ardupilot/libraries/AP_HAL_SITL/Util.cpp

241 lines
6.4 KiB
C++

#include "Util.h"
#include <sys/time.h>
#include <AP_Param/AP_Param.h>
#include "RCOutput.h"
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <AP_Common/ExpandingString.h>
extern const AP_HAL::HAL& hal;
#ifdef WITH_SITL_TONEALARM
HALSITL::ToneAlarm_SF HALSITL::Util::_toneAlarm;
#endif
uint64_t HALSITL::Util::get_hw_rtc() const
{
#ifndef CLOCK_REALTIME
struct timeval ts;
gettimeofday(&ts, nullptr);
return ((long long)((ts.tv_sec * 1000000) + ts.tv_usec));
#else
struct timespec ts;
clock_gettime(CLOCK_REALTIME, &ts);
const uint64_t seconds = ts.tv_sec;
const uint64_t nanoseconds = ts.tv_nsec;
return (seconds * 1000000ULL + nanoseconds/1000ULL);
#endif
}
/*
get a (hopefully unique) machine ID
*/
bool HALSITL::Util::get_system_id_unformatted(uint8_t buf[], uint8_t &len)
{
char *cbuf = (char *)buf;
// try first to use machine-id file. Most systems will have this
const char *paths[] = { "/etc/machine-id", "/var/lib/dbus/machine-id" };
for (uint8_t i=0; i<ARRAY_SIZE(paths); i++) {
int fd = open(paths[i], O_RDONLY);
if (fd == -1) {
continue;
}
ssize_t ret = read(fd, buf, len);
close(fd);
if (ret <= 0) {
continue;
}
if (ret == len) {
cbuf[len-1] = '\0';
} else {
cbuf[ret] = '\0';
}
len = ret;
char *p = strchr(cbuf, '\n');
if (p) {
*p = 0;
}
len = strnlen(cbuf, len);
buf[0] += sitlState->get_instance();
return true;
}
// fallback to hostname
if (gethostname(cbuf, len) != 0) {
// use a default name so this always succeeds. Without it we can't
// implement some features (such as UAVCAN)
snprintf(cbuf, len, "sitl-unknown-%d", sitlState->get_instance());
} else {
// To ensure separate ids for each instance
cbuf[0] += sitlState->get_instance();
}
len = strnlen(cbuf, len);
return true;
}
/*
as get_system_id_unformatted will already be ascii, we use the same
ID here
*/
bool HALSITL::Util::get_system_id(char buf[50])
{
uint8_t len = 40;
return get_system_id_unformatted((uint8_t *)buf, len);
}
#ifdef ENABLE_HEAP
void *HALSITL::Util::allocate_heap_memory(size_t size)
{
struct heap *new_heap = (struct heap*)malloc(sizeof(struct heap));
if (new_heap != nullptr) {
new_heap->scripting_max_heap_size = size;
new_heap->current_heap_usage = 0;
}
return (void *)new_heap;
}
void *HALSITL::Util::heap_realloc(void *heap_ptr, void *ptr, size_t old_size, size_t new_size)
{
if (heap_ptr == nullptr) {
return nullptr;
}
struct heap *heapp = (struct heap*)heap_ptr;
// extract appropriate headers
size_t old_size_header = 0;
heap_allocation_header *old_header = nullptr;
if (ptr != nullptr) {
old_header = ((heap_allocation_header *)ptr) - 1;
old_size_header = old_header->allocation_size;
#if !defined(HAL_BUILD_AP_PERIPH)
if (old_size_header != old_size && new_size != 0) {
INTERNAL_ERROR(AP_InternalError::error_t::invalid_arg_or_result);
}
#endif
}
if ((heapp->current_heap_usage + new_size - old_size) > heapp->scripting_max_heap_size) {
// fail the allocation as we don't have the memory. Note that we don't simulate fragmentation
return nullptr;
}
heapp->current_heap_usage -= old_size_header;
if (new_size == 0) {
free(old_header);
return nullptr;
}
heap_allocation_header *new_header = (heap_allocation_header *)malloc(new_size + sizeof(heap_allocation_header));
if (new_header == nullptr) {
// total failure to allocate, this is very surprising in SITL
return nullptr;
}
heapp->current_heap_usage += new_size;
new_header->allocation_size = new_size;
void *new_mem = new_header + 1;
if (ptr == nullptr) {
return new_mem;
}
memcpy(new_mem, ptr, old_size > new_size ? new_size : old_size);
free(old_header);
return new_mem;
}
#endif // ENABLE_HEAP
#if !defined(HAL_BUILD_AP_PERIPH)
enum AP_HAL::Util::safety_state HALSITL::Util::safety_switch_state(void)
{
#define HAL_USE_PWM 1
#if HAL_USE_PWM
return ((RCOutput *)hal.rcout)->_safety_switch_state();
#else
return SAFETY_NONE;
#endif
}
void HALSITL::Util::set_cmdline_parameters()
{
for (uint16_t i=0; i<sitlState->cmdline_param.available(); i++) {
const auto param = sitlState->cmdline_param[i];
if (param != nullptr) {
AP_Param::set_default_by_name(param->name, param->value);
}
}
}
#endif
/**
return commandline arguments, if available
*/
void HALSITL::Util::commandline_arguments(uint8_t &argc, char * const *&argv)
{
argc = saved_argc;
argv = saved_argv;
}
/**
* This method will read random values with set size.
*/
bool HALSITL::Util::get_random_vals(uint8_t* data, size_t size)
{
int dev_random = open("/dev/urandom", O_RDONLY);
if (dev_random < 0) {
return false;
}
ssize_t result = read(dev_random, data, size);
if (result < 0) {
close(dev_random);
return false;
}
close(dev_random);
return true;
}
#if HAL_UART_STATS_ENABLED
// request information on uart I/O
void HALSITL::Util::uart_info(ExpandingString &str)
{
// Calculate time since last call
const uint32_t now_ms = AP_HAL::millis();
const uint32_t dt_ms = now_ms - sys_uart_stats.last_ms;
sys_uart_stats.last_ms = now_ms;
// a header to allow for machine parsers to determine format
str.printf("UARTV1\n");
for (uint8_t i = 0; i < hal.num_serial; i++) {
if (i >= ARRAY_SIZE(sitlState->_serial_path)) {
continue;
}
auto *uart = hal.serial(i);
if (uart) {
str.printf("SERIAL%u ", i);
uart->uart_info(str, sys_uart_stats.serial[i], dt_ms);
}
}
}
#if HAL_LOGGING_ENABLED
// Log UART message for each serial port
void HALSITL::Util::uart_log()
{
// Calculate time since last call
const uint32_t now_ms = AP_HAL::millis();
const uint32_t dt_ms = now_ms - log_uart_stats.last_ms;
log_uart_stats.last_ms = now_ms;
// Loop over all ports
for (uint8_t i = 0; i < hal.num_serial; i++) {
auto *uart = hal.serial(i);
if (uart) {
uart->log_stats(i, log_uart_stats.serial[i], dt_ms);
}
}
}
#endif // HAL_LOGGING_ENABLED
#endif // HAL_UART_STATS_ENABLED