ardupilot/libraries/SITL/SIM_Multicopter.cpp

225 lines
6.3 KiB
C++

/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/*
multicopter simulator class
*/
#include <AP_HAL.h>
#if CONFIG_HAL_BOARD == HAL_BOARD_SITL
#include "SIM_Multicopter.h"
#include <stdio.h>
Motor m(90, false, 1);
static const Motor quad_plus_motors[4] =
{
Motor(90, false, 1),
Motor(270, false, 2),
Motor(0, true, 3),
Motor(180, true, 4)
};
static const Motor quad_x_motors[4] =
{
Motor(45, false, 1),
Motor(225, false, 2),
Motor(315, true, 3),
Motor(135, true, 4)
};
static const Motor hexa_motors[6] =
{
Motor(60, false, 1),
Motor(60, true, 7),
Motor(180, true, 4),
Motor(180, false, 8),
Motor(-60, true, 2),
Motor(-60, false, 3),
};
static const Motor hexax_motors[6] =
{
Motor(30, false, 7),
Motor(90, true, 1),
Motor(150, false, 4),
Motor(210, true, 8),
Motor(270, false, 2),
Motor(330, true, 3)
};
static const Motor octa_motors[8] =
{
Motor(0, true, 1),
Motor(180, true, 2),
Motor(45, false, 3),
Motor(135, false, 4),
Motor(-45, false, 5),
Motor(-135, false, 6),
Motor(270, true, 7),
Motor(90, true, 8)
};
static const Motor octa_quad_motors[8] =
{
Motor( 45, false, 1),
Motor( -45, true, 2),
Motor(-135, false, 3),
Motor( 135, true, 4),
Motor( -45, false, 5),
Motor( 45, true, 6),
Motor( 135, false, 7),
Motor(-135, true, 8)
};
/*
table of supported frame types
*/
static const Frame supported_frames[] =
{
Frame("+", 4, quad_plus_motors),
Frame("x", 4, quad_x_motors),
Frame("hexa", 6, hexa_motors),
Frame("hexax", 6, hexax_motors),
Frame("octa", 8, octa_motors),
Frame("octa-quad", 8, octa_quad_motors)
};
/*
constructor
*/
MultiCopter::MultiCopter(const char *home_str, const char *frame_str) :
Aircraft(home_str, frame_str),
frame(NULL),
hover_throttle(0.51),
terminal_velocity(15.0),
terminal_rotation_rate(4*radians(360.0))
{
for (uint8_t i=0; i<sizeof(supported_frames)/sizeof(supported_frames[0]); i++) {
if (strcasecmp(frame_str, supported_frames[i].name) == 0) {
frame = &supported_frames[i];
}
}
if (frame == NULL) {
printf("Frame '%s' not found", frame_str);
exit(1);
}
/*
scaling from total motor power to Newtons. Allows the copter
to hover against gravity when each motor is at hover_throttle
*/
mass = 1.5;
thrust_scale = (mass * GRAVITY_MSS) / (frame->num_motors * hover_throttle);
frame_height = 0.1;
}
/*
update the multicopter simulation by one time step
*/
void MultiCopter::update(const struct sitl_input &input)
{
float motor_speed[frame->num_motors];
for (uint8_t i=0; i<frame->num_motors; i++) {
uint16_t servo = input.servos[frame->motors[i].servo-1];
// assume 1000 to 2000 PWM range
if (servo <= 1000) {
motor_speed[i] = 0;
} else {
motor_speed[i] = (servo-1000) / 1000.0f;
}
}
// how much time has passed?
float delta_time = frame_time_us * 1.0e-6f;
// rotational acceleration, in rad/s/s, in body frame
Vector3f rot_accel;
float thrust = 0.0f; // newtons
for (uint8_t i=0; i<frame->num_motors; i++) {
rot_accel.x += -radians(5000.0) * sinf(radians(frame->motors[i].angle)) * motor_speed[i];
rot_accel.y += radians(5000.0) * cosf(radians(frame->motors[i].angle)) * motor_speed[i];
if (frame->motors[i].clockwise) {
rot_accel.z -= motor_speed[i] * radians(400.0);
} else {
rot_accel.z += motor_speed[i] * radians(400.0);
}
thrust += motor_speed[i] * thrust_scale; // newtons
}
// rotational air resistance
rot_accel.x -= gyro.x * radians(5000.0) / terminal_rotation_rate;
rot_accel.y -= gyro.y * radians(5000.0) / terminal_rotation_rate;
rot_accel.z -= gyro.z * radians(400.0) / terminal_rotation_rate;
// update rotational rates in body frame
gyro += rot_accel * delta_time;
// update attitude
dcm.rotate(gyro * delta_time);
dcm.normalize();
// air resistance
Vector3f air_resistance = -velocity_ef * (GRAVITY_MSS/terminal_velocity);
accel_body = Vector3f(0, 0, -thrust / mass);
Vector3f accel_earth = dcm * accel_body;
accel_earth += Vector3f(0, 0, GRAVITY_MSS);
accel_earth += air_resistance;
// if we're on the ground, then our vertical acceleration is limited
// to zero. This effectively adds the force of the ground on the aircraft
if (on_ground(position) && accel_earth.z > 0) {
accel_earth.z = 0;
}
// work out acceleration as seen by the accelerometers. It sees the kinematic
// acceleration (ie. real movement), plus gravity
accel_body = dcm.transposed() * (accel_earth + Vector3f(0, 0, -GRAVITY_MSS));
// add some noise
add_noise(thrust / (thrust_scale * frame->num_motors));
// new velocity vector
velocity_ef += accel_earth * delta_time;
// new position vector
Vector3f old_position = position;
position += velocity_ef * delta_time;
// constrain height to the ground
if (on_ground(position)) {
if (!on_ground(old_position)) {
printf("Hit ground at %f m/s\n", velocity_ef.z);
velocity_ef.zero();
// zero roll/pitch, but keep yaw
float r, p, y;
dcm.to_euler(&r, &p, &y);
dcm.from_euler(0, 0, y);
position.z = -(ground_level + frame_height - home.alt*0.01f);
}
}
// update lat/lon/altitude
update_position();
}
#endif // CONFIG_HAL_BOARD