ardupilot/libraries/AP_Proximity/AP_Proximity_SITL.cpp

132 lines
4.2 KiB
C++

/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "AP_Proximity_SITL.h"
#if HAL_PROXIMITY_ENABLED
#include <AP_HAL/AP_HAL.h>
#if CONFIG_HAL_BOARD == HAL_BOARD_SITL
#include <AP_Param/AP_Param.h>
#include <AC_Fence/AC_Fence.h>
#include <stdio.h>
extern const AP_HAL::HAL& hal;
#define PROXIMITY_MAX_RANGE 200.0f
#define PROXIMITY_ACCURACY 0.1f
/*
The constructor also initialises the proximity sensor.
*/
AP_Proximity_SITL::AP_Proximity_SITL(AP_Proximity &_frontend,
AP_Proximity::Proximity_State &_state):
AP_Proximity_Backend(_frontend, _state),
sitl(AP::sitl())
{
ap_var_type ptype;
fence_alt_max = (AP_Float *)AP_Param::find("FENCE_ALT_MAX", &ptype);
if (fence_alt_max == nullptr || ptype != AP_PARAM_FLOAT) {
AP_HAL::panic("Proximity_SITL: Failed to find FENCE_ALT_MAX");
}
}
// update the state of the sensor
void AP_Proximity_SITL::update(void)
{
current_loc.lat = sitl->state.latitude * 1.0e7;
current_loc.lng = sitl->state.longitude * 1.0e7;
current_loc.alt = sitl->state.altitude * 1.0e2;
if (!AP::fence()->polyfence().breached()) {
// only called to prompt polyfence to reload fence if required
}
if (AP::fence()->polyfence().inclusion_boundary_available()) {
set_status(AP_Proximity::Status::Good);
// update distance in each sector
for (uint8_t sector=0; sector < PROXIMITY_NUM_SECTORS; sector++) {
const float yaw_angle_deg = sector * 45.0f;
AP_Proximity_Boundary_3D::Face face = boundary.get_face(yaw_angle_deg);
float fence_distance;
if (get_distance_to_fence(yaw_angle_deg, fence_distance)) {
boundary.set_face_attributes(face, yaw_angle_deg, fence_distance);
// update OA database
database_push(yaw_angle_deg, fence_distance);
} else {
boundary.reset_face(face);
}
}
} else {
set_status(AP_Proximity::Status::NoData);
}
}
// get distance in meters to fence in a particular direction in degrees (0 is forward, angles increase in the clockwise direction)
bool AP_Proximity_SITL::get_distance_to_fence(float angle_deg, float &distance) const
{
if (!AP::fence()->polyfence().inclusion_boundary_available()) {
return false;
}
// convert to earth frame
angle_deg = wrap_360(sitl->state.yawDeg + angle_deg);
/*
simple bisection search to find distance. Not really efficient,
but we can afford the CPU in SITL
*/
float min_dist = 0, max_dist = PROXIMITY_MAX_RANGE;
while (max_dist - min_dist > PROXIMITY_ACCURACY) {
float test_dist = (max_dist+min_dist)*0.5f;
Location loc = current_loc;
loc.offset_bearing(angle_deg, test_dist);
if (AP::fence()->polyfence().breached(loc)) {
max_dist = test_dist;
} else {
min_dist = test_dist;
}
}
distance = min_dist;
if (ignore_reading(angle_deg, distance, false)) {
// obstacle near land, lets ignore it
return false;
}
return true;
}
// get maximum and minimum distances (in meters) of primary sensor
float AP_Proximity_SITL::distance_max() const
{
return PROXIMITY_MAX_RANGE;
}
float AP_Proximity_SITL::distance_min() const
{
return 0.0f;
}
// get distance upwards in meters. returns true on success
bool AP_Proximity_SITL::get_upward_distance(float &distance) const
{
// return distance to fence altitude
distance = MAX(0.0f, fence_alt_max->get() - sitl->height_agl);
return true;
}
#endif // CONFIG_HAL_BOARD
#endif // HAL_PROXIMITY_ENABLED