mirror of
https://github.com/ArduPilot/ardupilot
synced 2025-01-18 14:48:28 -04:00
453 lines
15 KiB
C++
453 lines
15 KiB
C++
#include <AP_Logger/AP_Logger_config.h>
|
|
|
|
#if HAL_LOGGING_ENABLED
|
|
|
|
#include "AP_NavEKF3.h"
|
|
#include "AP_NavEKF3_core.h"
|
|
|
|
#include <AP_HAL/HAL.h>
|
|
#include <AP_Logger/AP_Logger.h>
|
|
|
|
#include <AP_DAL/AP_DAL.h>
|
|
|
|
#pragma GCC diagnostic ignored "-Wnarrowing"
|
|
|
|
void NavEKF3_core::Log_Write_XKF1(uint64_t time_us) const
|
|
{
|
|
// Write first EKF packet
|
|
Vector3f euler;
|
|
Vector2f posNE;
|
|
float posD;
|
|
Vector3f velNED;
|
|
Vector3f gyroBias;
|
|
float posDownDeriv;
|
|
Location originLLH;
|
|
getEulerAngles(euler);
|
|
getVelNED(velNED);
|
|
getPosNE(posNE);
|
|
getPosD(posD);
|
|
getGyroBias(gyroBias);
|
|
posDownDeriv = getPosDownDerivative();
|
|
if (!getOriginLLH(originLLH)) {
|
|
originLLH.alt = 0;
|
|
}
|
|
const struct log_XKF1 pkt{
|
|
LOG_PACKET_HEADER_INIT(LOG_XKF1_MSG),
|
|
time_us : time_us,
|
|
core : DAL_CORE(core_index),
|
|
roll : (int16_t)(100*degrees(euler.x)), // roll angle (centi-deg, displayed as deg due to format string)
|
|
pitch : (int16_t)(100*degrees(euler.y)), // pitch angle (centi-deg, displayed as deg due to format string)
|
|
yaw : (uint16_t)wrap_360_cd(100*degrees(euler.z)), // yaw angle (centi-deg, displayed as deg due to format string)
|
|
velN : (float)(velNED.x), // velocity North (m/s)
|
|
velE : (float)(velNED.y), // velocity East (m/s)
|
|
velD : (float)(velNED.z), // velocity Down (m/s)
|
|
posD_dot : (float)(posDownDeriv), // first derivative of down position
|
|
posN : (float)(posNE.x), // metres North
|
|
posE : (float)(posNE.y), // metres East
|
|
posD : (float)(posD), // metres Down
|
|
gyrX : (int16_t)(100*degrees(gyroBias.x)), // cd/sec, displayed as deg/sec due to format string
|
|
gyrY : (int16_t)(100*degrees(gyroBias.y)), // cd/sec, displayed as deg/sec due to format string
|
|
gyrZ : (int16_t)(100*degrees(gyroBias.z)), // cd/sec, displayed as deg/sec due to format string
|
|
originHgt : originLLH.alt // WGS-84 altitude of EKF origin in cm
|
|
};
|
|
AP::logger().WriteBlock(&pkt, sizeof(pkt));
|
|
}
|
|
|
|
void NavEKF3_core::Log_Write_XKF2(uint64_t time_us) const
|
|
{
|
|
// Write second EKF packet
|
|
Vector3f accelBias;
|
|
Vector3f wind;
|
|
Vector3f magNED;
|
|
Vector3f magXYZ;
|
|
getAccelBias(accelBias);
|
|
getWind(wind);
|
|
getMagNED(magNED);
|
|
getMagXYZ(magXYZ);
|
|
Vector2f dragInnov;
|
|
float betaInnov = 0;
|
|
getSynthAirDataInnovations(dragInnov, betaInnov);
|
|
const struct log_XKF2 pkt2{
|
|
LOG_PACKET_HEADER_INIT(LOG_XKF2_MSG),
|
|
time_us : time_us,
|
|
core : DAL_CORE(core_index),
|
|
accBiasX : (int16_t)(100*accelBias.x),
|
|
accBiasY : (int16_t)(100*accelBias.y),
|
|
accBiasZ : (int16_t)(100*accelBias.z),
|
|
windN : (int16_t)(100*wind.x),
|
|
windE : (int16_t)(100*wind.y),
|
|
magN : (int16_t)(magNED.x),
|
|
magE : (int16_t)(magNED.y),
|
|
magD : (int16_t)(magNED.z),
