ardupilot/libraries/SRV_Channel/SRV_Channel_aux.cpp

875 lines
27 KiB
C++

/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/*
SRV_Channel_aux.cpp - handling of servo auxillary functions
*/
#include "SRV_Channel.h"
#include <AP_Math/AP_Math.h>
#include <AP_HAL/AP_HAL.h>
#include <RC_Channel/RC_Channel.h>
#include <AP_RCMapper/AP_RCMapper.h>
extern const AP_HAL::HAL& hal;
/// map a function to a servo channel and output it
void SRV_Channel::output_ch(void)
{
int8_t passthrough_from = -1;
// take care of special function cases
switch(function)
{
case k_manual: // manual
passthrough_from = ch_num;
break;
case k_rcin1 ... k_rcin16: // rc pass-thru
passthrough_from = int8_t(function - k_rcin1);
break;
}
if (passthrough_from != -1) {
// we are doing passthrough from input to output for this channel
RC_Channel *c = rc().channel(passthrough_from);
if (c) {
if (SRV_Channels::passthrough_disabled()) {
output_pwm = c->get_radio_trim();
} else {
output_pwm = c->get_radio_in();
}
}
}
if (!(SRV_Channels::disabled_mask & (1U<<ch_num))) {
hal.rcout->write(ch_num, output_pwm);
}
}
/*
call output_ch() on all channels
*/
void SRV_Channels::output_ch_all(void)
{
for (uint8_t i = 0; i < NUM_SERVO_CHANNELS; i++) {
channels[i].output_ch();
}
}
/*
return the current function for a channel
*/
SRV_Channel::Aux_servo_function_t SRV_Channels::channel_function(uint8_t channel)
{
if (channel < NUM_SERVO_CHANNELS) {
return (SRV_Channel::Aux_servo_function_t)channels[channel].function.get();
}
return SRV_Channel::k_none;
}
/*
setup a channels aux servo function
*/
void SRV_Channel::aux_servo_function_setup(void)
{
if (type_setup) {
return;
}
switch (function) {
case k_flap:
case k_flap_auto:
case k_egg_drop:
set_range(100);
break;
case k_heli_rsc:
case k_heli_tail_rsc:
case k_motor_tilt:
case k_boost_throttle:
set_range(1000);
break;
case k_aileron_with_input:
case k_elevator_with_input:
case k_aileron:
case k_elevator:
case k_dspoilerLeft1:
case k_dspoilerLeft2:
case k_dspoilerRight1:
case k_dspoilerRight2:
case k_rudder:
case k_steering:
case k_flaperon_left:
case k_flaperon_right:
case k_tiltMotorLeft:
case k_tiltMotorRight:
case k_elevon_left:
case k_elevon_right:
case k_vtail_left:
case k_vtail_right:
set_angle(4500);
break;
case k_throttle:
case k_throttleLeft:
case k_throttleRight:
// fixed wing throttle
set_range(100);
break;
default:
break;
}
}
/// setup the output range types of all functions
void SRV_Channels::update_aux_servo_function(void)
{
if (!channels) {
return;
}
function_mask.clearall();
for (uint8_t i = 0; i < SRV_Channel::k_nr_aux_servo_functions; i++) {
functions[i].channel_mask = 0;
}
// set auxiliary ranges
for (uint8_t i = 0; i < NUM_SERVO_CHANNELS; i++) {
if ((uint8_t)channels[i].function.get() < SRV_Channel::k_nr_aux_servo_functions) {
channels[i].aux_servo_function_setup();
function_mask.set((uint8_t)channels[i].function.get());
functions[channels[i].function.get()].channel_mask |= 1U<<i;
}
}
initialised = true;
}
/// Should be called after the the servo functions have been initialized
void SRV_Channels::enable_aux_servos()
{
hal.rcout->set_default_rate(uint16_t(instance->default_rate.get()));
update_aux_servo_function();
// enable all channels that are set to a valid function. This
// includes k_none servos, which allows those to get their initial
// trim value on startup
