ardupilot/ArduPlane/commands_logic.pde

641 lines
22 KiB
Plaintext

/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
// forward declarations to make compiler happy
static void do_takeoff(const AP_Mission::Mission_Command& cmd);
static void do_nav_wp(const AP_Mission::Mission_Command& cmd);
static void do_land(const AP_Mission::Mission_Command& cmd);
static void do_loiter_unlimited(const AP_Mission::Mission_Command& cmd);
static void do_loiter_turns(const AP_Mission::Mission_Command& cmd);
static void do_loiter_time(const AP_Mission::Mission_Command& cmd);
static void do_wait_delay(const AP_Mission::Mission_Command& cmd);
static void do_within_distance(const AP_Mission::Mission_Command& cmd);
static void do_change_alt(const AP_Mission::Mission_Command& cmd);
static void do_change_speed(const AP_Mission::Mission_Command& cmd);
static void do_set_home(const AP_Mission::Mission_Command& cmd);
/********************************************************************************/
// Command Event Handlers
/********************************************************************************/
/********************************************************************************/
// Command Event Handlers
/********************************************************************************/
static bool
start_command(const AP_Mission::Mission_Command& cmd)
{
// log when new commands start
if (should_log(MASK_LOG_CMD)) {
Log_Write_Cmd(cmd);
}
// special handling for nav vs non-nav commands
if (AP_Mission::is_nav_cmd(cmd)) {
// set land_complete to false to stop us zeroing the throttle
auto_state.land_complete = false;
// set takeoff_complete to true so we don't add extra evevator
// except in a takeoff
auto_state.takeoff_complete = true;
gcs_send_text_fmt(PSTR("Executing nav command ID #%i"),cmd.id);
} else {
gcs_send_text_fmt(PSTR("Executing command ID #%i"),cmd.id);
}
switch(cmd.id) {
case MAV_CMD_NAV_TAKEOFF:
do_takeoff(cmd);
break;
case MAV_CMD_NAV_WAYPOINT: // Navigate to Waypoint
do_nav_wp(cmd);
break;
case MAV_CMD_NAV_LAND: // LAND to Waypoint
do_land(cmd);
break;
case MAV_CMD_NAV_LOITER_UNLIM: // Loiter indefinitely
do_loiter_unlimited(cmd);
break;
case MAV_CMD_NAV_LOITER_TURNS: // Loiter N Times
do_loiter_turns(cmd);
break;
case MAV_CMD_NAV_LOITER_TIME:
do_loiter_time(cmd);
break;
case MAV_CMD_NAV_RETURN_TO_LAUNCH:
set_mode(RTL);
break;
// Conditional commands
case MAV_CMD_CONDITION_DELAY:
do_wait_delay(cmd);
break;
case MAV_CMD_CONDITION_DISTANCE:
do_within_distance(cmd);
break;
case MAV_CMD_CONDITION_CHANGE_ALT:
do_change_alt(cmd);
break;
// Do commands
case MAV_CMD_DO_CHANGE_SPEED:
do_change_speed(cmd);
break;
case MAV_CMD_DO_SET_HOME:
do_set_home(cmd);
break;
case MAV_CMD_DO_SET_SERVO:
ServoRelayEvents.do_set_servo(cmd.content.servo.channel, cmd.content.servo.pwm);
break;
case MAV_CMD_DO_SET_RELAY:
ServoRelayEvents.do_set_relay(cmd.content.relay.num, cmd.content.relay.state);
break;
case MAV_CMD_DO_REPEAT_SERVO:
ServoRelayEvents.do_repeat_servo(cmd.content.repeat_servo.channel, cmd.content.repeat_servo.pwm,
cmd.content.repeat_servo.repeat_count, cmd.content.repeat_servo.cycle_time * 1000.0f);
break;
case MAV_CMD_DO_REPEAT_RELAY:
ServoRelayEvents.do_repeat_relay(cmd.content.repeat_relay.num, cmd.content.repeat_relay.repeat_count,
cmd.content.repeat_relay.cycle_time * 1000.0f);
break;
case MAV_CMD_DO_INVERTED_FLIGHT:
if (cmd.p1 == 0 || cmd.p1 == 1) {
auto_state.inverted_flight = (bool)cmd.p1;
gcs_send_text_fmt(PSTR("Set inverted %u"), cmd.p1);
}
break;
#if CAMERA == ENABLED
case MAV_CMD_DO_CONTROL_VIDEO: // Control on-board camera capturing. |Camera ID (-1 for all)| Transmission: 0: disabled, 1: enabled compressed, 2: enabled raw| Transmission mode: 0: video stream, >0: single images every n seconds (decimal)| Recording: 0: disabled, 1: enabled compressed, 2: enabled raw| Empty| Empty| Empty|
break;
case MAV_CMD_DO_DIGICAM_CONFIGURE: // Mission command to configure an on-board camera controller system. |Modes: P, TV, AV, M, Etc| Shutter speed: Divisor number for one second| Aperture: F stop number| ISO number e.g. 80, 100, 200, Etc| Exposure type enumerator| Command Identity| Main engine cut-off time before camera trigger in seconds/10 (0 means no cut-off)|
break;
case MAV_CMD_DO_DIGICAM_CONTROL: // Mission command to control an on-board camera controller system. |Session control e.g. show/hide lens| Zoom's absolute position| Zooming step value to offset zoom from the current position| Focus Locking, Unlocking or Re-locking| Shooting Command| Command Identity| Empty|
do_take_picture();
break;
case MAV_CMD_DO_SET_CAM_TRIGG_DIST:
camera.set_trigger_distance(cmd.content.cam_trigg_dist.meters);
break;
#endif
#if MOUNT == ENABLED
// Sets the region of interest (ROI) for a sensor set or the
// vehicle itself. This can then be used by the vehicles control
// system to control the vehicle attitude and the attitude of various
// devices such as cameras.
