mirror of
https://github.com/ArduPilot/ardupilot
synced 2025-01-18 06:38:29 -04:00
547 lines
24 KiB
C++
547 lines
24 KiB
C++
/*
|
|
This program is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
/*
|
|
* AP_Motors6DOF.cpp - ArduSub motors library
|
|
*/
|
|
|
|
#include <AP_BattMonitor/AP_BattMonitor.h>
|
|
#include <AP_HAL/AP_HAL.h>
|
|
#include "AP_Motors6DOF.h"
|
|
|
|
extern const AP_HAL::HAL& hal;
|
|
|
|
// parameters for the motor class
|
|
const AP_Param::GroupInfo AP_Motors6DOF::var_info[] = {
|
|
AP_NESTEDGROUPINFO(AP_MotorsMulticopter, 0),
|
|
// @Param: 1_DIRECTION
|
|
// @DisplayName: Motor normal or reverse
|
|
// @Description: Used to change motor rotation directions without changing wires
|
|
// @Values: 1:normal,-1:reverse
|
|
// @User: Standard
|
|
AP_GROUPINFO("1_DIRECTION", 1, AP_Motors6DOF, _motor_reverse[0], 1),
|
|
|
|
// @Param: 2_DIRECTION
|
|
// @DisplayName: Motor normal or reverse
|
|
// @Description: Used to change motor rotation directions without changing wires
|
|
// @Values: 1:normal,-1:reverse
|
|
// @User: Standard
|
|
AP_GROUPINFO("2_DIRECTION", 2, AP_Motors6DOF, _motor_reverse[1], 1),
|
|
|
|
// @Param: 3_DIRECTION
|
|
// @DisplayName: Motor normal or reverse
|
|
// @Description: Used to change motor rotation directions without changing wires
|
|
// @Values: 1:normal,-1:reverse
|
|
// @User: Standard
|
|
AP_GROUPINFO("3_DIRECTION", 3, AP_Motors6DOF, _motor_reverse[2], 1),
|
|
|
|
// @Param: 4_DIRECTION
|
|
// @DisplayName: Motor normal or reverse
|
|
// @Description: Used to change motor rotation directions without changing wires
|
|
// @Values: 1:normal,-1:reverse
|
|
// @User: Standard
|
|
AP_GROUPINFO("4_DIRECTION", 4, AP_Motors6DOF, _motor_reverse[3], 1),
|
|
|
|
// @Param: 5_DIRECTION
|
|
// @DisplayName: Motor normal or reverse
|
|
// @Description: Used to change motor rotation directions without changing wires
|
|
// @Values: 1:normal,-1:reverse
|
|
// @User: Standard
|
|
AP_GROUPINFO("5_DIRECTION", 5, AP_Motors6DOF, _motor_reverse[4], 1),
|
|
|
|
// @Param: 6_DIRECTION
|
|
// @DisplayName: Motor normal or reverse
|
|
// @Description: Used to change motor rotation directions without changing wires
|
|
// @Values: 1:normal,-1:reverse
|
|
// @User: Standard
|
|
AP_GROUPINFO("6_DIRECTION", 6, AP_Motors6DOF, _motor_reverse[5], 1),
|
|
|
|
// @Param: 7_DIRECTION
|
|
// @DisplayName: Motor normal or reverse
|
|
// @Description: Used to change motor rotation directions without changing wires
|
|
// @Values: 1:normal,-1:reverse
|
|
// @User: Standard
|
|
AP_GROUPINFO("7_DIRECTION", 7, AP_Motors6DOF, _motor_reverse[6], 1),
|
|
|
|
// @Param: 8_DIRECTION
|
|
// @DisplayName: Motor normal or reverse
|
|
// @Description: Used to change motor rotation directions without changing wires
|
|
// @Values: 1:normal,-1:reverse
|
|
// @User: Standard
|
|