for (uint8_t i = 0; i < NUM_SERVO_CHANNELS; i++) {
// see if it is a valid function
if ((uint8_t)channels[i].function.get() < SRV_Channel::k_nr_aux_servo_functions) {
hal.rcout->enable_ch(channels[i].ch_num);
}
}
#if HAL_SUPPORT_RCOUT_SERIAL
blheli_ptr->update();
#endif
}
/// enable output channels using a channel mask
void SRV_Channels::enable_by_mask(uint16_t mask)
{
for (uint8_t i = 0; i < 16; i++) {
if (mask & (1U<<i)) {
hal.rcout->enable_ch(i);
}
}
}
/*
set radio_out for all channels matching the given function type
*/
void SRV_Channels::set_output_pwm(SRV_Channel::Aux_servo_function_t function, uint16_t value)
{
if (!function_assigned(function)) {
return;
}
for (uint8_t i = 0; i < NUM_SERVO_CHANNELS; i++) {
if (channels[i].function.get() == function) {
channels[i].set_output_pwm(value);
channels[i].output_ch();
}
}
}
/*
set radio_out for all channels matching the given function type
trim the output assuming a 1500 center on the given value
reverses pwm output based on channel reversed property
*/
void
SRV_Channels::set_output_pwm_trimmed(SRV_Channel::Aux_servo_function_t function, int16_t value)
{
if (!function_assigned(function)) {
return;
}
for (uint8_t i = 0; i < NUM_SERVO_CHANNELS; i++) {
if (channels[i].function.get() == function) {
int16_t value2;
if (channels[i].get_reversed()) {
value2 = 1500 - value + channels[i].get_trim();
} else {
value2 = value - 1500 + channels[i].get_trim();
}
channels[i].set_output_pwm(constrain_int16(value2,channels[i].get_output_min(),channels[i].get_output_max()));
channels[i].output_ch();
}
}
}
/*
set and save the trim value to current output for all channels matching
the given function type
*/
void
SRV_Channels::set_trim_to_servo_out_for(SRV_Channel::Aux_servo_function_t function)
{
if (!function_assigned(function)) {
return;
}
for (uint8_t i = 0; i < NUM_SERVO_CHANNELS; i++) {
if (channels[i].function.get() == function) {
channels[i].servo_trim.set_and_save_ifchanged(channels[i].output_pwm);
}
}
}
/*
copy radio_in to radio_out for a given function
*/
void
SRV_Channels::copy_radio_in_out(SRV_Channel::Aux_servo_function_t function, bool do_input_output)
{
if (!function_assigned(function)) {
return;
}
for (uint8_t i = 0; i < NUM_SERVO_CHANNELS; i++) {
if (channels[i].function.get() == function) {
RC_Channel *c = rc().channel(channels[i].ch_num);
if (c == nullptr) {
continue;
}
channels[i].set_output_pwm(c->get_radio_in());
if (do_input_output) {
channels[i].output_ch();
}
}
}
}
/*
copy radio_in to radio_out for a channel mask
*/
void
SRV_Channels::copy_radio_in_out_mask(uint16_t mask)
{
for (uint8_t i = 0; i < NUM_SERVO_CHANNELS; i++) {
if ((1U<<i) & mask) {
RC_Channel *c = rc().channel(channels[i].ch_num);
if (c == nullptr) {
continue;
}
channels[i].set_output_pwm(c->get_radio_in());
}
}
}
/*
setup failsafe value for an auxiliary function type to a LimitValue
*/
void
SRV_Channels::set_failsafe_pwm(SRV_Channel::Aux_servo_function_t function, uint16_t pwm)
{
if (!function_assigned(function)) {
return;
}
for (uint8_t i = 0; i < NUM_SERVO_CHANNELS; i++) {
const SRV_Channel &ch = channels[i];
if (ch.function.get() == function) {
hal.rcout->set_failsafe_pwm(1U<<ch.ch_num, pwm);
}
}
}
/*
setup failsafe value for an auxiliary function type to a LimitValue
*/
void
SRV_Channels::set_failsafe_limit(SRV_Channel::Aux_servo_function_t function, SRV_Channel::LimitValue limit)