// |Region of interest mode. (see MAV_ROI enum)| Waypoint index/ target ID. (see MAV_ROI enum)| ROI index (allows a vehicle to manage multiple cameras etc.)| Empty| x the location of the fixed ROI (see MAV_FRAME)| y| z|
case MAV_CMD_DO_SET_ROI:
if (cmd.content.location.alt == 0 && cmd.content.location.lat == 0 && cmd.content.location.lng == 0) {
// switch off the camera tracking if enabled
if (camera_mount.get_mode() == MAV_MOUNT_MODE_GPS_POINT) {
camera_mount.set_mode_to_default();
}
} else {
// send the command to the camera mount
camera_mount.set_roi_cmd(&cmd.content.location);
}
break;
case MAV_CMD_DO_MOUNT_CONFIGURE: // Mission command to configure a camera mount |Mount operation mode (see MAV_CONFIGURE_MOUNT_MODE enum)| stabilize roll? (1 = yes, 0 = no)| stabilize pitch? (1 = yes, 0 = no)| stabilize yaw? (1 = yes, 0 = no)| Empty| Empty| Empty|
camera_mount.configure_cmd();
break;
case MAV_CMD_DO_MOUNT_CONTROL: // Mission command to control a camera mount |pitch(deg*100) or lat, depending on mount mode.| roll(deg*100) or lon depending on mount mode| yaw(deg*100) or alt (in cm) depending on mount mode| Empty| Empty| Empty| Empty|
camera_mount.control_cmd();
break;
#endif
}
return true;
}
/*******************************************************************************
Verify command Handlers
Each type of mission element has a "verify" operation. The verify
operation returns true when the mission element has completed and we
should move onto the next mission element.
*******************************************************************************/
static bool verify_command(const AP_Mission::Mission_Command& cmd) // Returns true if command complete
{
switch(cmd.id) {
case MAV_CMD_NAV_TAKEOFF:
return verify_takeoff();
case MAV_CMD_NAV_LAND:
return verify_land();
case MAV_CMD_NAV_WAYPOINT:
return verify_nav_wp();
case MAV_CMD_NAV_LOITER_UNLIM:
return verify_loiter_unlim();
case MAV_CMD_NAV_LOITER_TURNS:
return verify_loiter_turns();
case MAV_CMD_NAV_LOITER_TIME:
return verify_loiter_time();
case MAV_CMD_NAV_RETURN_TO_LAUNCH:
return verify_RTL();
// Conditional commands
case MAV_CMD_CONDITION_DELAY:
return verify_wait_delay();
break;
case MAV_CMD_CONDITION_DISTANCE:
return verify_within_distance();
break;
case MAV_CMD_CONDITION_CHANGE_ALT:
return verify_change_alt();
break;
// do commands (always return true)
case MAV_CMD_DO_CHANGE_SPEED:
case MAV_CMD_DO_SET_HOME:
case MAV_CMD_DO_SET_SERVO:
case MAV_CMD_DO_SET_RELAY:
case MAV_CMD_DO_REPEAT_SERVO:
case MAV_CMD_DO_REPEAT_RELAY:
case MAV_CMD_DO_CONTROL_VIDEO:
case MAV_CMD_DO_DIGICAM_CONFIGURE:
case MAV_CMD_DO_DIGICAM_CONTROL:
case MAV_CMD_DO_SET_CAM_TRIGG_DIST:
case MAV_CMD_NAV_ROI:
case MAV_CMD_DO_MOUNT_CONFIGURE:
case MAV_CMD_DO_MOUNT_CONTROL:
case MAV_CMD_DO_INVERTED_FLIGHT:
return true;
default:
// error message
if (AP_Mission::is_nav_cmd(cmd)) {
gcs_send_text_P(SEVERITY_HIGH,PSTR("verify_nav: Invalid or no current Nav cmd"));
}else{
gcs_send_text_P(SEVERITY_HIGH,PSTR("verify_conditon: Invalid or no current Condition cmd"));
}
// return true so that we do not get stuck at this command
return true;
}
}
/********************************************************************************/
// Nav (Must) commands
/********************************************************************************/
static void do_RTL(void)
{
control_mode = RTL;
prev_WP_loc = current_loc;
next_WP_loc = rally.calc_best_rally_or_home_location(current_loc, read_alt_to_hold());