AP_GROUPINFO("8_DIRECTION", 8, AP_Motors6DOF, _motor_reverse[7], 1),
|
|
|
|
// @Param: FV_CPLNG_K
|
|
// @DisplayName: Forward/vertical to pitch decoupling factor
|
|
// @Description: Used to decouple pitch from forward/vertical motion. 0 to disable, 1.2 normal
|
|
// @Range: 0.0 1.5
|
|
// @Increment: 0.1
|
|
// @User: Standard
|
|
AP_GROUPINFO("FV_CPLNG_K", 9, AP_Motors6DOF, _forwardVerticalCouplingFactor, 1.0),
|
|
|
|
// @Param: 9_DIRECTION
|
|
// @DisplayName: Motor normal or reverse
|
|
// @Description: Used to change motor rotation directions without changing wires
|
|
// @Values: 1:normal,-1:reverse
|
|
// @User: Standard
|
|
AP_GROUPINFO("9_DIRECTION", 10, AP_Motors6DOF, _motor_reverse[8], 1),
|
|
|
|
// @Param: 10_DIRECTION
|
|
// @DisplayName: Motor normal or reverse
|
|
// @Description: Used to change motor rotation directions without changing wires
|
|
// @Values: 1:normal,-1:reverse
|
|
// @User: Standard
|
|
AP_GROUPINFO("10_DIRECTION", 11, AP_Motors6DOF, _motor_reverse[9], 1),
|
|
|
|
// @Param: 11_DIRECTION
|
|
// @DisplayName: Motor normal or reverse
|
|
// @Description: Used to change motor rotation directions without changing wires
|
|
// @Values: 1:normal,-1:reverse
|
|
// @User: Standard
|
|
AP_GROUPINFO("11_DIRECTION", 12, AP_Motors6DOF, _motor_reverse[10], 1),
|
|
|
|
// @Param: 12_DIRECTION
|
|
// @DisplayName: Motor normal or reverse
|
|
// @Description: Used to change motor rotation directions without changing wires
|
|
// @Values: 1:normal,-1:reverse
|
|
// @User: Standard
|
|
AP_GROUPINFO("12_DIRECTION", 13, AP_Motors6DOF, _motor_reverse[11], 1),
|
|
|
|
AP_GROUPEND
|
|
};
|
|
|
|
void AP_Motors6DOF::setup_motors(motor_frame_class frame_class, motor_frame_type frame_type)
|
|
{
|
|
// remove existing motors
|
|
for (int8_t i=0; i<AP_MOTORS_MAX_NUM_MOTORS; i++) {
|
|
remove_motor(i);
|
|
}
|
|
|
|
// hard coded config for supported frames
|
|
switch ((sub_frame_t)frame_class) {
|
|
// Motor # Roll Factor Pitch Factor Yaw Factor Throttle Factor Forward Factor Lateral Factor Testing Order
|
|
case SUB_FRAME_BLUEROV1:
|
|
add_motor_raw_6dof(AP_MOTORS_MOT_1, 0, 0, -1.0f, 0, 1.0f, 0, 1);
|
|
add_motor_raw_6dof(AP_MOTORS_MOT_2, 0, 0, 1.0f, 0, 1.0f, 0, 2);
|
|
add_motor_raw_6dof(AP_MOTORS_MOT_3, -0.5f, 0.5f, 0, 0.45f, 0, 0, 3);
|
|
add_motor_raw_6dof(AP_MOTORS_MOT_4, 0.5f, 0.5f, 0, 0.45f, 0, 0, 4);
|
|
add_motor_raw_6dof(AP_MOTORS_MOT_5, 0, -1.0f, 0, 1.0f, 0, 0, 5);
|
|
add_motor_raw_6dof(AP_MOTORS_MOT_6, -0.25f, 0, 0, 0, 0, 1.0f, 6);
|
|
break;
|
|
|
|
case SUB_FRAME_VECTORED_6DOF_90DEG:
|
|
add_motor_raw_6dof(AP_MOTORS_MOT_1, 1.0f, 1.0f, 0, 1.0f, 0, 0, 1);
|
|
add_motor_raw_6dof(AP_MOTORS_MOT_2, 0, 0, 1.0f, 0, 1.0f, 0, 2);
|
|
add_motor_raw_6dof(AP_MOTORS_MOT_3, 1.0f, -1.0f, 0, 1.0f, 0, 0, 3);
|
|
add_motor_raw_6dof(AP_MOTORS_MOT_4, 0, 0, 0, 0, 0, 1.0f, 4);
|
|
add_motor_raw_6dof(AP_MOTORS_MOT_5, 0, 0, 0, 0, 0, 1.0f, 5);