{
if (!function_assigned(function)) {
return;
}
for (uint8_t i = 0; i < NUM_SERVO_CHANNELS; i++) {
const SRV_Channel &ch = channels[i];
if (ch.function.get() == function) {
uint16_t pwm = ch.get_limit_pwm(limit);
hal.rcout->set_failsafe_pwm(1U<<ch.ch_num, pwm);
}
}
}
/*
setup safety value for an auxiliary function type to a LimitValue
*/
void
SRV_Channels::set_safety_limit(SRV_Channel::Aux_servo_function_t function, SRV_Channel::LimitValue limit)
{
if (!function_assigned(function)) {
return;
}
for (uint8_t i = 0; i < NUM_SERVO_CHANNELS; i++) {
const SRV_Channel &ch = channels[i];
if (ch.function.get() == function) {
uint16_t pwm = ch.get_limit_pwm(limit);
hal.rcout->set_safety_pwm(1U<<ch.ch_num, pwm);
}
}
}
/*
set radio output value for an auxiliary function type to a LimitValue
*/
void
SRV_Channels::set_output_limit(SRV_Channel::Aux_servo_function_t function, SRV_Channel::LimitValue limit)
{
if (!function_assigned(function)) {
return;
}
for (uint8_t i = 0; i < NUM_SERVO_CHANNELS; i++) {
SRV_Channel &ch = channels[i];
if (ch.function.get() == function) {
uint16_t pwm = ch.get_limit_pwm(limit);
ch.set_output_pwm(pwm);
if (ch.function.get() == SRV_Channel::k_manual) {
RC_Channel *c = rc().channel(ch.ch_num);
if (c != nullptr) {
// in order for output_ch() to work for k_manual we
// also have to override radio_in
c->set_radio_in(pwm);
}
}
}
}
}
/*
return true if a particular function is assigned to at least one RC channel
*/
bool
SRV_Channels::function_assigned(SRV_Channel::Aux_servo_function_t function)
{
return function_mask.get(uint16_t(function));
}
/*
set servo_out and angle_min/max, then calc_pwm and output a
value. This is used to move a AP_Mount servo
*/
void
SRV_Channels::move_servo(SRV_Channel::Aux_servo_function_t function,
int16_t value, int16_t angle_min, int16_t angle_max)
{
if (!function_assigned(function)) {
return;
}
if (angle_max <= angle_min) {
return;
}
float v = float(value - angle_min) / float(angle_max - angle_min);
v = constrain_float(v, 0.0f, 1.0f);
for (uint8_t i = 0; i < NUM_SERVO_CHANNELS; i++) {
SRV_Channel &ch = channels[i];
if (ch.function.get() == function) {
float v2 = ch.get_reversed()? (1-v) : v;
uint16_t pwm = ch.servo_min + v2 * (ch.servo_max - ch.servo_min);
ch.set_output_pwm(pwm);
}
}
}
/*
set the default channel an auxiliary output function should be on
*/
bool SRV_Channels::set_aux_channel_default(SRV_Channel::Aux_servo_function_t function, uint8_t channel)
{
if (!initialised) {
update_aux_servo_function();
}
if (function_assigned(function)) {
// already assigned
return true;
}
if (channels[channel].function != SRV_Channel::k_none) {
if (channels[channel].function == function) {
return true;
}
hal.console->printf("Channel %u already assigned function %u\n",
(unsigned)(channel + 1),
(unsigned)channels[channel].function);
return false;
}
channels[channel].type_setup = false;
channels[channel].function.set(function);
channels[channel].aux_servo_function_setup();
function_mask.set((uint8_t)function);
functions[function].channel_mask |= 1U<<channel;
return true;
}
// find first channel that a function is assigned to
bool SRV_Channels::find_channel(SRV_Channel::Aux_servo_function_t function, uint8_t &chan)
{
if (!initialised) {
update_aux_servo_function();
}
if (!function_assigned(function)) {