|
|
magX : (int16_t)(magXYZ.x),
|
|
magY : (int16_t)(magXYZ.y),
|
|
magZ : (int16_t)(magXYZ.z),
|
|
innovDragX : dragInnov.x,
|
|
innovDragY : dragInnov.y,
|
|
innovSideslip : betaInnov
|
|
};
|
|
AP::logger().WriteBlock(&pkt2, sizeof(pkt2));
|
|
}
|
|
|
|
void NavEKF3_core::Log_Write_XKFS(uint64_t time_us) const
|
|
{
|
|
// Write sensor selection EKF packet
|
|
const struct log_XKFS pkt {
|
|
LOG_PACKET_HEADER_INIT(LOG_XKFS_MSG),
|
|
time_us : time_us,
|
|
core : DAL_CORE(core_index),
|
|
mag_index : magSelectIndex,
|
|
baro_index : selected_baro,
|
|
gps_index : selected_gps,
|
|
airspeed_index : getActiveAirspeed(),
|
|
source_set : frontend->sources.getPosVelYawSourceSet(),
|
|
gps_good_to_align : gpsGoodToAlign,
|
|
wait_for_gps_checks : waitingForGpsChecks,
|
|
mag_fusion: (uint8_t) magFusionSel
|
|
};
|
|
AP::logger().WriteBlock(&pkt, sizeof(pkt));
|
|
}
|
|
|
|
void NavEKF3_core::Log_Write_XKF3(uint64_t time_us) const
|
|
{
|
|
// Write third EKF packet
|
|
Vector3f velInnov;
|
|
Vector3f posInnov;
|
|
Vector3f magInnov;
|
|
float tasInnov = 0;
|
|
float yawInnov = 0;
|
|
getInnovations(velInnov, posInnov, magInnov, tasInnov, yawInnov);
|
|
const struct log_XKF3 pkt3{
|
|
LOG_PACKET_HEADER_INIT(LOG_XKF3_MSG),
|
|
time_us : time_us,
|
|
core : DAL_CORE(core_index),
|
|
innovVN : (int16_t)(100*velInnov.x),
|
|
innovVE : (int16_t)(100*velInnov.y),
|
|
innovVD : (int16_t)(100*velInnov.z),
|
|
innovPN : (int16_t)(100*posInnov.x),
|
|
innovPE : (int16_t)(100*posInnov.y),
|
|
innovPD : (int16_t)(100*posInnov.z),
|
|
innovMX : (int16_t)(magInnov.x),
|
|
innovMY : (int16_t)(magInnov.y),
|
|
innovMZ : (int16_t)(magInnov.z),
|
|
innovYaw : (int16_t)(100*degrees(yawInnov)),
|
|
innovVT : (int16_t)(100*tasInnov),
|
|
rerr : frontend->coreRelativeErrors[core_index],
|
|
errorScore : frontend->coreErrorScores[core_index]
|
|
};
|
|
AP::logger().WriteBlock(&pkt3, sizeof(pkt3));
|
|
}
|
|
|
|
void NavEKF3_core::Log_Write_XKF4(uint64_t time_us) const
|
|
{
|
|
// Write fourth EKF packet
|
|
float velVar = 0;
|
|
float posVar = 0;
|
|
float hgtVar = 0;
|
|
Vector3f magVar;
|
|
float tasVar = 0;
|
|
uint16_t _faultStatus=0;
|
|
Vector2f offset;
|
|
const uint8_t timeoutStatus =
|
|
posTimeout<<0 |
|
|
velTimeout<<1 |
|
|
hgtTimeout<<2 |
|
|
magTimeout<<3 |
|
|
tasTimeout<<4 |
|
|
dragTimeout<<5;
|
|
|
|
nav_filter_status solutionStatus {};
|
|
getVariances(velVar, posVar, hgtVar, magVar, tasVar, offset);
|
|
float tempVar = fmaxF(fmaxF(magVar.x,magVar.y),magVar.z);
|
|
getFilterFaults(_faultStatus);
|
|
getFilterStatus(solutionStatus);
|
|
const struct log_XKF4 pkt4{
|
|
LOG_PACKET_HEADER_INIT(LOG_XKF4_MSG),
|
|
time_us : time_us,
|
|
core : DAL_CORE(core_index),
|
|
sqrtvarV : (int16_t)(100*velVar),
|
|
sqrtvarP : (int16_t)(100*posVar),
|
|
sqrtvarH : (int16_t)(100*hgtVar),
|
|
sqrtvarM : (int16_t)(100*tempVar),
|
|
sqrtvarVT : (int16_t)(100*tasVar),
|
|