if (g.loiter_radius < 0) {
loiter.direction = -1;
} else {
loiter.direction = 1;
}
setup_glide_slope();
if (should_log(MASK_LOG_MODE))
Log_Write_Mode(control_mode);
}
static void do_takeoff(const AP_Mission::Mission_Command& cmd)
{
set_next_WP(cmd.content.location);
// pitch in deg, airspeed m/s, throttle %, track WP 1 or 0
auto_state.takeoff_pitch_cd = (int)cmd.p1 * 100;
auto_state.takeoff_altitude_cm = next_WP_loc.alt;
next_WP_loc.lat = home.lat + 10;
next_WP_loc.lng = home.lng + 10;
auto_state.takeoff_complete = false; // set flag to use gps ground course during TO. IMU will be doing yaw drift correction
// Flag also used to override "on the ground" throttle disable
}
static void do_nav_wp(const AP_Mission::Mission_Command& cmd)
{
set_next_WP(cmd.content.location);
}
static void do_land(const AP_Mission::Mission_Command& cmd)
{
set_next_WP(cmd.content.location);
}
static void loiter_set_direction_wp(const AP_Mission::Mission_Command& cmd)
{
if (cmd.content.location.flags.loiter_ccw) {
loiter.direction = -1;
} else {
loiter.direction = 1;
}
}
static void do_loiter_unlimited(const AP_Mission::Mission_Command& cmd)
{
set_next_WP(cmd.content.location);
loiter_set_direction_wp(cmd);
}
static void do_loiter_turns(const AP_Mission::Mission_Command& cmd)
{
set_next_WP(cmd.content.location);
loiter.total_cd = (uint32_t)(LOWBYTE(cmd.p1)) * 36000UL;
loiter_set_direction_wp(cmd);
}
static void do_loiter_time(const AP_Mission::Mission_Command& cmd)
{
set_next_WP(cmd.content.location);
// we set start_time_ms when we reach the waypoint
loiter.start_time_ms = 0;
loiter.time_max_ms = cmd.p1 * (uint32_t)1000; // units are seconds
loiter_set_direction_wp(cmd);
}
/********************************************************************************/
// Verify Nav (Must) commands
/********************************************************************************/
static bool verify_takeoff()
{
if (ahrs.yaw_initialised()) {
if (steer_state.hold_course_cd == -1) {
// save our current course to take off
steer_state.hold_course_cd = ahrs.yaw_sensor;
gcs_send_text_fmt(PSTR("Holding course %ld"), steer_state.hold_course_cd);
}
}
if (steer_state.hold_course_cd != -1) {
// call navigation controller for heading hold
nav_controller->update_heading_hold(steer_state.hold_course_cd);
} else {
nav_controller->update_level_flight();
}
// see if we have reached takeoff altitude
if (adjusted_altitude_cm() > auto_state.takeoff_altitude_cm) {
steer_state.hold_course_cd = -1;
auto_state.takeoff_complete = true;
next_WP_loc = prev_WP_loc = current_loc;
#if GEOFENCE_ENABLED == ENABLED
if (g.fence_autoenable == 1) {
if (! geofence_set_enabled(true, AUTO_TOGGLED)) {
gcs_send_text_P(SEVERITY_HIGH, PSTR("Enable fence failed (cannot autoenable"));
} else {
gcs_send_text_P(SEVERITY_HIGH, PSTR("Fence enabled. (autoenabled)"));
}
}
#endif
return true;
} else {
return false;
}
}
// we are executing a landing
static bool verify_land()
{
// we don't 'verify' landing in the sense that it never completes,
// so we don't verify command completion. Instead we use this to
// adjust final landing parameters
// Set land_complete if we are within 2 seconds distance or within
// 3 meters altitude of the landing point
if ((wp_distance <= (g.land_flare_sec * gps.ground_speed()))
|| (adjusted_altitude_cm() <= next_WP_loc.alt + g.land_flare_alt*100)) {
auto_state.land_complete = true;
if (steer_state.hold_course_cd == -1) {
// we have just reached the threshold of to flare for landing.