|
|
add_motor_raw_6dof(AP_MOTORS_MOT_6, -1.0f, 1.0f, 0, 1.0f, 0, 0, 6);
|
|
add_motor_raw_6dof(AP_MOTORS_MOT_7, 0, 0, -1.0f, 0, 1.0f, 0, 7);
|
|
add_motor_raw_6dof(AP_MOTORS_MOT_8, -1.0f, -1.0f, 0, 1.0f, 0, 0, 8);
|
|
break;
|
|
|
|
case SUB_FRAME_VECTORED_6DOF:
|
|
add_motor_raw_6dof(AP_MOTORS_MOT_1, 0, 0, 1.0f, 0, -1.0f, 1.0f, 1);
|
|
add_motor_raw_6dof(AP_MOTORS_MOT_2, 0, 0, -1.0f, 0, -1.0f, -1.0f, 2);
|
|
add_motor_raw_6dof(AP_MOTORS_MOT_3, 0, 0, -1.0f, 0, 1.0f, 1.0f, 3);
|
|
add_motor_raw_6dof(AP_MOTORS_MOT_4, 0, 0, 1.0f, 0, 1.0f, -1.0f, 4);
|
|
add_motor_raw_6dof(AP_MOTORS_MOT_5, 1.0f, -1.0f, 0, -1.0f, 0, 0, 5);
|
|
add_motor_raw_6dof(AP_MOTORS_MOT_6, -1.0f, -1.0f, 0, -1.0f, 0, 0, 6);
|
|
add_motor_raw_6dof(AP_MOTORS_MOT_7, 1.0f, 1.0f, 0, -1.0f, 0, 0, 7);
|
|
add_motor_raw_6dof(AP_MOTORS_MOT_8, -1.0f, 1.0f, 0, -1.0f, 0, 0, 8);
|
|
break;
|
|
|
|
case SUB_FRAME_VECTORED:
|
|
add_motor_raw_6dof(AP_MOTORS_MOT_1, 0, 0, 1.0f, 0, -1.0f, 1.0f, 1);
|
|
add_motor_raw_6dof(AP_MOTORS_MOT_2, 0, 0, -1.0f, 0, -1.0f, -1.0f, 2);
|
|
add_motor_raw_6dof(AP_MOTORS_MOT_3, 0, 0, -1.0f, 0, 1.0f, 1.0f, 3);
|
|
add_motor_raw_6dof(AP_MOTORS_MOT_4, 0, 0, 1.0f, 0, 1.0f, -1.0f, 4);
|
|
add_motor_raw_6dof(AP_MOTORS_MOT_5, 1.0f, 0, 0, -1.0f, 0, 0, 5);
|
|
add_motor_raw_6dof(AP_MOTORS_MOT_6, -1.0f, 0, 0, -1.0f, 0, 0, 6);
|
|
break;
|
|
|
|
case SUB_FRAME_CUSTOM:
|
|
// Put your custom motor setup here
|
|
//break;
|
|
|
|
case SUB_FRAME_SIMPLEROV_3:
|
|
case SUB_FRAME_SIMPLEROV_4:
|
|
case SUB_FRAME_SIMPLEROV_5:
|
|
default:
|
|
add_motor_raw_6dof(AP_MOTORS_MOT_1, 0, 0, -1.0f, 0, 1.0f, 0, 1);
|
|
add_motor_raw_6dof(AP_MOTORS_MOT_2, 0, 0, 1.0f, 0, 1.0f, 0, 2);
|
|
add_motor_raw_6dof(AP_MOTORS_MOT_3, 0, 0, 0, -1.0f, 0, 0, 3);
|
|
add_motor_raw_6dof(AP_MOTORS_MOT_4, 0, 0, 0, -1.0f, 0, 0, 4);
|
|
add_motor_raw_6dof(AP_MOTORS_MOT_5, 0, 0, 0, 0, 0, 1.0f, 5);
|
|
break;
|
|
}
|
|
}
|
|
|
|
void AP_Motors6DOF::add_motor_raw_6dof(int8_t motor_num, float roll_fac, float pitch_fac, float yaw_fac, float throttle_fac, float forward_fac, float lat_fac, uint8_t testing_order)
|
|
{
|
|
//Parent takes care of enabling output and setting up masks
|
|
add_motor_raw(motor_num, roll_fac, pitch_fac, yaw_fac, testing_order);
|
|
|
|
//These are additional parameters for an ROV
|
|
_throttle_factor[motor_num] = throttle_fac;
|
|
_forward_factor[motor_num] = forward_fac;
|
|
_lateral_factor[motor_num] = lat_fac;
|
|
}
|
|
|
|
// output_min - sends minimum values out to the motors
|
|
void AP_Motors6DOF::output_min()
|
|
{
|
|
int8_t i;
|
|
|
|
// set limits flags
|
|
limit.roll_pitch = true;
|
|
limit.yaw = true;
|
|
limit.throttle_lower = false;
|
|
limit.throttle_upper = false;
|
|
|
|
// fill the motor_out[] array for HIL use and send minimum value to each motor
|
|
// ToDo find a field to store the minimum pwm instead of hard coding 1500