tiltErr : sqrtF(MAX(tiltErrorVariance,0.0f)), // estimated 1-sigma tilt error in radians
|
|
offsetNorth : offset.x,
|
|
offsetEast : offset.y,
|
|
faults : _faultStatus,
|
|
timeouts : timeoutStatus,
|
|
solution : solutionStatus.value,
|
|
gps : gpsCheckStatus.value,
|
|
primary : frontend->getPrimaryCoreIndex()
|
|
};
|
|
AP::logger().WriteBlock(&pkt4, sizeof(pkt4));
|
|
}
|
|
|
|
|
|
void NavEKF3_core::Log_Write_XKF5(uint64_t time_us) const
|
|
{
|
|
if (core_index != frontend->primary) {
|
|
// log only primary instance for now
|
|
return;
|
|
}
|
|
|
|
const struct log_XKF5 pkt5{
|
|
LOG_PACKET_HEADER_INIT(LOG_XKF5_MSG),
|
|
time_us : time_us,
|
|
core : DAL_CORE(core_index),
|
|
normInnov : (uint8_t)(MIN(100*MAX(flowTestRatio[0],flowTestRatio[1]),255)), // normalised innovation variance ratio for optical flow observations fused by the main nav filter
|
|
FIX : (int16_t)(1000*flowInnov[0]), // optical flow LOS rate vector innovations from the main nav filter
|
|
FIY : (int16_t)(1000*flowInnov[1]), // optical flow LOS rate vector innovations from the main nav filter
|
|
AFI : (int16_t)(1000 * auxFlowObsInnov.length()), // optical flow LOS rate innovation from terrain offset estimator
|
|
HAGL : float_to_int16(100*(terrainState - stateStruct.position.z)), // height above ground level
|
|
offset : (int16_t)(100*terrainState), // filter ground offset state error
|
|
RI : (int16_t)(100*innovRng), // range finder innovations
|
|
meaRng : (uint16_t)(100*rangeDataDelayed.rng), // measured range
|
|
errHAGL : (uint16_t)(100*sqrtF(Popt)), // note Popt is constrained to be non-negative in EstimateTerrainOffset()
|
|
angErr : (float)outputTrackError.x, // output predictor angle error
|
|
velErr : (float)outputTrackError.y, // output predictor velocity error
|
|
posErr : (float)outputTrackError.z // output predictor position tracking error
|
|
};
|
|
AP::logger().WriteBlock(&pkt5, sizeof(pkt5));
|
|
}
|
|
|
|
void NavEKF3_core::Log_Write_Quaternion(uint64_t time_us) const
|
|
{
|
|
// log quaternion
|
|
Quaternion quat;
|
|
getQuaternion( quat);
|
|
const struct log_XKQ pktq1{
|
|
LOG_PACKET_HEADER_INIT(LOG_XKQ_MSG),
|
|
time_us : time_us,
|
|
core : DAL_CORE(core_index),
|
|
q1 : quat.q1,
|
|
q2 : quat.q2,
|
|
q3 : quat.q3,
|
|
q4 : quat.q4
|
|
};
|
|
AP::logger().WriteBlock(&pktq1, sizeof(pktq1));
|
|
}
|
|
|
|
#if EK3_FEATURE_BEACON_FUSION
|
|
// logs beacon information, one beacon per call
|
|
void NavEKF3_core::Log_Write_Beacon(uint64_t time_us)
|
|
{
|
|
if (core_index != frontend->primary) {
|
|
// log only primary instance for now
|
|
return;
|
|
}
|
|
|
|
if (!statesInitialised || rngBcn.N == 0 || rngBcn.fusionReport == nullptr) {
|
|
return;
|
|
}
|
|
|
|
// Ensure that beacons are not skipped due to calling this function at a rate lower than the updates
|
|
if (rngBcn.fuseDataReportIndex >= rngBcn.N ||
|
|
rngBcn.fuseDataReportIndex > rngBcn.numFusionReports) {
|
|
rngBcn.fuseDataReportIndex = 0;
|
|
}
|
|
|
|
