mirror of
https://github.com/ArduPilot/ardupilot
synced 2025-01-22 00:28:30 -04:00
455 lines
13 KiB
C++
455 lines
13 KiB
C++
/*
|
|
* This file is free software: you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License as published by the
|
|
* Free Software Foundation, either version 3 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This file is distributed in the hope that it will be useful, but
|
|
* WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
|
|
* See the GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License along
|
|
* with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include <utility>
|
|
#include <AP_HAL/AP_HAL.h>
|
|
#include <AP_Math/AP_Math.h>
|
|
|
|
#include "AP_InertialSensor_BMI088.h"
|
|
|
|
/*
|
|
device registers, names follow datasheet conventions, with REGA_
|
|
prefix for accel, and REGG_ prefix for gyro
|
|
*/
|
|
#define REGA_CHIPID 0x00
|
|
#define REGA_ERR_REG 0x02
|
|
#define REGA_STATUS 0x03
|
|
#define REGA_X_LSB 0x12
|
|
#define REGA_INT_STATUS_1 0x1D
|
|
#define REGA_TEMP_MSB 0x22
|
|
#define REGA_TEMP_LSB 0x23
|
|
#define REGA_CONF 0x40
|
|
#define REGA_RANGE 0x41
|
|
#define REGA_PWR_CONF 0x7C
|
|
#define REGA_PWR_CTRL 0x7D
|
|
#define REGA_SOFTRESET 0x7E
|
|
#define REGA_FIFO_CONFIG0 0x48
|
|
#define REGA_FIFO_CONFIG1 0x49
|
|
#define REGA_FIFO_DOWNS 0x45
|
|
#define REGA_FIFO_DATA 0x26
|
|
#define REGA_FIFO_LEN0 0x24
|
|
#define REGA_FIFO_LEN1 0x25
|
|
|
|
#define REGG_CHIPID 0x00
|
|
#define REGA_RATE_X_LSB 0x02
|
|
#define REGG_INT_STATUS_1 0x0A
|
|
#define REGG_INT_STATUS_2 0x0B
|
|
#define REGG_INT_STATUS_3 0x0C
|
|
#define REGG_FIFO_STATUS 0x0E
|
|
#define REGG_RANGE 0x0F
|
|
#define REGG_BW 0x10
|
|
#define REGG_LPM1 0x11
|
|
#define REGG_RATE_HBW 0x13
|
|
#define REGG_BGW_SOFTRESET 0x14
|
|
#define REGG_FIFO_CONFIG_1 0x3E
|
|
#define REGG_FIFO_DATA 0x3F
|
|
|
|
#define ACCEL_BACKEND_SAMPLE_RATE 1600
|
|
#define GYRO_BACKEND_SAMPLE_RATE 2000
|
|
|
|
const uint32_t ACCEL_BACKEND_PERIOD_US = 1000000UL / ACCEL_BACKEND_SAMPLE_RATE;
|
|
const uint32_t GYRO_BACKEND_PERIOD_US = 1000000UL / GYRO_BACKEND_SAMPLE_RATE;
|
|
|
|
extern const AP_HAL::HAL& hal;
|
|
|
|
AP_InertialSensor_BMI088::AP_InertialSensor_BMI088(AP_InertialSensor &imu,
|
|
AP_HAL::OwnPtr<AP_HAL::Device> _dev_accel,
|
|
AP_HAL::OwnPtr<AP_HAL::Device> _dev_gyro,
|
|
enum Rotation _rotation)
|
|
: AP_InertialSensor_Backend(imu)
|
|
, dev_accel(std::move(_dev_accel))
|
|
, dev_gyro(std::move(_dev_gyro))
|
|
, rotation(_rotation)
|
|
{
|
|
}
|
|
|
|
AP_InertialSensor_Backend *
|
|
AP_InertialSensor_BMI088::probe(AP_InertialSensor &imu,
|
|
AP_HAL::OwnPtr<AP_HAL::Device> dev_accel,
|
|
AP_HAL::OwnPtr<AP_HAL::Device> dev_gyro,
|
|
enum Rotation rotation)
|
|
{
|
|
if (!dev_accel || !dev_gyro) {
|
|
return nullptr;
|
|
}
|
|
auto sensor = NEW_NOTHROW AP_InertialSensor_BMI088(imu, std::move(dev_accel), std::move(dev_gyro), rotation);
|
|
|
|
if (!sensor) {
|
|
return nullptr;
|
|
}
|
|
|
|
if (!sensor->init()) {
|
|
delete sensor;
|
|
return nullptr;
|
|
}
|
|
|
|
return sensor;
|
|
}
|
|
|
|
void AP_InertialSensor_BMI088::start()
|
|
{
|
|
if (!_imu.register_accel(accel_instance, ACCEL_BACKEND_SAMPLE_RATE, dev_accel->get_bus_id_devtype(_accel_devtype)) ||
|
|
!_imu.register_gyro(gyro_instance, GYRO_BACKEND_SAMPLE_RATE, dev_gyro->get_bus_id_devtype(DEVTYPE_INS_BMI088))) {
|
|
return;
|
|
}
|
|
|
|
// setup sensor rotations from probe()
|
|
set_gyro_orientation(gyro_instance, rotation);
|
|
set_accel_orientation(accel_instance, rotation);
|
|
|
|
// setup callbacks
|
|
accel_periodic_handle = dev_accel->register_periodic_callback(ACCEL_BACKEND_PERIOD_US,