return false;
}
for (uint8_t i=0; i<NUM_SERVO_CHANNELS; i++) {
if (channels[i].function == function) {
chan = channels[i].ch_num;
return true;
}
}
return false;
}
/*
get a pointer to first auxillary channel for a channel function
*/
SRV_Channel *SRV_Channels::get_channel_for(SRV_Channel::Aux_servo_function_t function, int8_t default_chan)
{
uint8_t chan;
if (default_chan >= 0) {
set_aux_channel_default(function, default_chan);
}
if (!find_channel(function, chan)) {
return nullptr;
}
return &channels[chan];
}
void SRV_Channels::set_output_scaled(SRV_Channel::Aux_servo_function_t function, int16_t value)
{
if (function < SRV_Channel::k_nr_aux_servo_functions) {
functions[function].output_scaled = value;
SRV_Channel::have_pwm_mask &= ~functions[function].channel_mask;
}
}
int16_t SRV_Channels::get_output_scaled(SRV_Channel::Aux_servo_function_t function)
{
if (function < SRV_Channel::k_nr_aux_servo_functions) {
return functions[function].output_scaled;
}
return 0;
}
/*
get mask of output channels for a function
*/
uint16_t SRV_Channels::get_output_channel_mask(SRV_Channel::Aux_servo_function_t function)
{
if (!initialised) {
update_aux_servo_function();
}
if (function < SRV_Channel::k_nr_aux_servo_functions) {
return functions[function].channel_mask;
}
return 0;
}
// set the trim for a function channel to given pwm
void SRV_Channels::set_trim_to_pwm_for(SRV_Channel::Aux_servo_function_t function, int16_t pwm)
{
for (uint8_t i=0; i<NUM_SERVO_CHANNELS; i++) {
if (channels[i].function == function) {
channels[i].servo_trim.set(pwm);
}
}
}
// set the trim for a function channel to min output
void SRV_Channels::set_trim_to_min_for(SRV_Channel::Aux_servo_function_t function)
{
for (uint8_t i=0; i<NUM_SERVO_CHANNELS; i++) {
if (channels[i].function == function) {
channels[i].servo_trim.set(channels[i].get_reversed()?channels[i].servo_max:channels[i].servo_min);
}
}
}
/*
set the default function for a channel
*/
void SRV_Channels::set_default_function(uint8_t chan, SRV_Channel::Aux_servo_function_t function)
{
if (chan < NUM_SERVO_CHANNELS) {
int8_t old = channels[chan].function;
channels[chan].function.set_default((uint8_t)function);
if (old != channels[chan].function && channels[chan].function == function) {
function_mask.set((uint8_t)function);
}
}
}
void SRV_Channels::set_esc_scaling_for(SRV_Channel::Aux_servo_function_t function)
{
uint8_t chan;
if (find_channel(function, chan)) {
hal.rcout->set_esc_scaling(channels[chan].get_output_min(), channels[chan].get_output_max());
}
}
/*
auto-adjust channel trim from an integrator value. Positive v means
adjust trim up. Negative means decrease
*/
void SRV_Channels::adjust_trim(SRV_Channel::Aux_servo_function_t function, float v)
{
if (is_zero(v)) {
return;
}
for (uint8_t i=0; i<NUM_SERVO_CHANNELS; i++) {
SRV_Channel &c = channels[i];
if (function != (SRV_Channel::Aux_servo_function_t)(c.function.get())) {
continue;
}
float change = c.reversed?-v:v;
uint16_t new_trim = c.servo_trim;
float trim_scaled = float(c.servo_trim - c.servo_min) / (c.servo_max - c.servo_min);
if (change > 0 && trim_scaled < 0.6f) {
new_trim++;
} else if (change < 0 && trim_scaled > 0.4f) {
new_trim--;
} else {
return;
}
c.servo_trim.set(new_trim);
trimmed_mask |= 1U<<i;
}
}
// get pwm output for the first channel of the given function type.