const auto &report = rngBcn.fusionReport[rngBcn.fuseDataReportIndex];
|
|
|
|
// write range beacon fusion debug packet if the range value is non-zero
|
|
if (report.rng <= 0.0f) {
|
|
rngBcn.fuseDataReportIndex++;
|
|
return;
|
|
}
|
|
|
|
const struct log_XKF0 pkt10{
|
|
LOG_PACKET_HEADER_INIT(LOG_XKF0_MSG),
|
|
time_us : time_us,
|
|
core : DAL_CORE(core_index),
|
|
ID : rngBcn.fuseDataReportIndex,
|
|
rng : (int16_t)(100*report.rng),
|
|
innov : (int16_t)(100*report.innov),
|
|
sqrtInnovVar : (uint16_t)(100*sqrtF(report.innovVar)),
|
|
testRatio : (uint16_t)(100*constrain_ftype(report.testRatio,0.0f,650.0f)),
|
|
beaconPosN : (int16_t)(100*report.beaconPosNED.x),
|
|
beaconPosE : (int16_t)(100*report.beaconPosNED.y),
|
|
beaconPosD : (int16_t)(100*report.beaconPosNED.z),
|
|
offsetHigh : (int16_t)(100*rngBcn.posDownOffsetMax),
|
|
offsetLow : (int16_t)(100*rngBcn.posDownOffsetMin),
|
|
posN : (int16_t)(100*rngBcn.receiverPos.x),
|
|
posE : (int16_t)(100*rngBcn.receiverPos.y),
|
|
posD : (int16_t)(100*rngBcn.receiverPos.z)
|
|
};
|
|
AP::logger().WriteBlock(&pkt10, sizeof(pkt10));
|
|
rngBcn.fuseDataReportIndex++;
|
|
}
|
|
#endif // EK3_FEATURE_BEACON_FUSION
|
|
|
|
#if EK3_FEATURE_BODY_ODOM
|
|
void NavEKF3_core::Log_Write_BodyOdom(uint64_t time_us)
|
|
{
|
|
if (core_index != frontend->primary) {
|
|
// log only primary instance for now
|
|
return;
|
|
}
|
|
|
|
const uint32_t updateTime_ms = MAX(bodyOdmDataDelayed.time_ms,wheelOdmDataDelayed.time_ms);
|
|
if (updateTime_ms > lastUpdateTime_ms) {
|
|
const struct log_XKFD pkt11{
|
|
LOG_PACKET_HEADER_INIT(LOG_XKFD_MSG),
|
|
time_us : time_us,
|
|
core : DAL_CORE(core_index),
|
|
velInnovX : innovBodyVel[0],
|
|
velInnovY : innovBodyVel[1],
|
|
velInnovZ : innovBodyVel[2],
|
|
velInnovVarX : varInnovBodyVel[0],
|
|
velInnovVarY : varInnovBodyVel[1],
|
|
velInnovVarZ : varInnovBodyVel[2]
|
|
};
|
|
AP::logger().WriteBlock(&pkt11, sizeof(pkt11));
|
|
lastUpdateTime_ms = updateTime_ms;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
void NavEKF3_core::Log_Write_State_Variances(uint64_t time_us)
|
|
{
|
|
if (core_index != frontend->primary) {
|
|
// log only primary instance for now
|
|
return;
|
|
}
|
|
|
|
if (AP::dal().millis() - lastEkfStateVarLogTime_ms > 490) {
|
|
lastEkfStateVarLogTime_ms = AP::dal().millis();
|
|
const struct log_XKV pktv1{
|
|
LOG_PACKET_HEADER_INIT(LOG_XKV1_MSG),
|
|
time_us : time_us,
|
|
core : DAL_CORE(core_index),
|
|
v00 : P[0][0],
|
|
v01 : P[1][1],
|
|
v02 : P[2][2],
|
|
v03 : P[3][3],
|
|
v04 : P[4][4],
|
|
v05 : P[5][5],
|
|
v06 : P[6][6],
|
|
v07 : P[7][7],
|
|
v08 : P[8][8],
|
|
v09 : P[9][9],
|
|
v10 : P[10][10],
|
|
v11 : P[11][11]
|
|
};
|
|
AP::logger().WriteBlock(&pktv1, sizeof(pktv1));
|
|
const struct log_XKV pktv2{
|
|
LOG_PACKET_HEADER_INIT(LOG_XKV2_MSG),
|
|
time_us : time_us,
|
|
core : DAL_CORE(core_index),
|
|
v00 : P[12][12],
|
|
v01 : P[13][13],
|
|
v02 : P[14][14],
|
|
v03 : P[15][15],
|
|
v04 : P[16][16],
|
|