|
|
for (i=0; i<AP_MOTORS_MAX_NUM_MOTORS; i++) {
|
|
if (motor_enabled[i]) {
|
|
rc_write(i, 1500);
|
|
}
|
|
}
|
|
}
|
|
|
|
int16_t AP_Motors6DOF::calc_thrust_to_pwm(float thrust_in) const
|
|
{
|
|
return constrain_int16(1500 + thrust_in * 400, _throttle_radio_min, _throttle_radio_max);
|
|
}
|
|
|
|
void AP_Motors6DOF::output_to_motors()
|
|
{
|
|
int8_t i;
|
|
int16_t motor_out[AP_MOTORS_MAX_NUM_MOTORS]; // final pwm values sent to the motor
|
|
|
|
switch (_spool_mode) {
|
|
case SHUT_DOWN:
|
|
// sends minimum values out to the motors
|
|
// set motor output based on thrust requests
|
|
for (i=0; i<AP_MOTORS_MAX_NUM_MOTORS; i++) {
|
|
if (motor_enabled[i]) {
|
|
motor_out[i] = 1500;
|
|
}
|
|
}
|
|
break;
|
|
case SPIN_WHEN_ARMED:
|
|
// sends output to motors when armed but not flying
|
|
for (i=0; i<AP_MOTORS_MAX_NUM_MOTORS; i++) {
|
|
if (motor_enabled[i]) {
|
|
motor_out[i] = 1500;
|
|
}
|
|
}
|
|
break;
|
|
case SPOOL_UP:
|
|
case THROTTLE_UNLIMITED:
|
|
case SPOOL_DOWN:
|
|
// set motor output based on thrust requests
|
|
for (i=0; i<AP_MOTORS_MAX_NUM_MOTORS; i++) {
|
|
if (motor_enabled[i]) {
|
|
motor_out[i] = calc_thrust_to_pwm(_thrust_rpyt_out[i]);
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
|
|
// send output to each motor
|
|
for (i=0; i<AP_MOTORS_MAX_NUM_MOTORS; i++) {
|
|
if (motor_enabled[i]) {
|
|
rc_write(i, motor_out[i]);
|
|
}
|
|
}
|
|
}
|
|
|
|
float AP_Motors6DOF::get_current_limit_max_throttle()
|
|
{
|
|
return 1.0f;
|
|
}
|
|
|
|
// output_armed - sends commands to the motors
|
|
// includes new scaling stability patch
|
|
// TODO pull code that is common to output_armed_not_stabilizing into helper functions
|
|
// ToDo calculate headroom for rpy to be added for stabilization during full throttle/forward/lateral commands
|
|
void AP_Motors6DOF::output_armed_stabilizing()
|
|
{
|
|
if ((sub_frame_t)_last_frame_class == SUB_FRAME_VECTORED) {
|
|
output_armed_stabilizing_vectored();
|
|
} else if ((sub_frame_t)_last_frame_class == SUB_FRAME_VECTORED_6DOF) {
|
|
output_armed_stabilizing_vectored_6dof();
|
|
} else {
|
|
uint8_t i; // general purpose counter
|
|
float roll_thrust; // roll thrust input value, +/- 1.0
|
|
float pitch_thrust; // pitch thrust input value, +/- 1.0
|
|
float yaw_thrust; // yaw thrust input value, +/- 1.0
|
|
float throttle_thrust; // throttle thrust input value, +/- 1.0
|
|
float forward_thrust; // forward thrust input value, +/- 1.0
|
|
float lateral_thrust; // lateral thrust input value, +/- 1.0
|
|
|
|
roll_thrust = _roll_in;
|
|
pitch_thrust = _pitch_in;
|
|
yaw_thrust = _yaw_in;
|
|
throttle_thrust = get_throttle_bidirectional();
|
|
forward_thrust = _forward_in;
|
|
lateral_thrust = _lateral_in;
|
|
|
|
float rpy_out[AP_MOTORS_MAX_NUM_MOTORS]; // buffer so we don't have to multiply coefficients multiple times.