|
|
FUNCTOR_BIND_MEMBER(&AP_InertialSensor_BMI088::read_fifo_accel, void));
|
|
gyro_periodic_handle = dev_gyro->register_periodic_callback(GYRO_BACKEND_PERIOD_US,
|
|
FUNCTOR_BIND_MEMBER(&AP_InertialSensor_BMI088::read_fifo_gyro, void));
|
|
}
|
|
|
|
/*
|
|
read from accelerometer registers, special SPI handling needed
|
|
*/
|
|
bool AP_InertialSensor_BMI088::read_accel_registers(uint8_t reg, uint8_t *data, uint8_t len)
|
|
{
|
|
// when on I2C we just read normally
|
|
if (dev_accel->bus_type() != AP_HAL::Device::BUS_TYPE_SPI) {
|
|
return dev_accel->read_registers(reg, data, len);
|
|
}
|
|
// for SPI we need to discard the first returned byte. See
|
|
// datasheet for explanation
|
|
uint8_t b[len+2];
|
|
b[0] = reg | 0x80;
|
|
memset(&b[1], 0, len+1);
|
|
if (!dev_accel->transfer(b, len+2, b, len+2)) {
|
|
return false;
|
|
}
|
|
memcpy(data, &b[2], len);
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
write to accel registers with retries. The SPI sensor may take
|
|
several tries to correctly write a register
|
|
*/
|
|
bool AP_InertialSensor_BMI088::write_accel_register(uint8_t reg, uint8_t v)
|
|
{
|
|
for (uint8_t i=0; i<8; i++) {
|
|
dev_accel->write_register(reg, v);
|
|
uint8_t v2 = 0;
|
|
if (read_accel_registers(reg, &v2, 1) && v2 == v) {
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static const struct {
|
|
uint8_t reg;
|
|
uint8_t value;
|
|
} accel_config[] = {
|
|
// OSR2 gives 234Hz LPF @ 1.6Khz ODR
|
|
{ REGA_CONF, 0x9C },
|
|
// setup 24g range (16g for BMI085)
|
|
{ REGA_RANGE, 0x03 },
|
|
// disable low-power mode
|
|
{ REGA_PWR_CONF, 0 },
|
|
{ REGA_PWR_CTRL, 0x04 },
|
|
// setup FIFO for streaming X,Y,Z
|
|
{ REGA_FIFO_CONFIG0, 0x02 },
|
|
{ REGA_FIFO_CONFIG1, 0x50 },
|
|
};
|
|
|
|
bool AP_InertialSensor_BMI088::setup_accel_config(void)
|
|
{
|
|
if (done_accel_config) {
|
|
return true;
|
|
}
|
|
accel_config_count++;
|
|
for (uint8_t i=0; i<ARRAY_SIZE(accel_config); i++) {
|
|
uint8_t v;
|
|
if (!read_accel_registers(accel_config[i].reg, &v, 1)) {
|
|
return false;
|
|
}
|
|
if (v == accel_config[i].value) {
|
|
continue;
|
|
}
|
|
if (!write_accel_register(accel_config[i].reg, accel_config[i].value)) {
|
|
return false;
|
|
}
|
|
}
|
|
done_accel_config = true;
|
|
DEV_PRINTF("BMI088: accel config OK (%u tries)\n", (unsigned)accel_config_count);
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
probe and initialise accelerometer
|
|
*/
|
|
bool AP_InertialSensor_BMI088::accel_init()
|
|
{
|
|
WITH_SEMAPHORE(dev_accel->get_semaphore());
|
|
|
|
uint8_t v;
|
|
|
|
// dummy ready on accel ChipID to init accel (see section 3 of datasheet)
|
|
read_accel_registers(REGA_CHIPID, &v, 1);
|
|
|
|
if (!read_accel_registers(REGA_CHIPID, &v, 1)) {
|
|
return false;
|
|
}
|
|
|
|
switch (v) {
|
|
case 0x1E:
|
|
_accel_devtype = DEVTYPE_INS_BMI088;
|
|
accel_range = 24.0;
|
|
hal.console->printf("BMI088: Found device\n");
|
|
break;
|
|
case 0x1F:
|
|
_accel_devtype = DEVTYPE_INS_BMI085;
|
|
accel_range = 16.0;
|
|
hal.console->printf("BMI085: Found device\n");
|
|
break;
|
|
default:
|
|
return false;
|
|
}
|
|
|
|
if (!setup_accel_config()) {
|
|
DEV_PRINTF("BMI08x: delaying accel config\n");
|
|
}
|
|
|
|
DEV_PRINTF("BMI08x: found accel\n");
|
|
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
probe and initialise gyro
|
|
*/
|
|
bool AP_InertialSensor_BMI088::gyro_init()
|
|
{
|
|
WITH_SEMAPHORE(dev_gyro->get_semaphore());
|
|
|
|
uint8_t v;
|
|
if (!dev_gyro->read_registers(REGG_CHIPID, &v, 1) || v != 0x0F) {
|
|
return false;
|
|
}
|
|
|
|
/* Soft-reset gyro
|
|
Return value of 'write_register()' is not checked.