v05 : P[17][17],
|
|
v06 : P[18][18],
|
|
v07 : P[19][19],
|
|
v08 : P[20][20],
|
|
v09 : P[21][21],
|
|
v10 : P[22][22],
|
|
v11 : P[23][23]
|
|
};
|
|
AP::logger().WriteBlock(&pktv2, sizeof(pktv2));
|
|
}
|
|
}
|
|
|
|
void NavEKF3::Log_Write()
|
|
{
|
|
// only log if enabled
|
|
if (activeCores() <= 0) {
|
|
return;
|
|
}
|
|
if (lastLogWrite_us == imuSampleTime_us) {
|
|
// vehicle is doubling up on logging
|
|
return;
|
|
}
|
|
lastLogWrite_us = imuSampleTime_us;
|
|
|
|
uint64_t time_us = AP::dal().micros64();
|
|
|
|
for (uint8_t i=0; i<activeCores(); i++) {
|
|
core[i].Log_Write(time_us);
|
|
}
|
|
|
|
AP::dal().start_frame(AP_DAL::FrameType::LogWriteEKF3);
|
|
}
|
|
|
|
void NavEKF3_core::Log_Write(uint64_t time_us)
|
|
{
|
|
const auto level = frontend->_log_level;
|
|
if (level == NavEKF3::LogLevel::NONE) { // no logging from EK3_LOG_LEVEL param
|
|
return;
|
|
}
|
|
Log_Write_XKF4(time_us);
|
|
if (level == NavEKF3::LogLevel::XKF4) { // only log XKF4 scaled innovations
|
|
return;
|
|
}
|
|
Log_Write_GSF(time_us);
|
|
if (level == NavEKF3::LogLevel::XKF4_GSF) { // only log XKF4 scaled innovations and GSF, otherwise log everything
|
|
return;
|
|
}
|
|
// note that several of these functions exit-early if they're not
|
|
// attempting to log the primary core.
|
|
Log_Write_XKF1(time_us);
|
|
Log_Write_XKF2(time_us);
|
|
Log_Write_XKF3(time_us);
|
|
Log_Write_XKF5(time_us);
|
|
|
|
Log_Write_XKFS(time_us);
|
|
Log_Write_Quaternion(time_us);
|
|
|
|
|
|
#if EK3_FEATURE_BEACON_FUSION
|
|
// write range beacon fusion debug packet if the range value is non-zero
|
|
Log_Write_Beacon(time_us);
|
|
#endif
|
|
|
|
#if EK3_FEATURE_BODY_ODOM
|
|
// write debug data for body frame odometry fusion
|
|
Log_Write_BodyOdom(time_us);
|
|
#endif
|
|
|
|
// log state variances every 0.49s
|
|
Log_Write_State_Variances(time_us);
|
|
|
|
Log_Write_Timing(time_us);
|
|
}
|
|
|
|
void NavEKF3_core::Log_Write_Timing(uint64_t time_us)
|
|
{
|
|
// log EKF timing statistics every 5s
|
|
if (AP::dal().millis() - lastTimingLogTime_ms <= 5000) {
|
|
return;
|
|
}
|
|
lastTimingLogTime_ms = AP::dal().millis();
|
|
|
|
const struct log_XKT xkt{
|
|
LOG_PACKET_HEADER_INIT(LOG_XKT_MSG),
|
|
time_us : time_us,
|
|
core : core_index,
|
|
timing_count : timing.count,
|
|
dtIMUavg_min : timing.dtIMUavg_min,
|
|
dtIMUavg_max : timing.dtIMUavg_max,
|
|
dtEKFavg_min : timing.dtEKFavg_min,
|
|
dtEKFavg_max : timing.dtEKFavg_max,
|
|
delAngDT_min : timing.delAngDT_min,
|
|
delAngDT_max : timing.delAngDT_max,
|
|
delVelDT_min : timing.delVelDT_min,
|
|
delVelDT_max : timing.delVelDT_max,
|
|
};
|
|
memset(&timing, 0, sizeof(timing));
|
|
|
|
AP::logger().WriteBlock(&xkt, sizeof(xkt));
|
|
}
|
|
|
|
void NavEKF3_core::Log_Write_GSF(uint64_t time_us)
|
|
{
|
|
if (yawEstimator == nullptr) {
|
|
return;
|
|
}
|
|
yawEstimator->Log_Write(time_us, LOG_XKY0_MSG, LOG_XKY1_MSG, DAL_CORE(core_index));
|
|
}
|
|
|
|
#endif // HAL_LOGGING_ENABLED
|