|
|
float linear_out[AP_MOTORS_MAX_NUM_MOTORS]; // 3 linear DOF mix for each motor
|
|
|
|
// initialize limits flags
|
|
limit.roll_pitch = false;
|
|
limit.yaw = false;
|
|
limit.throttle_lower = false;
|
|
limit.throttle_upper = false;
|
|
|
|
// sanity check throttle is above zero and below current limited throttle
|
|
if (throttle_thrust <= -_throttle_thrust_max) {
|
|
throttle_thrust = -_throttle_thrust_max;
|
|
limit.throttle_lower = true;
|
|
}
|
|
if (throttle_thrust >= _throttle_thrust_max) {
|
|
throttle_thrust = _throttle_thrust_max;
|
|
limit.throttle_upper = true;
|
|
}
|
|
|
|
// calculate roll, pitch and yaw for each motor
|
|
for (i=0; i<AP_MOTORS_MAX_NUM_MOTORS; i++) {
|
|
if (motor_enabled[i]) {
|
|
rpy_out[i] = roll_thrust * _roll_factor[i] +
|
|
pitch_thrust * _pitch_factor[i] +
|
|
yaw_thrust * _yaw_factor[i];
|
|
|
|
}
|
|
}
|
|
|
|
// calculate linear command for each motor
|
|
// linear factors should be 0.0 or 1.0 for now
|
|
for (i=0; i<AP_MOTORS_MAX_NUM_MOTORS; i++) {
|
|
if (motor_enabled[i]) {
|
|
linear_out[i] = throttle_thrust * _throttle_factor[i] +
|
|
forward_thrust * _forward_factor[i] +
|
|
lateral_thrust * _lateral_factor[i];
|
|
}
|
|
}
|
|
|
|
// Calculate final output for each motor
|
|
for (i=0; i<AP_MOTORS_MAX_NUM_MOTORS; i++) {
|
|
if (motor_enabled[i]) {
|
|
_thrust_rpyt_out[i] = constrain_float(_motor_reverse[i]*(rpy_out[i] + linear_out[i]),-1.0f,1.0f);
|
|
}
|
|
}
|
|
}
|
|
|
|
const AP_BattMonitor &battery = AP::battery();
|
|
|
|
// Current limiting
|
|
if (_batt_current_max <= 0.0f || !battery.has_current()) {
|
|
return;
|
|
}
|
|
|
|
float _batt_current = battery.current_amps();
|
|
|
|
float _batt_current_delta = _batt_current - _batt_current_last;
|
|
|
|
float loop_interval = 1.0f/_loop_rate;
|
|
|
|
float _current_change_rate = _batt_current_delta / loop_interval;
|
|
|
|
float predicted_current = _batt_current + (_current_change_rate * loop_interval * 5);
|
|
|
|
float batt_current_ratio = _batt_current/_batt_current_max;
|
|
|
|
float predicted_current_ratio = predicted_current/_batt_current_max;
|
|
_batt_current_last = _batt_current;
|
|
|
|
if (predicted_current > _batt_current_max * 1.5f) {
|
|
batt_current_ratio = 2.5f;
|
|
} else if (_batt_current < _batt_current_max && predicted_current > _batt_current_max) {
|
|
batt_current_ratio = predicted_current_ratio;
|
|
}
|
|
_output_limited += (loop_interval/(loop_interval+_batt_current_time_constant)) * (1 - batt_current_ratio);
|
|
|
|
_output_limited = constrain_float(_output_limited, 0.0f, 1.0f);
|
|
|
|
for (uint8_t i = 0; i < AP_MOTORS_MAX_NUM_MOTORS; i++) {
|
|
if (motor_enabled[i]) {
|
|
_thrust_rpyt_out[i] *= _output_limited;
|
|
}
|
|
}
|
|
}
|
|
|
|
// output_armed - sends commands to the motors
|
|
// includes new scaling stability patch
|
|
// TODO pull code that is common to output_armed_not_stabilizing into helper functions
|
|
// ToDo calculate headroom for rpy to be added for stabilization during full throttle/forward/lateral commands
|
|
void AP_Motors6DOF::output_armed_stabilizing_vectored()
|
|
{
|
|