bool SRV_Channels::get_output_pwm(SRV_Channel::Aux_servo_function_t function, uint16_t &value)
{
uint8_t chan;
if (!find_channel(function, chan)) {
return false;
}
channels[chan].calc_pwm(functions[function].output_scaled);
value = channels[chan].output_pwm;
return true;
}
// set output pwm to trim for the given function
void SRV_Channels::set_output_to_trim(SRV_Channel::Aux_servo_function_t function)
{
for (uint8_t i=0; i<NUM_SERVO_CHANNELS; i++) {
if (channels[i].function == function) {
channels[i].set_output_pwm(channels[i].servo_trim);
}
}
}
// set output pwm to for first matching channel
void SRV_Channels::set_output_pwm_first(SRV_Channel::Aux_servo_function_t function, uint16_t pwm)
{
for (uint8_t i=0; i<NUM_SERVO_CHANNELS; i++) {
if (channels[i].function == function) {
channels[i].set_output_pwm(pwm);
break;
}
}
}
/*
get the normalised output for a channel function from the pwm value
of the first matching channel
*/
float SRV_Channels::get_output_norm(SRV_Channel::Aux_servo_function_t function)
{
uint8_t chan;
if (!find_channel(function, chan)) {
return 0;
}
channels[chan].calc_pwm(functions[function].output_scaled);
return channels[chan].get_output_norm();
}
/*
limit slew rate for an output function to given rate in percent per
second. This assumes output has not yet done to the hal
*/
void SRV_Channels::limit_slew_rate(SRV_Channel::Aux_servo_function_t function, float slew_rate, float dt)
{
if (slew_rate <= 0) {
// nothing to do
return;
}
for (uint8_t i=0; i<NUM_SERVO_CHANNELS; i++) {
SRV_Channel &ch = channels[i];
if (ch.function == function) {
ch.calc_pwm(functions[function].output_scaled);
uint16_t last_pwm = hal.rcout->read_last_sent(ch.ch_num);
if (last_pwm == ch.output_pwm) {
continue;
}
uint16_t max_change = (ch.get_output_max() - ch.get_output_min()) * slew_rate * dt * 0.01f;
if (max_change == 0 || dt > 1) {
// always allow some change. If dt > 1 then assume we
// are just starting out, and only allow a small
// change for this loop
max_change = 1;
}
ch.output_pwm = constrain_int16(ch.output_pwm, last_pwm-max_change, last_pwm+max_change);
}
}
}
// call set_angle() on matching channels
void SRV_Channels::set_angle(SRV_Channel::Aux_servo_function_t function, uint16_t angle)
{
for (uint8_t i=0; i<NUM_SERVO_CHANNELS; i++) {
if (channels[i].function == function) {
channels[i].set_angle(angle);
}
}
}
// call set_range() on matching channels
void SRV_Channels::set_range(SRV_Channel::Aux_servo_function_t function, uint16_t range)
{
for (uint8_t i=0; i<NUM_SERVO_CHANNELS; i++) {
if (channels[i].function == function) {
channels[i].set_range(range);
}
}
}
// set MIN parameter for a function
void SRV_Channels::set_output_min_max(SRV_Channel::Aux_servo_function_t function, uint16_t min_pwm, uint16_t max_pwm)
{
for (uint8_t i=0; i<NUM_SERVO_CHANNELS; i++) {
if (channels[i].function == function) {
channels[i].set_output_min(min_pwm);
channels[i].set_output_max(max_pwm);
}
}
}
// constrain to output min/max for function
void SRV_Channels::constrain_pwm(SRV_Channel::Aux_servo_function_t function)
{
for (uint8_t i=0; i<NUM_SERVO_CHANNELS; i++) {
SRV_Channel &ch = channels[i];
if (ch.function == function) {
ch.output_pwm = constrain_int16(ch.output_pwm, ch.servo_min, ch.servo_max);
}
}
}
/*
upgrade RC* parameters into SERVO* parameters. This does the following:
- copies MIN/MAX/TRIM values from old RC parameters into new RC* parameters and SERVO* parameters.