|
|
This commands has the tendency to fail upon soft-reset.
|
|
*/
|
|
dev_gyro->write_register(REGG_BGW_SOFTRESET, 0xB6);
|
|
hal.scheduler->delay(30);
|
|
|
|
dev_gyro->setup_checked_registers(5, 20);
|
|
|
|
// setup 2000dps range
|
|
if (!dev_gyro->write_register(REGG_RANGE, 0x00, true)) {
|
|
return false;
|
|
}
|
|
|
|
// setup filter bandwidth 532Hz, no decimation
|
|
if (!dev_gyro->write_register(REGG_BW, 0x80, true)) {
|
|
return false;
|
|
}
|
|
|
|
// disable low-power mode
|
|
if (!dev_gyro->write_register(REGG_LPM1, 0, true)) {
|
|
return false;
|
|
}
|
|
|
|
// setup for filtered data
|
|
if (!dev_gyro->write_register(REGG_RATE_HBW, 0x00, true)) {
|
|
return false;
|
|
}
|
|
|
|
// setup FIFO for streaming X,Y,Z, with stop-at-full
|
|
if (!dev_gyro->write_register(REGG_FIFO_CONFIG_1, 0x40, true)) {
|
|
return false;
|
|
}
|
|
|
|
DEV_PRINTF("BMI088: found gyro\n");
|
|
|
|
return true;
|
|
}
|
|
|
|
bool AP_InertialSensor_BMI088::init()
|
|
{
|
|
dev_accel->set_read_flag(0x80);
|
|
dev_gyro->set_read_flag(0x80);
|
|
|
|
return accel_init() && gyro_init();
|
|
}
|
|
|
|
/*
|
|
read accel fifo
|
|
*/
|
|
void AP_InertialSensor_BMI088::read_fifo_accel(void)
|
|
{
|
|
if (!setup_accel_config()) {
|
|
return;
|
|
}
|
|
uint8_t len[2];
|
|
if (!read_accel_registers(REGA_FIFO_LEN0, len, 2)) {
|
|
_inc_accel_error_count(accel_instance);
|
|
return;
|
|
}
|
|
uint16_t fifo_length = len[0] + (len[1]<<8);
|
|
if (fifo_length & 0x8000) {
|
|
// empty
|
|
return;
|
|
}
|
|
|
|
// don't read more than 8 frames at a time
|
|
if (fifo_length > 8*7) {
|
|
fifo_length = 8*7;
|
|
}
|
|
if (fifo_length == 0) {
|
|
return;
|
|
}
|
|
|
|
// adjust the periodic callback to be synchronous with the incoming data
|
|
// this means that we rarely run read_fifo_accel() without updating the sensor data
|
|
dev_accel->adjust_periodic_callback(accel_periodic_handle, ACCEL_BACKEND_PERIOD_US);
|
|
|
|
uint8_t data[fifo_length];
|
|
if (!read_accel_registers(REGA_FIFO_DATA, data, fifo_length)) {
|
|
_inc_accel_error_count(accel_instance);
|
|
return;
|
|
}
|
|
|
|
// use new accel_range depending on sensor type
|
|
const float scale = (1.0/32768.0) * GRAVITY_MSS * accel_range;
|
|
const uint8_t *p = &data[0];
|
|
while (fifo_length >= 7) {
|
|
/*
|
|
the fifo frames are variable length, with the frame type in the first byte
|
|
*/
|
|
uint8_t frame_len = 2;
|
|
switch (p[0] & 0xFC) {
|
|
case 0x84: {
|
|
// accel frame
|
|
frame_len = 7;
|
|
const uint8_t *d = p+1;
|
|
int16_t xyz[3] {
|
|
int16_t(uint16_t(d[0] | (d[1]<<8))),
|
|
int16_t(uint16_t(d[2] | (d[3]<<8))),
|
|
int16_t(uint16_t(d[4] | (d[5]<<8)))};
|
|
Vector3f accel(xyz[0], xyz[1], xyz[2]);
|
|
|
|
accel *= scale;
|
|
|
|
_rotate_and_correct_accel(accel_instance, accel);
|
|