uint8_t i; // general purpose counter
|
|
float roll_thrust; // roll thrust input value, +/- 1.0
|
|
float pitch_thrust; // pitch thrust input value, +/- 1.0
|
|
float yaw_thrust; // yaw thrust input value, +/- 1.0
|
|
float throttle_thrust; // throttle thrust input value, +/- 1.0
|
|
float forward_thrust; // forward thrust input value, +/- 1.0
|
|
float lateral_thrust; // lateral thrust input value, +/- 1.0
|
|
|
|
roll_thrust = _roll_in;
|
|
pitch_thrust = _pitch_in;
|
|
yaw_thrust = _yaw_in;
|
|
throttle_thrust = get_throttle_bidirectional();
|
|
forward_thrust = _forward_in;
|
|
lateral_thrust = _lateral_in;
|
|
|
|
float rpy_out[AP_MOTORS_MAX_NUM_MOTORS]; // buffer so we don't have to multiply coefficients multiple times.
|
|
float linear_out[AP_MOTORS_MAX_NUM_MOTORS]; // 3 linear DOF mix for each motor
|
|
|
|
// initialize limits flags
|
|
limit.roll_pitch = false;
|
|
limit.yaw = false;
|
|
limit.throttle_lower = false;
|
|
limit.throttle_upper = false;
|
|
|
|
// sanity check throttle is above zero and below current limited throttle
|
|
if (throttle_thrust <= -_throttle_thrust_max) {
|
|
throttle_thrust = -_throttle_thrust_max;
|
|
limit.throttle_lower = true;
|
|
}
|
|
|
|
if (throttle_thrust >= _throttle_thrust_max) {
|
|
throttle_thrust = _throttle_thrust_max;
|
|
limit.throttle_upper = true;
|
|
}
|
|
|
|
// calculate roll, pitch and yaw for each motor
|
|
for (i=0; i<AP_MOTORS_MAX_NUM_MOTORS; i++) {
|
|
if (motor_enabled[i]) {
|
|
rpy_out[i] = roll_thrust * _roll_factor[i] +
|
|
pitch_thrust * _pitch_factor[i] +
|
|
yaw_thrust * _yaw_factor[i];
|
|
}
|
|
}
|
|
|
|
float forward_coupling_limit = 1-_forwardVerticalCouplingFactor*float(fabsf(throttle_thrust));
|
|
if (forward_coupling_limit < 0) {
|
|
forward_coupling_limit = 0;
|
|
}
|
|
int8_t forward_coupling_direction[] = {-1,-1,1,1,0,0,0,0,0,0,0,0};
|
|
|
|
// calculate linear command for each motor
|
|
// linear factors should be 0.0 or 1.0 for now
|
|
for (i=0; i<AP_MOTORS_MAX_NUM_MOTORS; i++) {
|
|
if (motor_enabled[i]) {
|
|
|
|
float forward_thrust_limited = forward_thrust;
|
|
|
|
// The following statements decouple forward/vertical hydrodynamic coupling on
|
|
// vectored ROVs. This is done by limiting the maximum output of the "rear" vectored
|
|
// thruster (where "rear" depends on direction of travel).
|
|
if (!is_zero(forward_thrust_limited)) {
|
|
if ((forward_thrust < 0) == (forward_coupling_direction[i] < 0) && forward_coupling_direction[i] != 0) {
|
|
forward_thrust_limited = constrain_float(forward_thrust, -forward_coupling_limit, forward_coupling_limit);
|
|
}
|
|
}
|
|
|
|
linear_out[i] = throttle_thrust * _throttle_factor[i] +
|
|
forward_thrust_limited * _forward_factor[i] +
|
|
lateral_thrust * _lateral_factor[i];
|
|
}
|
|
}
|
|
|
|
// Calculate final output for each motor
|
|
for (i=0; i<AP_MOTORS_MAX_NUM_MOTORS; i++) {
|
|
if (motor_enabled[i]) {
|
|
_thrust_rpyt_out[i] = constrain_float(_motor_reverse[i]*(rpy_out[i] + linear_out[i]), -1.0f, 1.0f);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Band Aid fix for motor normalization issues.