// We now don't want to do any radical
// turns, as rolling could put the wings into the runway.
// To prevent further turns we set steer_state.hold_course_cd to the
// current heading. Previously we set this to
// crosstrack_bearing, but the xtrack bearing can easily
// be quite large at this point, and that could induce a
// sudden large roll correction which is very nasty at
// this point in the landing.
steer_state.hold_course_cd = ahrs.yaw_sensor;
gcs_send_text_fmt(PSTR("Land Complete - Hold course %ld"), steer_state.hold_course_cd);
}
if (gps.ground_speed() < 3) {
// reload any airspeed or groundspeed parameters that may have
// been set for landing. We don't do this till ground
// speed drops below 3.0 m/s as otherwise we will change
// target speeds too early.
g.airspeed_cruise_cm.load();
g.min_gndspeed_cm.load();
aparm.throttle_cruise.load();
}
}
if (steer_state.hold_course_cd != -1) {
// recalc bearing error with hold_course;
nav_controller->update_heading_hold(steer_state.hold_course_cd);
} else {
nav_controller->update_waypoint(prev_WP_loc, next_WP_loc);
}
return false;
}
static bool verify_nav_wp()
{
steer_state.hold_course_cd = -1;
nav_controller->update_waypoint(prev_WP_loc, next_WP_loc);
// see if the user has specified a maximum distance to waypoint
if (g.waypoint_max_radius > 0 && wp_distance > (uint16_t)g.waypoint_max_radius) {
if (location_passed_point(current_loc, prev_WP_loc, next_WP_loc)) {
// this is needed to ensure completion of the waypoint
prev_WP_loc = current_loc;
}
return false;
}
if (wp_distance <= nav_controller->turn_distance(g.waypoint_radius, auto_state.next_turn_angle)) {
gcs_send_text_fmt(PSTR("Reached Waypoint #%i dist %um"),
(unsigned)mission.get_current_nav_cmd().index,
(unsigned)get_distance(current_loc, next_WP_loc));
return true;
}
// have we flown past the waypoint?
if (location_passed_point(current_loc, prev_WP_loc, next_WP_loc)) {
gcs_send_text_fmt(PSTR("Passed Waypoint #%i dist %um"),
(unsigned)mission.get_current_nav_cmd().index,
(unsigned)get_distance(current_loc, next_WP_loc));
return true;
}
return false;
}
static bool verify_loiter_unlim()
{
update_loiter();
return false;
}
static bool verify_loiter_time()
{
update_loiter();
if (loiter.start_time_ms == 0) {
if (nav_controller->reached_loiter_target()) {
// we've reached the target, start the timer
loiter.start_time_ms = millis();
}
} else if ((millis() - loiter.start_time_ms) > loiter.time_max_ms) {
gcs_send_text_P(SEVERITY_LOW,PSTR("verify_nav: LOITER time complete"));
return true;
}
return false;
}
static bool verify_loiter_turns()
{
update_loiter();
if (loiter.sum_cd > loiter.total_cd) {
loiter.total_cd = 0;
gcs_send_text_P(SEVERITY_LOW,PSTR("verify_nav: LOITER orbits complete"));
// clear the command queue;
return true;
}
return false;
}
static bool verify_RTL()
{
update_loiter();
if (wp_distance <= (uint32_t)max(g.waypoint_radius,0) ||
nav_controller->reached_loiter_target()) {
gcs_send_text_P(SEVERITY_LOW,PSTR("Reached home"));
return true;
} else {
return false;
}
}
/********************************************************************************/
// Condition (May) commands
/********************************************************************************/
static void do_wait_delay(const AP_Mission::Mission_Command& cmd)
{
condition_start = millis();
condition_value = cmd.content.delay.seconds * 1000; // convert seconds to milliseconds
}
static void do_change_alt(const AP_Mission::Mission_Command& cmd)
{
condition_rate = labs((int)cmd.content.location.lat); // climb rate in cm/s
condition_value = cmd.content.location.alt; // To-Do: ensure this altitude is an absolute altitude?