- copies RCn_FUNCTION to SERVOn_FUNCTION
- maps old RCn_REV to SERVOn_REVERSE and RCn_REVERSE
aux_channel_mask is a bitmask of which channels were RC_Channel_aux channels
Note that this code is highly dependent on the parameter indexing of
the old RC_Channel and RC_Channel_aux objects.
If rcmap is passed in then the vehicle code also wants functions for
the first 4 output channels to be remapped
We return true if an upgrade has been done. This allows the caller
to make any vehicle specific upgrades that may be needed
*/
bool SRV_Channels::upgrade_parameters(const uint8_t rc_keys[14], uint16_t aux_channel_mask, RCMapper *rcmap)
{
// use SERVO16_FUNCTION as a marker to say that we have run the upgrade already
if (channels[15].function.configured_in_storage()) {
// upgrade already done
return false;
}
// old system had 14 RC channels
for (uint8_t i=0; i<14; i++) {
uint8_t k = rc_keys[i];
if (k == 0) {
// missing parameter. Some vehicle types didn't have all parameters
continue;
}
SRV_Channel &srv_chan = channels[i];
RC_Channel *rc_chan = rc().channel(i);
enum {
FLAG_NONE=0,
FLAG_IS_REVERSE=1,
FLAG_AUX_ONLY=2
};
const struct mapping {
uint8_t old_index;
AP_Param *new_srv_param;
AP_Param *new_rc_param;
enum ap_var_type type;
uint8_t flags;
} mapping[] = {
{ 0, &srv_chan.servo_min, &rc_chan->radio_min, AP_PARAM_INT16, FLAG_NONE },
{ 1, &srv_chan.servo_trim, &rc_chan->radio_trim, AP_PARAM_INT16, FLAG_NONE },
{ 2, &srv_chan.servo_max, &rc_chan->radio_max, AP_PARAM_INT16, FLAG_NONE },
{ 3, &srv_chan.reversed, &rc_chan->reversed, AP_PARAM_INT8, FLAG_IS_REVERSE },
{ 1, &srv_chan.function, nullptr, AP_PARAM_INT8, FLAG_AUX_ONLY },
};
bool is_aux = aux_channel_mask & (1U<<i);
for (uint8_t j=0; j<ARRAY_SIZE(mapping); j++) {
const struct mapping &m = mapping[j];
AP_Param::ConversionInfo info;
AP_Int8 v8;
AP_Int16 v16;
AP_Param *v = m.type == AP_PARAM_INT16?(AP_Param*)&v16:(AP_Param*)&v8;
bool aux_only = (m.flags & FLAG_AUX_ONLY)!=0;
if (!is_aux && aux_only) {
continue;
}
info.old_key = k;
info.type = m.type;
info.new_name = nullptr;
// if this was an aux channel we need to shift by 6 bits, but not for RCn_FUNCTION
info.old_group_element = (is_aux && !aux_only)?(m.old_index<<6):m.old_index;
if (!AP_Param::find_old_parameter(&info, v)) {
// the parameter wasn't set in the old eeprom
continue;
}
if (m.flags & FLAG_IS_REVERSE) {
// special mapping from RCn_REV to RCn_REVERSED
v8.set(v8.get() == -1?1:0);
}
if (!m.new_srv_param->configured_in_storage()) {
// not configured yet in new eeprom
if (m.type == AP_PARAM_INT16) {
((AP_Int16 *)m.new_srv_param)->set_and_save_ifchanged(v16.get());
} else {
((AP_Int8 *)m.new_srv_param)->set_and_save_ifchanged(v8.get());
}
}
if (m.new_rc_param && !m.new_rc_param->configured_in_storage()) {
// not configured yet in new eeprom
