash plate to attitude of parameters passed in
void move_swash(int16_t roll_out, int16_t pitch_out, int16_t coll_in, int16_t yaw_out);
// reset_swash - free up swash for maximum movements. Used for set-up
void reset_swash();
// init_swash - initialise the swash plate
void init_swash();
// calculate_roll_pitch_collective_factors - calculate factors based on swash type and servo position
void calculate_roll_pitch_collective_factors();
// rsc_control - main function to update values to send to main rotor and tail rotor ESCs
void rsc_control();
// rotor_ramp - ramps rotor towards target. result put rotor_out and sent to ESC
void rotor_ramp(int16_t rotor_target);
// tail_ramp - ramps tail motor towards target. Only used for direct drive variable pitch tails
// results put into _tail_direct_drive_out and sent to ESC
void tail_ramp(int16_t tail_target);
// return true if the tail rotor is up to speed
bool tail_rotor_runup_complete();
// write_rsc - outputs pwm onto output rsc channel (ch8). servo_out parameter is of the range 0 ~ 1000
void write_rsc(int16_t servo_out);
// write_aux - outputs pwm onto output aux channel (ch7). servo_out parameter is of the range 0 ~ 1000
void write_aux(int16_t servo_out);
// external objects we depend upon
RC_Channel& _servo_aux; // output to ext gyro gain and tail direct drive esc (ch7)
RC_Channel& _servo_rsc; // output to main rotor esc (ch8)
RC_Channel& _servo_1; // swash plate servo #1
RC_Channel& _servo_2; // swash plate servo #2
RC_Channel& _servo_3; // swash plate servo #3
RC_Channel& _servo_4; // tail servo
// flags bitmask
struct heliflags_type {
uint8_t swash_initialised : 1; // true if swash has been initialised
uint8_t landing_collective : 1; // true if collective is setup for landing which has much higher minimum
uint8_t rotor_runup_complete : 1; // true if the rotors have had enough time to wind up
} _heliflags;
// parameters
AP_Int16 _servo1_pos; // Angular location of swash servo #1
AP_Int16 _servo2_pos; // Angular location of swash servo #2
AP_Int16 _servo3_pos; // Angular location of swash servo #3
AP_Int16 _roll_max; // Maximum roll angle of the swash plate in centi-degrees
AP_Int16 _pitch_max; // Maximum pitch angle of the swash plate in centi-degrees
AP_Int16 _collective_min; // Lowest possible servo position for the swashplate
AP_Int16 _collective_max; // Highest possible servo position for the swashplate
AP_Int16 _collective_mid; // Swash servo position corresponding to zero collective pitch (or zero lift for Assymetrical blades)
AP_Int16 _tail_type; // Tail type used: Servo, Servo with external gyro, direct drive variable pitch or direct drive fixed pitch
AP_Int8 _swash_type; // Swash Type Setting - either 3-servo CCPM or H1 Mechanical Mixing
AP_Int16 _ext_gyro_gain; // PWM sent to external gyro on ch7 when tail type is Servo w/ ExtGyro
AP_Int8 _servo_manual; // Pass radio inputs directly to servos during set-up through mission planner
AP_Int16 _phase_angle; // Phase angle correction for rotor head. If pitching the swash forward induces a roll, this can be correct the problem
AP_Float _collective_yaw_effect; // Feed-forward compensation to automatically add rudder input when collective pitch is increased. Can be positive or negative depending on mechanics.
AP_Int16 _rsc_setpoint; // rotor speed when RSC mode is set to is enabledv
AP_Int8 _rsc_mode; // Which main rotor ESC control mode is active
AP_Int8 _rsc_ramp_time; // Time in seconds for the output to the main rotor's ESC to reach full speed
AP_Int8 _rsc_runup_time; // Time in seconds for the main rotor to reach full speed. Must be longer than _rsc_ramp_time
AP_Int8 _flybar_mode; // Flybar present or not. Affects attitude controller used during ACRO flight mode
AP_Int16 _land_collective_min; // Minimum collective when landed or landing
AP_Int16 _direct_drive_tailspeed; // Direct Drive VarPitch Tail ESC speed (0 ~ 1000)
AP_Int16 _rsc_critical; // Rotor speed below which flight is not possible
// internal variables
float _rollFactor[AP_MOTORS_HELI_NUM_SWASHPLATE_SERVOS];
float _pitchFactor[AP_MOTORS_HELI_NUM_SWASHPLATE_SERVOS];
float _collectiveFactor[AP_MOTORS_HELI_NUM_SWASHPLATE_SERVOS];
float _roll_scaler; // scaler to convert roll input from radio (i.e. -4500 ~ 4500) to max roll range
float _pitch_scaler; // scaler to convert pitch input from radio (i.e. -4500 ~ 4500) to max pitch range
float _collective_scalar; // collective scalar to convert pwm form (i.e. 0 ~ 1000) passed in to actual servo range (i.e 1250~1750 would be 500)
float _collective_scalar_manual; // collective scalar to reduce the range of the collective movement while collective is being controlled manually (i.e. directly by the pilot)
int16_t _collective_out; // actual collective pitch value. Required by the main code for calculating cruise throttle
int16_t _collective_mid_pwm; // collective mid parameter value converted to pwm form (i.e. 0 ~ 1000)
int16_t _desired_rotor_speed; // latest desired rotor speed from pilot
float _rotor_out; // latest output sent to the main rotor or an estimate of the rotors actual speed (whichever is higher) (0 ~ 1000)
float _rsc_ramp_increment; // the amount we can increase the rotor output during each 100hz iteration
float _rsc_runup_increment; // the amount we can increase the rotor's estimated speed during each 100hz iteration
float _rotor_speed_estimate; // estimated speed of the main rotor (0~1000)
int16_t _tail_direct_drive_out; // current ramped speed of output on ch7 when using direct drive variable pitch tail type
int16_t _delta_phase_angle; // phase angle dynamic compensation
int16_t _roll_radio_passthrough; // roll control PWM direct from radio, used for manual control
int16_t _pitch_radio_passthrough; // pitch control PWM direct from radio, used for manual control
int16_t _throttle_radio_passthrough;// throttle control PWM direct from radio, used for manual control
int16_t _yaw_radio_passthrough; // yaw control PWM direct from radio, used for manual control
};
#endif // AP_MOTORSHELI