|
|
// TODO: find a global solution for managing saturation that works for all vehicles
|
|
void AP_Motors6DOF::output_armed_stabilizing_vectored_6dof()
|
|
{
|
|
uint8_t i; // general purpose counter
|
|
float roll_thrust; // roll thrust input value, +/- 1.0
|
|
float pitch_thrust; // pitch thrust input value, +/- 1.0
|
|
float yaw_thrust; // yaw thrust input value, +/- 1.0
|
|
float throttle_thrust; // throttle thrust input value, +/- 1.0
|
|
float forward_thrust; // forward thrust input value, +/- 1.0
|
|
float lateral_thrust; // lateral thrust input value, +/- 1.0
|
|
|
|
roll_thrust = _roll_in;
|
|
pitch_thrust = _pitch_in;
|
|
yaw_thrust = _yaw_in;
|
|
throttle_thrust = get_throttle_bidirectional();
|
|
forward_thrust = _forward_in;
|
|
lateral_thrust = _lateral_in;
|
|
|
|
float rpt_out[AP_MOTORS_MAX_NUM_MOTORS]; // buffer so we don't have to multiply coefficients multiple times.
|
|
float yfl_out[AP_MOTORS_MAX_NUM_MOTORS]; // 3 linear DOF mix for each motor
|
|
float rpt_max;
|
|
float yfl_max;
|
|
|
|
// initialize limits flags
|
|
limit.roll_pitch = false;
|
|
limit.yaw = false;
|
|
limit.throttle_lower = false;
|
|
limit.throttle_upper = false;
|
|
|
|
// sanity check throttle is above zero and below current limited throttle
|
|
if (throttle_thrust <= -_throttle_thrust_max) {
|
|
throttle_thrust = -_throttle_thrust_max;
|
|
limit.throttle_lower = true;
|
|
}
|
|
|
|
if (throttle_thrust >= _throttle_thrust_max) {
|
|
throttle_thrust = _throttle_thrust_max;
|
|
limit.throttle_upper = true;
|
|
}
|
|
|
|
// calculate roll, pitch and Throttle for each motor (only used by vertical thrusters)
|
|
rpt_max = 1; //Initialized to 1 so that normalization will only occur if value is saturated
|
|
for (i=0; i<AP_MOTORS_MAX_NUM_MOTORS; i++) {
|
|
if (motor_enabled[i]) {
|
|
rpt_out[i] = roll_thrust * _roll_factor[i] +
|
|
pitch_thrust * _pitch_factor[i] +
|
|
throttle_thrust * _throttle_factor[i];
|
|
if (fabsf(rpt_out[i]) > rpt_max) {
|
|
rpt_max = fabsf(rpt_out[i]);
|
|
}
|
|
}
|
|
}
|
|
|
|
// calculate linear/yaw command for each motor (only used for translational thrusters)
|
|
// linear factors should be 0.0 or 1.0 for now
|
|
yfl_max = 1; //Initialized to 1 so that normalization will only occur if value is saturated
|
|
for (i=0; i<AP_MOTORS_MAX_NUM_MOTORS; i++) {
|
|
if (motor_enabled[i]) {
|
|
yfl_out[i] = yaw_thrust * _yaw_factor[i] +
|
|
forward_thrust * _forward_factor[i] +
|
|
lateral_thrust * _lateral_factor[i];
|
|
if (fabsf(yfl_out[i]) > yfl_max) {
|
|
yfl_max = fabsf(yfl_out[i]);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Calculate final output for each motor and normalize if necessary
|
|
for (i=0; i<AP_MOTORS_MAX_NUM_MOTORS; i++) {
|
|
if (motor_enabled[i]) {
|
|
_thrust_rpyt_out[i] = constrain_float(_motor_reverse[i]*(rpt_out[i]/rpt_max + yfl_out[i]/yfl_max),-1.0f,1.0f);
|
|
}
|
|
}
|
|
}
|