_notify_new_accel_raw_sample(accel_instance, accel);
|
|
break;
|
|
}
|
|
case 0x40:
|
|
// skip frame
|
|
frame_len = 2;
|
|
break;
|
|
case 0x44:
|
|
// sensortime frame
|
|
frame_len = 4;
|
|
break;
|
|
case 0x48:
|
|
// fifo config frame
|
|
frame_len = 2;
|
|
break;
|
|
case 0x50:
|
|
// sample drop frame
|
|
frame_len = 2;
|
|
break;
|
|
}
|
|
p += frame_len;
|
|
fifo_length -= frame_len;
|
|
}
|
|
|
|
if (temperature_counter++ == 100) {
|
|
temperature_counter = 0;
|
|
uint8_t tbuf[2];
|
|
if (!read_accel_registers(REGA_TEMP_MSB, tbuf, 2)) {
|
|
_inc_accel_error_count(accel_instance);
|
|
} else {
|
|
uint16_t temp_uint11 = (tbuf[0]<<3) | (tbuf[1]>>5);
|
|
int16_t temp_int11 = temp_uint11>1023?temp_uint11-2048:temp_uint11;
|
|
float temp_degc = temp_int11 * 0.125f + 23;
|
|
_publish_temperature(accel_instance, temp_degc);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
read gyro fifo
|
|
*/
|
|
void AP_InertialSensor_BMI088::read_fifo_gyro(void)
|
|
{
|
|
uint8_t num_frames;
|
|
if (!dev_gyro->read_registers(REGG_FIFO_STATUS, &num_frames, 1)) {
|
|
_inc_gyro_error_count(gyro_instance);
|
|
return;
|
|
}
|
|
const float scale = radians(2000.0f) / 32767.0f;
|
|
const uint8_t max_frames = 8;
|
|
const Vector3i bad_frame{INT16_MIN,INT16_MIN,INT16_MIN};
|
|
Vector3i data[max_frames];
|
|
|
|
if (num_frames & 0x80) {
|
|
// fifo overrun, reset, likely caused by scheduling error
|
|
dev_gyro->write_register(REGG_FIFO_CONFIG_1, 0x40, true);
|
|
goto check_next;
|
|
}
|
|
|
|
num_frames &= 0x7F;
|
|
|
|
// don't read more than 8 frames at a time
|
|
num_frames = MIN(num_frames, max_frames);
|
|
if (num_frames == 0) {
|
|
goto check_next;
|
|
}
|
|
|
|
// adjust the periodic callback to be synchronous with the incoming data
|
|
// this means that we rarely run read_fifo_gyro() without updating the sensor data
|
|
dev_gyro->adjust_periodic_callback(gyro_periodic_handle, GYRO_BACKEND_PERIOD_US);
|
|
|
|
if (!dev_gyro->read_registers(REGG_FIFO_DATA, (uint8_t *)data, num_frames*6)) {
|
|
_inc_gyro_error_count(gyro_instance);
|
|
goto check_next;
|
|
}
|
|
|
|
// data is 16 bits with 2000dps range
|
|
for (uint8_t i = 0; i < num_frames; i++) {
|
|
if (data[i] == bad_frame) {
|
|
continue;
|
|
}
|
|
Vector3f gyro(data[i].x, data[i].y, data[i].z);
|
|
gyro *= scale;
|
|
|
|
_rotate_and_correct_gyro(gyro_instance, gyro);
|
|
_notify_new_gyro_raw_sample(gyro_instance, gyro);
|
|
}
|
|
|
|
check_next:
|
|
AP_HAL::Device::checkreg reg;
|
|
if (!dev_gyro->check_next_register(reg)) {
|
|
log_register_change(dev_gyro->get_bus_id(), reg);
|
|
_inc_gyro_error_count(gyro_instance);
|
|
}
|
|
}
|
|
|
|
bool AP_InertialSensor_BMI088::update()
|
|
{
|
|
update_accel(accel_instance);
|
|
update_gyro(gyro_instance);
|
|
return true;
|
|
}
|