if (condition_value < adjusted_altitude_cm()) {
condition_rate = -condition_rate;
}
target_altitude_cm = adjusted_altitude_cm() + (condition_rate / 10); // condition_rate is climb rate in cm/s. We divide by 10 because this function is called at 10hz
next_WP_loc.alt = condition_value; // For future nav calculations
offset_altitude_cm = 0; // For future nav calculations
}
static void do_within_distance(const AP_Mission::Mission_Command& cmd)
{
condition_value = cmd.content.distance.meters;
}
/********************************************************************************/
// Verify Condition (May) commands
/********************************************************************************/
static bool verify_wait_delay()
{
if ((unsigned)(millis() - condition_start) > (unsigned)condition_value) {
condition_value = 0;
return true;
}
return false;
}
static bool verify_change_alt()
{
if( (condition_rate>=0 && adjusted_altitude_cm() >= condition_value) ||
(condition_rate<=0 && adjusted_altitude_cm() <= condition_value)) {
condition_value = 0;
return true;
}
target_altitude_cm += condition_rate / 10; // condition_rate is climb rate in cm/s. We divide by 10 because this function is called at 10hz
return false;
}
static bool verify_within_distance()
{
if (wp_distance < max(condition_value,0)) {
condition_value = 0;
return true;
}
return false;
}
/********************************************************************************/
// Do (Now) commands
/********************************************************************************/
static void do_loiter_at_location()
{
if (g.loiter_radius < 0) {
loiter.direction = -1;
} else {
loiter.direction = 1;
}
next_WP_loc = current_loc;
}
static void do_change_speed(const AP_Mission::Mission_Command& cmd)
{
switch (cmd.content.speed.speed_type)
{
case 0: // Airspeed
if (cmd.content.speed.target_ms > 0) {
g.airspeed_cruise_cm.set(cmd.content.speed.target_ms * 100);
gcs_send_text_fmt(PSTR("Set airspeed %u m/s"), (unsigned)cmd.content.speed.target_ms);
}
break;
case 1: // Ground speed
gcs_send_text_fmt(PSTR("Set groundspeed %u"), (unsigned)cmd.content.speed.target_ms);
g.min_gndspeed_cm.set(cmd.content.speed.target_ms * 100);
break;
}
if (cmd.content.speed.throttle_pct > 0 && cmd.content.speed.throttle_pct <= 100) {
gcs_send_text_fmt(PSTR("Set throttle %u"), (unsigned)cmd.content.speed.throttle_pct);
aparm.throttle_cruise.set(cmd.content.speed.throttle_pct);
}
}
static void do_set_home(const AP_Mission::Mission_Command& cmd)
{
if (cmd.p1 == 1 && gps.status() >= AP_GPS::GPS_OK_FIX_3D) {
init_home();
} else {
ahrs.set_home(cmd.content.location);
home_is_set = true;
}
}
// do_take_picture - take a picture with the camera library
static void do_take_picture()
{
#if CAMERA == ENABLED
camera.trigger_pic();
if (should_log(MASK_LOG_CAMERA)) {
DataFlash.Log_Write_Camera(ahrs, gps, current_loc);
}
#endif
}
// start_command_callback - callback function called from ap-mission when it begins a new mission command
// we double check that the flight mode is AUTO to avoid the possibility of ap-mission triggering actions while we're not in AUTO mode
static bool start_command_callback(const AP_Mission::Mission_Command &cmd)
{
if (control_mode == AUTO) {
return start_command(cmd);
}
return true;
}
// verify_command_callback - callback function called from ap-mission at 10hz or higher when a command is being run
// we double check that the flight mode is AUTO to avoid the possibility of ap-mission triggering actions while we're not in AUTO mode
static bool verify_command_callback(const AP_Mission::Mission_Command& cmd)
{
if (control_mode == AUTO) {
return verify_command(cmd);
}
return false;
}
// exit_mission_callback - callback function called from ap-mission when the mission has completed
// we double check that the flight mode is AUTO to avoid the possibility of ap-mission triggering actions while we're not in AUTO mode
static void exit_mission_callback()
{
if (control_mode == AUTO) {
gcs_send_text_fmt(PSTR("Returning to Home"));
memset(&auto_rtl_command, 0, sizeof(auto_rtl_command));
auto_rtl_command.content.location =
rally.calc_best_rally_or_home_location(current_loc, read_alt_to_hold());
auto_rtl_command.id = MAV_CMD_NAV_LOITER_UNLIM;
setup_glide_slope();
start_command(auto_rtl_command);
}
}