if (m.type == AP_PARAM_INT16) {
((AP_Int16 *)m.new_rc_param)->set_and_save_ifchanged(v16.get());
} else {
((AP_Int8 *)m.new_rc_param)->set_and_save_ifchanged(v8.get());
}
}
}
}
if (rcmap != nullptr) {
// we need to make the output functions from the rcmapped inputs
const int8_t func_map[4] = { channels[0].function.get(),
channels[1].function.get(),
channels[2].function.get(),
channels[3].function.get() };
const uint8_t map[4] = { rcmap->roll(), rcmap->pitch(), rcmap->throttle(), rcmap->yaw() };
for (uint8_t i=0; i<4; i++) {
uint8_t m = uint8_t(map[i]-1);
if (m != i && m < 4) {
channels[m].function.set_and_save_ifchanged(func_map[i]);
}
}
}
// mark the upgrade as having been done
channels[15].function.set_and_save(channels[15].function.get());
return true;
}
/*
Upgrade servo MIN/MAX/TRIM/REVERSE parameters for a single AP_Motors
RC_Channel servo from previous firmwares, setting the equivalent
parameter in the new SRV_Channels object
*/
void SRV_Channels::upgrade_motors_servo(uint8_t ap_motors_key, uint8_t ap_motors_idx, uint8_t new_channel)
{
SRV_Channel &srv_chan = channels[new_channel];
enum {
FLAG_NONE=0,
FLAG_IS_REVERSE=1
};
const struct mapping {
uint8_t old_index;
AP_Param *new_srv_param;
enum ap_var_type type;
uint8_t flags;
} mapping[] = {
{ 0, &srv_chan.servo_min, AP_PARAM_INT16, FLAG_NONE },
{ 1, &srv_chan.servo_trim, AP_PARAM_INT16, FLAG_NONE },
{ 2, &srv_chan.servo_max, AP_PARAM_INT16, FLAG_NONE },
{ 3, &srv_chan.reversed, AP_PARAM_INT8, FLAG_IS_REVERSE },
};
for (uint8_t j=0; j<ARRAY_SIZE(mapping); j++) {
const struct mapping &m = mapping[j];
AP_Param::ConversionInfo info;
AP_Int8 v8;
AP_Int16 v16;
AP_Param *v = m.type == AP_PARAM_INT16?(AP_Param*)&v16:(AP_Param*)&v8;
info.old_key = ap_motors_key;
info.type = m.type;
info.new_name = nullptr;
info.old_group_element = ap_motors_idx | (m.old_index<<6);
if (!AP_Param::find_old_parameter(&info, v)) {
// the parameter wasn't set in the old eeprom
continue;
}
if (m.flags & FLAG_IS_REVERSE) {
// special mapping from RCn_REV to RCn_REVERSED
v8.set(v8.get() == -1?1:0);
}
// we save even if there is already a value in the new eeprom,
// as that may come from the equivalent RC channel, not the
// old motor servo channel
if (m.type == AP_PARAM_INT16) {
((AP_Int16 *)m.new_srv_param)->set_and_save_ifchanged(v16.get());
} else {
((AP_Int8 *)m.new_srv_param)->set_and_save_ifchanged(v8.get());
}
}
}
// set RC output frequency on a function output
void SRV_Channels::set_rc_frequency(SRV_Channel::Aux_servo_function_t function, uint16_t frequency_hz)
{
uint16_t mask = 0;
for (uint8_t i=0; i<NUM_SERVO_CHANNELS; i++) {
SRV_Channel &ch = channels[i];
if (ch.function == function) {
mask |= (1U<<ch.ch_num);
}
}
if (mask != 0) {
hal.rcout->set_freq(mask, frequency_hz);
}
}